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Abstract

Development of multiple camera based vision systems
for analysis of dynamic objects such as humans is chal-
lenging due to occlusions and similarity in the appearance
of a person with the background and other people- visual
“confusion”. Since occlusion and confusion depends on
the presence of other people in the scene, it leads to a de-
pendency structure where there are often loops in the re-
sulting Bayesian network. While approaches such as loopy
belief propagation can be used for inference, they are com-
putationally expensive and convergence is not guaranteed
in many situations.

We present a unified approach, COST, that reasons about
such dependencies and yields an order for the inference of
each person in a group of people and a set of cameras to be
used for inferences for a person. Using the probabilistic dis-
tribution of the positions and appearances of people, COST
performs visibility and confusion analysis for each part of
each person and computes the amount of information that
can be computed with and without more accurate estimation
of the positions of other people. We present an optimization
problem to select set of cameras and inference dependen-
cies for each person which attempts to minimize the compu-
tational cost under given performance constraints. Results
show the efficiency of COST in improving the performance
of such systems and reducing the computational resources
required.

1. Introduction

We consider the problem of multi-perspective analysis
of moving people in crowded situations. Typical goals of
such an analysis are to recover the position, orientation or
the pose of each or some subset of the people in the scene.
The analysis is difficult due to occlusions and appearance
similarities of people with one another or the background
against which they are viewed. We refer to errors arising
from appearance similarities as “confusions”. In multiple
camera systems, information fusion needs to be sensitive to
occlusions and confusions.

∗Confusion and Occlusion analysis for Selections based on Tasks

Our goal is to develop principled methods to “select” the
camera(s) in which there is less occlusion and confusion for
a particular person to infer that person’s position or pose
(See Figure 1). Additionally, we seek to identify the parts
of the image where such occlusion and confusion occurs
and use this information in the inference process. How-
ever, determining those regions of occlusion and confusion
depends on the positions and poses of other people in the
scene. This leads to a dependency structure for inference
of position/pose of the people present in the scene, as is il-
lustrated graphically in Figure 2(b). A Bayesian network
for such multi-object inference will generally have loops.
Those loops can be eliminated by appropriate selection of
cameras and dropping inference dependencies which are not
expected to yield significant information, as shown in the
example in Figure 2(c).

We present COST, a framework to reason about such
dependencies, that produces an inference order for multi-
person, multi-perspective pose/position estimation. We ad-
ditionally identify a set of cameras and the parts of the ac-
quired images to be analyzed for each person. We show
that COST not only yields a reduction in computational time
compared to approaches such as Expectation Maximization
(EM) or Loopy Belief Propagation (LBP) [16], but also
shows quantitative improvement in the pose/position esti-
mation due to camera selection.

1.1. Related Work

There are many multi-perspective vision algorithms that
analyze crowded scenes for either person position estima-
tion or pose estimation. Most of the position estimation
algorithms constrain the motion to a ground plane and per-
form inference by first segmenting the people in each view
and then using data fusion techniques to obtain an estimate
of the 3D locations of each person [15, 12, 13, 6]. While oc-
clusion has been considered to some extent(for weighted fu-
sion) in some papers [15, 13], confusion due to appearance
similarities has not been previously considered. Addition-
ally, most earlier work either ignores the inference depen-
dencies or uses all of them, which makes the computation
costly.

Previous work on pose estimation has only considered
self-occlusion of one body part by another of the same per-
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(1a) (1b) (2a) (2b) (3a) (3b)

Figure 1. Segmentation results and median line determination of a person in three different views. In view 1, there is no occlusion and
confusion while in views 2 and 3 there is occlusion and confusion respectively. If the median lines are used for person position estimation
as in [13, 10], without occlusion and confusion reasoning, we might mistakenly use the median lines shown in (2b) and (3b).
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(b) All cam-
eras

C(1,2)

BA(1,2) (2,3)

(c) COST

Figure 2. (a) A multiple-person scenario with 3 people and 3 cam-
eras. (b)The dependency graph obtained if all cameras are used for
estimation of all people. An edge A → B represents the informa-
tion flow from A to B in the inference process-hence estimation
of B depends on estimation of A. In this scenario, estimation of
B depends on A due to occlusion in camera 1 and estimation of
A and C depends on B and A respectively due to occlusions in
cameras 3 and 2 respectively. (c) The dependency graph obtained
if cameras are selected using COST. The selected cameras for es-
timation of each person are shown in the respective node. Since,
camera 1 is not used for estimation of B , the estimation of B
becomes independent of A. Additionally, if the degree of occlu-
sion of C due to A is small (that is one cannot generate significant
information for the estimation of C using the estimate of the lo-
cation or pose of A) then one can also eliminate the dependency
edge A → C without strongly affecting the accuracy of the re-
sult. Such elimination can be critical for loop removal when there
are not enough cameras in which a person is isolated and discrim-
inable.

son [9, 8, 19, 20]; occlusion of one person by another, lead-
ing to inference dependencies between people and their parts
has not been addressed. A naive approach (by considering
all pairwise interactions of all parts of all people) would
involve constructing a large Bayesian network with loops;
however, this results in an intractable optimization problem.
We show how many of the loops in the Bayesian network
can be eliminated using selection of the best cameras and
the most important inference dependencies.

A related problem of sensor selection and information
fusion has been studied in the field of sensor networks and

distributed computing. The problem is to selectively choose
the sensors so that information gain compensates for costs
associated with information gathering. An optimal solu-
tion using such an information theoretic approach requires
evaluating all possible combinations, making the problem
NP-Hard. Denzler et. al [4] proposed an information the-
oretic based approach where the view which leads to max-
imum reduction in entropy is chosen. Since the computa-
tion of mutual information requires exponential time, other
approximate [23] and heuristic based algorithms [22] have
also been proposed. Other approaches in this field include
use of look-up tables [17] or utility functions [2] in selection
of camera views.

These information theoretic approaches only consider ge-
ometric analysis based on the fields of view of the cam-
eras when computing mutual information. However, even
though two cameras might have overlapping fields of view
they can still provide different information due to occlusion
and confusion. While [5] presents an approach for cam-
era selection in the presence of occlusions, COST involves
visibility and discriminability analysis in cojunction with
reasoning about dependencies for camera selection.

Bayesian belief networks are an important mechanism
for representation and reasoning under uncertainty. For a
given belief-net even finding an approximate solution is NP-
Hard [3]. Our approach is related to model simplification
methods(see [7]), which simplify the model until exact meth-
ods become feasible. These approaches reduce the com-
plexity by annihilating small probabilities [11] or removing
weak dependencies [14] and arcs [21].

Our approach is complementary to these approaches. COST’s
loop removal procedure is primarily based on camera selec-
tion, which removes redundant and unreliable information
in multi-perspective vision systems. Additionally, while
previous approaches assume that weights of the dependen-
cies are given, our approach considers occlusion and confu-
sion in different cameras and removes loops based on this
information.

The paper is organized as follows. We first describe how
visibility and confusion factors for an object are computed
in section 2. We then explain our optimization framework
and a heuristic approach for fast approximate inference in



section 4. We finally present experimental results in sec-
tion 5.

2. Computing Occlusion and Confusion

2.1. Computing Visibility

To estimate a property of a given person or object from
a given camera, that person or object must be (partially)
visible from that camera. But one person’s visibility de-
pends on the pose of other people in the scene, whose poses
are generally known only probabilistically. This lends us to
compute visibility probabilistically. Specifically, we com-
pute the probability of visibility of each part of a person in
each camera based on probabilistic estimates of the poses of
all other people in the scene. To develop a generic formula-
tion, let us consider an n-part model for a person where n is
one for simple position estimation or ten for full body pose
estimation.

Let dV be a differential volume element(voxel) which
might be included in part j of person i. The Occluder Re-
gion, Ωk(dV ), of a differential element dV in camera k is
defined as the 3D region in which another person, l, must
be present so that dV would not be visible in camera k (See
Fig 3). We also define the following events:

Ei,j(dV ) = Event that part j of person i includes dV 1

EOk
l,m(dV ) = Event that part m of person l intersects Ωk(dV )

EO
k
(dV ) = Event that no person intersects Ωk(dV )

The expected visibility of a part, that is, the number of
visible voxels contained in that part, is then given by

Ev(i, j, k) =

∫
V k

P (EO
k
(dV ))P (Ei,j(dV ))dV (1)

The probability that part m of person l does not occlude
dV is the probability that part m does not contain any of
the voxels that belongs to the set Ωk(dV ). Therefore, that
probability is given by

P (EO
k
l,m(dV )) =

∏
dV1∈Ωk(dV )

1 − P (El,m(dV1)) (2)

The probability that no part of any person is in the oc-
cluder region is then given by 2

P (EO
k
(dV )) =

∏
(l,m)

P (EO
k
l,m(dV )) (3)

Furthermore, in a tracking scenario, new people can en-
ter the scene. In this case, we also need to consider the oc-
clusions they are likely to introduce and how the expected
visibility changes to account for new people. We assume

1A part j can include many such voxels.
2By considering occlusion of a part (i, j) from itself, we implicitly

select surface voxels instead of interior voxels. Interior voxels would be
occluded the by surface voxels and would not be considered.

there are a fixed and known number of locations, which we
refer to as “portals”, from which a new person enters or
an existing person leaves the scene. Let Enew(dV ) be the
event that a new person is present in voxel dV . The likeli-
hood of this event, P (Enew(dV )), is the product of the like-
lihood that a portal is nearby (which is represented in terms
of a prior probability P p(Enew(dV ))) and the image likeli-
hood that a new person is seen in the region PL(Enew(dV )).
Therefore, P (EO

k
(dV )) is given by:
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dA

Camera k

Ck(dA)

Ωk(dA)

Figure 3. Schematic diagram showing Ωk(dV ) and Ck(dV ) pro-
jected on the ground-plane. Because of discretization, Ωk(dV )
and Ck(dV ) represent the set of voxels where another object must
be present for occlusion or confusion to occur.

∏
dV1∈Ωk(dV )

(
∏

(l,m)

1 − P (El,m(dV1)))(1 − P (Enew(dV1)))

(4)

2.2. Computing Confusion

Although a person(or some part) might be visible in view
k , the view might still not be helpful in estimating the pose
because of “camouflage” - his appearance being too sim-
ilar to either the background or some other person(s) oc-
cluded by him. Due to such “confusion” with the “back-
ground”, segmenting the person accurately would be prob-
lematic, and most pose inferences would degrade as the seg-
mentation quality decreases.

Again, consider the differential element dV that a part
(i, j) may contain. To compute the discriminability of dV ,
we determine the parts which can cause confusion. The
confuser space Ck(dV ) of an element dV is defined as the
region where the presence of a part (l,m) would cause con-
fusion in the classification of a pixel that can be formed due
to the projection of part (i, j) from dV (See Figure 3). The
amount of confusion is proportional to the similarity in ap-
pearance of the two parts. We define the discriminability of
a part (i, j) in a view k, Dk(i, j) as:

Dk(i, j) =
∑
(l,m)

cl,m ∗ d(ak
i,j , a

k
l,m) + c0 ∗ d(ak

i,j , B
k) (5)

where ak
i,j defines the appearance of a part (i, j), Bk

defines the appearance of the background, d is a distance
metric between the appearances and c is the correspond-
ing weight. For example, if appearance is represented as a



histogram, then d could be the dot-product of the two his-
tograms or the earth mover’s distance. The weight cl,m is
proportional to the probability of the part (l,m) lying in the
confuser space and being visible:

cl,m =
1

Z

∫
Ck(dV )

P (EO
k
(dA))P (El,m(dV1))dV1 (6)

where Z is a normalizing factor. Hence, the expected num-
ber of discriminable voxels in view k contained in part (i, j)
is given by:

Ik(i, j) =

∫ k

V

P (EO
k
(dV ))Dk(i, j)P (Ei,j(dV ))dV (7)

3. Information in Views and Dependencies

3.1. Model for Information Content

In order to perform inference reliably for some part of
a given person using some view, that part should, ideally,
not be occluded in that view and should not be “confused”
with the background or other parts. The accuracy of the in-
ference will depend upon both the degrees of occlusion and
confusion, as discussed in the previous section. It will also
depend on the uncertainty of such occlusion and confusion.
We present a simple model for measuring the information
available in a view regarding a part for the task of pose esti-
mation. We say that a specific voxel belonging to a person is
informative in some view if and only if it is both visible and
discriminable. The information available about a specific
part in a given view is then taken as the expected number of
visible and discriminable voxels in that view.

3.2. Information from Dependencies

Inference decisions can be improved if estimates of the
pose/appearance characteristics of the occluders and con-
fusers are used. Such information can be employed in a va-
riety of ways; an example for the position estimation prob-
lem is shown in Figure 4. Here the inference of a person’s
position involves constructing a median line through the sil-
houette of the person, and computing that line’s intersection
with the ground plane using calibration information. Fig-
ure 4(b) shows the segmentation of the person constructed
from the visible and discriminable voxels. However, the
estimate of the median-line is inaccurate when only these
voxels are used (see the magenta voxels on the ground plane
and median line-1 based on these voxels). If we additionally
use the position of the occluder we can identify occluded re-
gions (See light blue region in Figure 4(d)). The segmenta-
tion in the occluded region is then based on position priors,
which would yield a better estimate of the median line as
shown in Figure 4(c).

The inference of a part’s position depends on the infor-
mation about the occluders and confusers; the more accu-
rate our information about the occluder and confusers, the

(a) (b) (c)

(d)

Figure 4. Importance of using occlusion information before fusion:
(a) The original image (b) Occlusion-unaware segmentation and
object inference, (c) Occlusion-aware segmentation and inference
(d)The ground plane situation of the scenario. The black boundary
show the actual voxels contained in the person. In case b, only the
magenta voxels are used for median line estimation(1). In case c,
one uses combination of magenta and blue voxels for estimation
of median line(2). However, the true median line is represented by
(3).

more accurate will be our estimate. Thus, accurate infer-
ence of a part’s position depends upon the inference of oc-
cluders and confusers. Such dependencies can be repre-
sented in a dependency graph (See Fig 2). Using the pose
of other people in the inference process can, however, lead
to loops in the Bayesian network. Additionally, using infor-
mation from dependencies might involve expensive com-
putation. Our goal is to avoid introducing edges into the
dependency graph which either do not have sufficient infor-
mation or introduce loops in the Bayesian network. We do
this as follows: For each possible occluder or confuser l, we
associate a binary decision variable, νk

i,l which represents
whether the knowledge about the pose of person l is to be
used in the inference of the pose of person i from view k 3.
If there is no edge from node l (the node representing per-
son l) to node i in the dependency graph, then ∀k, νk

i,l = 0.
Given some selection of edges to include in the dependency
graph, the total amount of information, ∆Ik

i,j , that an al-
gorithm can extract in view k about a part (i, j) using the

3In our model, dependencies are between people and not parts; we use
the estimate of person l to estimate the locations of all parts of person i



estimates of its dependencies can be determined. This, how-
ever, also depends on the accuracy in the estimates of the
dependencies.

4. The Optimization Problem

Given the amount of information available(with and with-
out dependencies) regarding each person in each camera,
we estimate the binary decision variables µk

i , νk
i,l which rep-

resent whether or not camera k will be used in the inference
of person i(µk

i ) and, if so, whether to use the estimate of the
pose of person l when estimating the pose of person i (that
is whether or not we should include the edge from nodes l
to i in the Bayesian network). For instance, in Figure 2 the
decision variables (µ1

C , µ2
C , ν2

C,A) will be set to true for
person C. We would like to minimize the computational
cost while guaranteeing that the expected error in the esti-
mate of the pose of person i is below ηi(termed a “perfor-
mance constraint”). Thus, the optimization problem can be
formulated as

min
µi,νi

∑
i

Ji(µi, νi) such that, ei(µi, νi) ≤ ηi ∀i (8)

where ei represents the expected error in the estimate of
the pose of person i and Ji represents the cost of comput-
ing the estimate of the pose of person i. This model also
supports attention-based surveillance when ∃i s.t ∀j �=i,
ηi << ηj . In such a case, most of the computational re-
sources would be devoted to estimating the pose of a distin-
guished person.

The optimization problem stated above is NP-Hard and
belongs to the class of subset selection problems [18]. While
approaches such as simulated-annealing can be used for op-
timization, much faster heuristic approaches can be employed.

4.1. A Heuristic Based Optimization Approach

We present a heuristic-based, greedy algorithm for the
optimization problem. We build the dependency graph G
by adding nodes one by one to G. Each node represents
a person and the set of cameras selected for estimating the
pose of that person. The edges incident on a node represent
the dependencies to be used in estimation (An edge l → i
indicates that to estimate the pose of person i, the pose of
person l is used).

At each iteration, we compute the minimum cost 4 of
estimation of each person, i, by selecting the best possible
settings of the decision variables(µi and νi). However, to
avoid loops in G, we require that dependencies be selected
from the set of nodes already present in G, and should not
introduce loops in the Bayesian network. The person with
the lowest cost of estimation is then added to G. In the next
iteration, the cost of estimation is re-computed, since the
newly introduced node can be now used as a dependency
for the remaining people.

4If the performance constraint for any person cannot be satisfied we
assume the cost of estimation to be ∞

The algorithm is illustrated in Figure 5. At iteration 1,
the minimum costs of computation are B=2 (Using camera
1,2 and no dependency), A=∞ (A needs to use dependency
on either B or C for the performance constraint to be satis-
fied; since the dependency graph at t=0 is null, A cannot use
any dependency), C=∞ (C also needs to use the estimate of
B for its performance constraint to be satisfied). At iteration
2, the computation costs become A=8 (Using cameras 1,2,3
and the dependency from B) and C = 3 (Using cameras 2,3
and the dependency from B). Hence C is added at iteration
2. At iteration 3, the new minimum computation cost for
A=4 (Using cameras 2,3 and the dependency from C. The
dependency from B is not included since the performance
constraint of A is satisfied without it)

A(2,3)
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�
�
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�

A

B

C

2
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Iteration 1

B(1,2)

Iteration 2

B(1,2)

C(2,3)

Iteration 3

B(1,2)

C(2,3)

�
�
�

�
�
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Figure 5. A sample scenario to illustrate the heuristic algorithm.

To compute the minimum cost of estimation for each
remaining person at each iteration, one could exhaustively
search the space of possible cameras and dependencies se-
lection. However, such an approach requires exponential
time in the number of cameras, so becomes infeasible when
the number of cameras is large. Instead, we use a greedy
approach, where we start by selecting a minimal set of cam-
eras (two for example if pose is to estimated by stereo; one
if position is estimated by intersecting a median line with
the ground plane) and add more cameras and dependencies
one at a time, based on the increase in cost of computation
and the reduction in expected errors, until the performance
constraints are satisfied.

5. Experiments

We next demonstrate how COST can be applied to mul-
tiple camera tracking algorithms.

5.1. Tracking People on a Ground Plane

5.1.1 Framework

We applied COST to a variant of M2Tracker. M2Tracker
is a system that segments, detects and tracks multiple peo-
ple on a ground plane in a cluttered scene [15]. The algo-
rithm cycles between using segmentation to estimate peo-
ple’s ground plane positions and using ground plane posi-
tion estimates to obtain segmentations; the process is iter-
ated until stable. In M2Tracker, all people are segmented
in all cameras; then the segmentations are combined using
a wide-baseline stereo reconstruction algorithm for position
estimation. In COST, selected people are segmented in se-
lected views - those for which µk

i = 1. To use the estimate
of the position of an occluder, we first segment the occluder
and then classify the pixels in the occluded region based on
the prior probabilities alone.



M2Tracker uses a cylindrical model of the person with
color encoded as a function of height. We use the same sin-
gle part model. An estimate of the position probability den-
sities on the ground plane is obtained using the estimates
from the previous frame 5. Given these probability densi-
ties, we can estimate the amount of visible information in
each camera for each person. To compute the amount of
information available through dependencies, we note that
dependencies can be used to segment and classify pixels
corresponding to occluded voxels. The number of occluded
voxels that can be added due to dependencies depends on
the selection of dependencies and the accuracy of the posi-
tion estimate of the occluder. If the accuracy is higher, then
we will be able to estimate the occluded region better, and,
in turn, can better estimate occluded voxels. Therefore, the
amount of information that can be extracted using occlusion
is given by:

∆Ik
i =

∫
V k

(1 −
∏

l

P (EO
k
l (dV ))νk

i,l(1−el))P (Ei(dV ))dV

(9)

Based on the expected number of voxels which are vis-
ible and discriminable(Ik

i ) and the expected number of oc-
cluded voxels that can be segmented using occlusion de-
pendencies (∆Ik

i ), we compute the segmentation quality of
each person in each view. Let Sk

i represent the segmenta-
tion quality of person i in view k; we compute Sk

i as :

Sk
i = Ik

i + λ̃∆Ik
i (10)

where λ̃ defines the weight of occluded voxels as com-
pared to visible and discriminable voxels.

We still need to define the error function, ei(µi, νi), which
is the expected error in the estimate of the position of a per-
son i for a given setting of the decision variables. This error
depends upon

• Segmentation Quality The error in estimation de-
creases as the segmentation quality becomes better.

• Camera Configuration: The error due to fusion of
information from different cameras not only depends
on the segmentation quality in each camera but also
on the configuration of the cameras. For example, in
stereo reconstruction, performance depends upon the
baseline. Thus, certain camera pairs would be pre-
ferred over others.

To define this error function, we observe that M2Tracker
combines information from two cameras using stereo re-
construction to obtain a ground plane estimate. For a given
camera pair, the error in estimation of position would in-
crease as the segmentation quality decreases in either of the
cameras in the pair. So, the error in estimating the position
of person i using the stereo pair (k1, k2) is approximated
by

5In M2Tracker, visibility does not vary with height and hence ground
plane analysis of visibility can be performed instead of 3D modeling

Ei(k1, k2) = (1 − f̃(θk1,k2)S
k1
i Sk2

i ) (11)

where θk1,k2 is the angle between the viewing directions
of cameras k1 and k2 on the ground plane. f̃(θ) represents
how the accuracy of wide-baseline stereo varies with the
angle between the viewing directions.

Additionally, M2Tracker fuses many camera pairs to ob-
tain people’s ground plane position estimates by using a
weighted average of the estimates from each camera pair.
Therefore, the error in the final position estimate would be
the mean of the errors from individual camera pairs.

ei(µi, νi) =

∑
(k1,k2) µk1

i µk2
i Ei(k1, k2)∑

(k1,k2) µk1
i µk2

i

(12)

To define the computational cost function Ji, we observe
that to apply the inference procedure to any person, we need
to segment the person in the selected views and, for each
dependency being used, we also need to segment the per-
son providing the dependency in the selected view. The
segments are then combined to estimate the person’s po-
sition on the ground plane. We assume, for simplicity, that
the computational cost of segmentation and wide-baseline
stereo is some constant and independent of view and imag-
ing conditions. Hence, the total cost of computation is given
by:

Ji(µi, νi) =
∑

k

µk
i (j̃1 + νk

i j̃2) +
∑

(k1,k2)

µk1
i µk2

i j̃3 (13)

where j̃’s are constants. Intuitively, the cost is propor-
tional to the total number of views used independently, and
the number of dependencies utilized.

5.1.2 Results

We evaluated the performance of our implementation of
M2Tracker with and without using COST on the publicly
available dataset of M2Tracker. We used two sequences,
one with four and the other with five people (15 cameras
were used to record the sequences). The results of M2Tracker
with four and eight cameras at uniform intervals around the
circumference of a room provide our benchmark results.
Figure 6 shows the tracking result using COST at frame 30
from three different views. Figure 7 shows the ground plane
distribution of each person using COST (COST selected 2
cameras out of 15 for each person) and compares it with
tracking using eight uniformly placed cameras in the orig-
inal M2Tracker. It can be seen that M2Tracker has higher
variance in position estimates using the eight camera sys-
tem than COST has choosing only the “best” camera pair
per person. This is because in many views a person is either
occluded or confused with the background and this leads
to inaccurate segmentations and subsequent errors in stereo
reconstruction.

COST was also compared with four and eight camera
M2Tracker systems in terms of the mean error in position
estimation on the ground plane. The positional ground truth



(a) (b) (c)

Figure 6. Tracking Results at Frame 30.

(a) 8 Cameras (b) COST

Figure 7. Ground Plane Tracking Results: The variance of an esti-
mate obtained using COST is low as compared to the M2Tracker
system.

values were obtained manually. Figure 8 shows the perfor-
mance of COST and M2tracker with 4 and 8 cameras on the
5 person sequence. It can be seen that the performance of
COST is comparable to the system with 8 cameras. How-
ever, COST only analyses 2.2 cameras per person. This
leads to an improvement in the computational speed of the
system. In terms of the number of missed detections, COST
outperforms M2Tracker with either 4 and 8 cameras (See
Figure 9).

Experimental results indicate that it is generally suffi-
cient to analyse only a small number of judiciously cho-
sen cameras to obtain accuracy and performance similar to
a system uniformly employing a large number of cameras.
COST selects those few cameras and dependencies based on
confusion and occlusion analysis. COST naturally chooses
views in which people are visually isolated and only intro-
duces a dependency when necessary - typically only when
no isolated views were available.

5.2. Using COST for Multiple People Pose

We also applied the COST algorithm for full body pose
estimation of multiple people. We implemented a 3D pose
estimation system using non-parametric belief propagation
[19, 9]. These papers have considered the problem of self-
occlusion, but not of one person by another. The importance
of considering occlusion of one person by another is illus-
trated in figure 10.
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Figure 8. COST analysis Performance: Mean error in ground plane
estimate in mm using COST analysis on M2Tracker. The system
performs similarly to a system with 8 cameras. However, the cost
of computation is substantially lower.

Figure 9. Number of Missed Detections: COST improves the sys-
tem performance also in terms of missed detections. While none
of the persons was missed using COST analysis in the 4 person se-
quence, the number of missed detections was also less than using
8 uniformly placed cameras in the 5 person sequence.

We used similar dependency and cost functions as for
M2Tracker. However, the error function for full body pose
problem was modified. As in [1], we compute the expected
error in estimation of a person as the unweighted mean of



(a) Occlusion not considered (b) Occlusion is considered

Figure 10. Importance of considering occlusion information. The
left hand is missed without considering occlusion information.

the expected errors in the estimation of the individual parts.
Figure 11 shows an example of three views in which re-
sults of pose estimation are shown. COST uses the infor-
mation from partially occluded views (which leads to a de-
pendency) when there are no views available in which the
person is visually isolated.

(a) (b)

Figure 11. Pose estimation by using COST loop removal.

6. Conclusion

We have presented a principled approach, COST, for cam-
era and dependency selection for improving the performance
and computational resource requirements for multi-camera
systems. COST produces a directed acyclic dependency
graph which can then be used to obtain an inference order
using topological sort. The selection criteria in COST is
based on visibility and “confusion” analysis in each view
and the resulting dependencies. Experimental results indi-
cate that COST outperforms a system which uses a large
number of cameras for estimation of each person. Addi-
tionally, a COST based system is faster than other possible
approaches based on EM and belief propagation which use
all the cameras and dependencies for analysis.
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