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Abstract

Automatic initialization and tracking of human pose is arportant task in visual surveillance.
We present a part-based approach that incorporates ayafietonstraints in a unified framework.
These constraints include the kinematic constraints bestwgarts that are physically connected to
each other, the occlusion of one part by another and the higtelation between the appearance
of certain parts, such as the arms. The location probaldigtribution of each part is determined by
evaluating appropriate likelihood measures. The graplfitan-tree) structure representing the inter-
dependencies between parts is utilized to “connect” such gistributions via nonparametric belief
propagation. Methods are also developed to perform thisnigetion efficiently in the large space of

pose configurations.

Index Terms

3D/stereo scene analysis, Motion capture, Tracking

I. INTRODUCTION

Automatic initialization and tracking of human pose in unstained and varying conditions
is one of the most challenging problems in visual survedi&amecause of occlusion, a high
dimensional search space and high variability in appeardne to shape and clothing variations.
Desirable properties of a human tracker include accurdiigiency, ability to self-start, automatic
detection of failures and ability to re-initialize [34]. Mbearly work focused on tracking, where
an initialization is given[7], [41]. Recently, there hasebean increased interest in automatic
detection of body pose to initialize/re-initialize trangi systems[11], [24], [42].

In this paper, we present an efficient multiple camera baggdoach for estimating the 3D
pose of humans in cluttered sceheBhe system incorporates a variety of constraints, inclgdi
the occlusion of one part by another and appearance camsyserross parts, in a unified
framework.

Most of the current pose estimation systems fail when thgreonsiderable self occlusion
because the image likelihoods are low for the occluded parteur approach, we boost the
likelihoods of the possibly occluded part in proportion te texpected amount of occlusion.

We use an iterative approach, where at each iteration we atngpose likelihood distribution

A preliminary version of this paper appears in 3DPVT'06 [14]
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which is used to infer the occluding properties and appeaar each part. The system uses
these better appearance and occlusion estimates at eatioitdo refine the pose estimates.

Unlike most previous approaches, our method does not gegmented human silhouettes.
Our edge based likelihood model allows us to eschew thecdiatikground assumption required
for background subtraction. The major features of our aggincare:

« Occlusion, appearance, kinematic and temporal consdrairdg incorporated in a unified

multi-view framework.

« A computationally efficient approach, as compared to [43]piesented to handle self-
occlusions. The occluding properties of a part are utilizedletermine the visibility of
other parts directly and to give more weight to those vievet trave a less occluded view
of a part.

« A method that combines bottom up and top down approachesutehe search and make
the estimation process efficient is presented. Search ferpexd only in high prior 3D
regions and evidence is collected only once in the imagechvig then combined in 3D
via epipolar constraints.

The paper is organized as follows. We discuss related wo8ettion II. Section Il discusses
the human body model, followed by a discussion of the mespagsing framework in Section
IV. Section V provides a description of visibility analysand likelihood computations. We
then explain how bottom up search is incorporated in a topndbmework in Section VI.
This is followed by a system overview in Section VII. Expeental results are presented in
Section VIII. Finally, we conclude by a description of howdrtend the framework to include

temporal constraints in Section IX.

1. RELATED WORK

There is a wide range of approaches to human pose estima@n[B0]. These algorithms
can be broadly divided into two categories:
« Bottom-Up: Here, possible parts are first found using part detectorglamare combined
to form the whole body [19], [31], [37], [34], [27].
« Top Down: These algorithms use an explicit 3D human model, along Wighkinematic
structure and other constraints, to reconstruct the p8§e[25], [8]. The probability dis-

tribution of the whole body configuration is then searched tfoough techniques such
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as Monte Carlo Markov Chain (MCMC). Possible parts are thmmd by sampling the
posterior obtained for each part.

Bottom-up part-based approaches estimate human body Ipatembining image evidence
with constraints on joint locations. Most prior work usesyokinematic constraints on body part
locations. These constraints limit the body part positibgsrequiring some body parts to be
close to others. This requirement leads to a tree-strutignaph that can be modeled either in 2D
[10], [35] or 3D [44]. Felzenszwalb et. al. [11] presentedededministic linear time algorithm
using dynamic programming to solve for the best pose cordtgur in such tree structures.
Top-down approaches, on the other hand, try to search inigiedimensional space of whole
body configurations. Lee et. all [24] combined a probabdigroposal map representing pose
likelihoods with a 3D model to recover the 3D pose from a snighage. Data driven Markov
chain Monte Carlo [49] is used to search in the high dimeradispace of possible poses. Other
approaches include Data Driven Belief Propagation [171fige filtering [25] and annealed
particle filtering [8].

Most of these methods assume a tree structure for the comnstta be satisfied. However,
there are limitations to a tree structure. Kinematic relaibetween parts that are not connected
to each other cannot be represented. Furthermore, ocelo$ione part by another cannot be
modeled nor can the constraint due to the high correlatiawd®n the appearance of pair of
parts such as the hands [32].

There has been some recent work to overcome these limigatiam et. al [23] use factor
graphs to add constraints such as the balance of a body whilkking; Ren et. al [36] use
Integer Quadratic Programming (IQP) to add pairwise cair#ls such as the similarity in the
appearance of left and right body-parts. Sigal et. al [4&8spnt an approach to detect and
track humans from multiple views. Kinematic constraintsnbmed with temporal constraints
lead to the formation of a loopy graph which can be optimizethgt Non Parametric Belief
Propagation(NBP). However, they do not explicitly modét-seclusion where one part occludes
another as shown in Figure 1.

loffe et. al [20] proposed using a mixture of trees to handlehsocclusions. The mixture
includes all possible trees resulting from removing nodesnfthe base tree under different
occlusion scenarios. However, modeling the conditionate/ben non-connected parts is difficult

and does not provide strong constraints, leading to false Ipealizations. For example, the
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Fig. 1. Self occlusion is a problem in likelihood computatidt leads to low likelihood at the true location when onetpar
occludes another. (a) Right leg occludes the left leg andtaheo occludes the left hand. (b) Both hands occlude theotors

partially.

position of the torso provides weak constraints on the ptesgositions of the lower arms in
scenarios where the upper arms might be occluded. At the sarmagthe problem space becomes
very large due to the need to optimize over the entire ensewiblrees.

Sudderth et. al [47] handle a different but related probldntracking a human hand under
self occlusion using NBP. They use only a single camera &mking the hand in 3D. In order to
handle occlusion, they augment the state of each particked®t of binary hidden variables that
represent the set of occluded pixels in the projection ofpidme. The non-tree structure obtained
is then optimized in a non-parametric belief propagati@miework. However, the introduction
of such variables increases the problem state space exjallyeand the resulting optimization
problem can be quite unstable, especially in the presen@nbiguity in the part likelihoods.
Furthermore, the technique does not generalize well toiptelviews since the occlusion state
of part pixels is view specific, and extension to multiplewsewould require introduction of a
very large number of extraneous hidden variables. We useigasibut more tractable approach
of determining the probability of visibility/occlusion mdictly from the probability distributions
of the locations of other parts and use it to improve the etion of the part likelihoods. The
resulting problem can again be solved using non-paramegtief propagation. In work parallel
to ours, Sigal et. al [43] use a formulation similar to the\add7] for handling self-occlusions,

but with a different likelihood model, and apply it to 2D posstimation.
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The pose estimation problem can be simplified significamglyabsuming that the person can
be segmented from the image, say using background subtmaft], [23], [29]. While this
reduces the search space significantly, it does not hanellpriblem of self-occlusion or people
occluding one another.

A complementary approach, commonly known as discrimieatnethods [1], [3], [9], [39],
[13], [15], [40], [45], is to learn pose configurations fromaining images and use appearance-
based associative models to "look up” the pose from the itrginlata. These methods use a
parametric model of posterior probabilities and learn taemeters using the training data. On
the other hand, generative approaches like ours model the goobability distribution using
class conditional densities and class prior probabilit&smpared to discriminative approaches,
generative approaches have the following advantages:

« Generative models generalize well, whereas discrimigatiodels depend heavily on the
learned poses. Due to the large space of pose configuratioasjery difficult to identify
new poses.

« Generative models can handle compositionality (e.g pewojtle extra clothings like hats,
or people with bags) whereas discriminative approached tesee all possibilities in the
training dataset.

On the other hand, discriminative approaches offer theotlg advantages:

« Discriminative models are generally faster due to the lodierensionality of the models
employed.

« Discriminative models generally provide better predietprerformance when the training
set is large and comprehensive.

Another approach [4], [26] for estimating the 3D human pasenfmultiple cameras is based
on segmenting the visual hull based on prior knowledge ofstigpes of the body parts, their
relative sizes and possible configurations. While voluntergection methods like these produce
accurate results, they can only be used for studio-like iegpdns since they require static
backgrounds and are too sensitive to background subtraetiors. Apart from this, occlusion
and self-occlusion is a major problem in such applicati@specially if the number of cameras

is not very large.
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Fig. 2. The human model. The solid lines represent edgestiEseand the dashed lines represent edges in theFset

Occlusion edges are not shown in the above graph. Every pardrinected to all other parts by occlusion constraint edge.

I1l. M ODELING THE HUMAN BODY AND PROBLEM FORMULATION

Our 3D human body model (Figure 2) consistsnof 10 body parts (head, torso, left upper
arm etc.). Each body part (except the torso which is modeted auboid) is modeled as a
cylinder and is represented by a node in a graph with a randecton®; = (I;,a;), where
l; and a; represent the location and appearance parameters of pespectively. The location
parameters of each patt, is further parameterized ds= (7, [¢) wherel{ andi are the 3D
positions of the two ending points of the limb.

The nodes of the graph are connected by three types of edpesfirst enforces kinematic
constraints between parts. The second represents appea@mstraints which are introduced by
the symmetry of left and right body part appearances. Thd tepresents occlusion constraints
across parts that can occlude each other. The model is espeelsbyd = (Ey, E,, E,, ¢k, Ca, Co),
where the set of edges,., F, and E, indicates which parts are connected by edges of the first,
second and third type respectively, ¢, andc, are the connection parameters for these edges.

Our goal is to find the probability distribution of the posenfiguration of a human body, given
by & = (&4, Po........ ®,). In an M camera setup, if; denotes the image from th¢" camera,
then P(I;....1,,|®) is the likelihood of observing the set of images given the 8Bations and

appearances of the body parts. The distributionPg®) is the prior over the possible body
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configurations. The goal is to find the posterior distribati&®(®|1;....15,), which measures the
probability of a particular configuration of the human boadyeg M views and the object model.

Using Bayes’ rule,

P(®|1y...Ins) o< P(Iy....I01|®) P(P) (1)

Assuming that the location and appearance priors are imdiepe of each other, the prior
distribution P(®) is

P(®) = P(l;....1,) P(ay.....an) @)

As any particular location or orientation of a part is notfpred over another, we neglect
priors of single part locations. Furthermore, we use paeéfinctions to avoid normalization
computations. Then, the joint distribution of the tree stwed priorE), and E, can be written

as:

P(ll, l2 ...... ln) X H /{z‘j(lzﬁ l]) (3)
(vi,v;)E B,

P(ay,as.....,a,) x H aij(ag, aj) (4)
(’Ui,v]')EEa

wherer;; and «;; are the potential functions for kinematic and appearancestcaints over
the cliques(pair of nodes in this case).

For articulated objects, pairs of parts are connected bybfeyoints. Ideally, the location of
the ending-point of the first part should be the same as tiengtgoint of the second connected
part. The clique potential for a pair of parts, connected tiges inE), (kinematic connections)
is modeled as a Gaussian:

Hz’j(lialj) :N(d(lz,l]),O O'I-Q-) (5)

g

whered(l;,1;) denotes the Euclidean distance between the connecting @nts f thei'”

and j* body parts.(Figure 3).
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Connecting endpoint of
the j‘h body part _
N J

\

Connecting endpoint o
the i™ body part

Fig. 3. The connecting end-points of the two connected parts

For appearance constraints, Ieta;, a;) denote the distance between two appearance vectors.
Ideally, the distance should be zero, assuming left and gty parts have similar appearance.

The appearance potential;;, is modeled as:

ozij(ai,aj) == ./\/’(D(al-,aj),O O'q») (6)

Y 1]

Section V-B discusses how part appearances are modeledoanthé distanceD(a;, a;), is
computed.

Computation of the likelihoodP(/;....1,,|®) is complicated due to occlusion. Sudderth et.
al [47] introduce hidden variables to represent the ocolusiask and use only unoccluded pixels
for likelihood computation. This process increases the sizthe solution space exponentially.
Instead, we compute the probability of visibility of eachrtpan different views using the
probability distribution of all other parts and use it to quue the likelihood over all the views
as explained below.

The imaging from every camera is modeled as a conditionatlgpendent process. Similarly,
the observation of different parts is assumed to be comditip independent. This allows us to

decompose the image likelihood for the configuratiom@s:

n M

P(L...In|®) o< [T T P10, a2) (7)

i=1 j=1

Note that due to the possibility of occlusion, the likelildoof each part depends not only
on the position of the part, but also on the positions of othemts. While one may be able
to use the likelihood in this form in tracking applicationsing it for automatic “detection” is
prohibitively expensive. To overcome this, we introducesarset of binary ‘visibility’ variables

v!(1;), that refer to the visibility of a part at location/; from cameraj. While these visibility
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variables are dependent upon the position of all other parésobservation likelihood for part
1 is independent of the location of other parts if its visiilis known. Then, one can write the
likelihood, P(1;....Iy|®), as:

n M

11 > Pl ol (1) P ()l by L ol (8)

i=1j=1Je{T F}

The term P,(I,]l;,v!(l;) = TRUE) represents the likelihood of observing the image from
camera j given that the part is visible from this camera wWHi¢I,|l;, v/ (l)) = FALSE)
represents the likelihood of observing the image given that part is occluded from the
camera. However, parts may be partially visible in Whicheods{li) is neither true nor false.
To approximate thisy?(1;) is defined as the visibility of a random point on the skeletbthe
part. In Section V-A, we discuss how to compute the visipiliriables and in section V-C,

we discuss how to compute the likelihoods.

IV. PARTICLE-BASED BELIEF PROPAGATION

In the previous section, a graphical model for human bodyspagas developed. In order
to solve for the best configuration in such a graphical mod#t Yoops, a belief propagation
framework can be used( [33], [52]). Essentially, we opteeniar the posterior of each part; the
interactions between different parts are handled via beliessages. Since representing exact
probability distributions is computationally and memongensive, we use the non-parametric
belief propagation framework presented in [21], [46] whéne probability distributions of
the part locations and appearances are represented vieeManko particles. The framework
provides a natural approach for enforcing constraintssacparts, including those of occlusion
and appearance matching.

There are, essentially, two sets of unknowns that need tosteated simultaneously: the
locations and the appearances. The computation of thermsdestribution at a particular node
requires locations, appearances and occluding propdrépsesented via occlusion-maps) of
other connected nodes in the graph. The following messageased to pass this information

to a part:

« The locations of neighboring connected body parts (e.gldbations of the lower left leg

and torso are passed to the upper left leg).
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« The appearance of the corresponding symmetric part (eecagpearance of the right upper
leg is passed to the left upper leg).
« The occlusion maps of other parts that may occlude this pagt the upper left leg receives
the occlusion map from all other parts in order to updateikislihood distribution)
A message from paiitto part; imposes constraints on the configuration of gaifidr possible
configurations of part. The contribution of any configuration of paitis weighted by its
posterior. At iterationr, a messagen,; from node: to j along an edge i, or E, may be

represented as:

m:](@]) = /Iiij(li,lj)OZZ‘j(CLZ‘,aj)POSr_l((I)i)d(I)i (9)
where Pos"~1(®;) represents the posterior distribution of past iterationr — 1. Note that
kij(l;,1;) = 1 for messages along edges i) and a;;(a;, a;) = 1 for messages along edges in

Ey. The posterior distribution of a body-pafos”(®;) can be computed as:

Pos"(®;) o< Y Pi(L....Iy| @i, v5i(l) P(VSi(l) [ mpa(@:) J] mi(®:)  (10)
V5 keEL\j 0€E.\j

i v“M) represents the visibility maps of paitat iterationr in all the

3 ey Ug

wherev®; = (v
cameras. The visibility maps are computed by combining téabilistic occlusion maps which
are passed as messages along the edggs. i8ection V-A discusses how to compute visibility
maps from the probabilistic occlusion maps.

To initialize the system, uniform appearance priors andl vidibility. At any iteration, the
posterior distribution of each part is approximated by acfetarticles which are sampled using
importance sampling. These particles are used to gendratenessages to be passed along
appropriate edges to enforce inter-part relationshipsldtipg the parameters for different parts
in turn, the method eventually leads to stable parameteanatbn after several iterations. The
particle-based belief propagation is especially effectince the probability distributions are
typically not gaussian in nature and hence using any paraamabdel would lead to a loss of
accuracy.

The study of convergence properties of belief propagatimtesns is an active area of re-
search [53], [54], [48], [51], [18]. When the graph is singtpnnected, belief propagation

systems are guaranteed to converge to the correct pospedbabilities. However, in the case
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of graphs with loops, the convergence behavior is more coatpd. Weiss et. al [53] studied
the convergence properties of belief propagation withIeihgops. Recently, some papers [48]
have derived sufficient (although not necessary) condititvat guarantee the convergence of
loopy belief propagation systems. Especially when comapdid continuous distributions are
approximated through parametric (Gaussian belief prapagaand non-parametric techniques
(NBP [46], [21]) , the convergence properties are poorlyarstbod. Many recent papers [42],
[46], [21] have empirically demonstrated good performantehe NBP algorithm on graphs

with loops.

V. COMPUTING PRIORS AND LIKELIHOODS
A. Computing Part Visibility

We discuss how to compufé(vf(li)\ll..li,l, li+1, --1,,), which represents the probability of visi-
bility of a random point on the skeleton of pait view 7, given the pdf’s of the locations of parts
l...1,. If the exact positions of parts in 3D were known, computit@? (1;)|l1..Li_1, li11, -1
would be straightforward. However, only the posterior riligttions of the locations of the parts
after the previous iteration are known. To compute the fdvdibyg notice that a part is not
occluded if and only if it is not occluded by any part, allogrins to utilize an independence
relation between the occlusion from different parts. Thbs, probability of visibility of a part
i in view j, P(v!(1;)|l..li_1, liy1..1,) represented by’v/, can be broken down into the product

of the probability of visibilities from different parts:

PUZJ = H P(Uljk(lz)ullz—lalz—l—lln) (11)
k=1,2..i—1,i+1...n
= 11 P(ug, (L:)|1x) (12)

k=1,2.i—1,i+1..n
The above equation requires computiigy’, (1,)|1x), the probability that partis not occluded
by partk.
To compute this probability efficiently, “occlusion maps'eantroduced. An occlusion map
of a partk, Ol(z,y,2), denotes the probability that a 3D poifit, y, z) will be occluded by
part k£ in view j (Figure 4 illustrates an occlusion map of a sphere). Theusawh map of a

body part depends on its shape and location. The occlusi@s @@ updated at every iteration
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because the probability distribution of the part locatiohange at each iteration. For computing
the occlusion map of patt, the region of occlusiohfor each particle ofc is computed. The

occlusion map is defined by the following equation:

Oy M (z,y,2) = % (13)

wherer is the iteration numbenm,.. IS the number of particles that support the fact that a
point (z,y, z) will be occluded by part in view j, andn is the total number of particles used
for computing the message. Intuitively, the probabilitattla 3D point(z, y, z) is occluded by
part k is proportional to the number of particles of parthat occlude that point.

To provide smooth updates to the occlusion maps, it is usefulpdate the occlusion maps

incrementally:

O; (., 2) = (1 = BOR (@, 2) + B(™) 14)

n

where 3 determines the rate of change of the occlusion maps=(0.2 was used in our
experiments).
Using the occlusion map of paktfor view j, the probability of visibility of a point object

at location,p; = (x,y, z) in view j, can be computed as:

In order to address the finite size of the p&?(,v{(li)ﬂk) is approximated by averaging the
visibility probabilities along the part skeleton. Compuda of occlusion maps is linear in the

number of particles, typically just a few hundred.

B. Part Appearance

The appearance of a part is modeled by its color distribusitemg the length of the part.
While a single color model for the whole part would not be ableapture the color variations,
modeling the appearance using a histogram will be commn@ily expensive. A part is divided

into regions along its length, and a single color model isetlgyed for each such region (See

2The region of occlusion is the 3D region that will be occludsdthe part
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Occlusion Map

Fig. 4. The occlusion map created by a sphere. The cone béénsphere is the region of occlusion in 3D. The probability

of visibility is decreased for every 3D point lying withindgtcone.

Fig 5). For each part hypothesis, a few pixel are sampledgatbe skeleton of the part to
capture the color variations along the length. To handléustans, we also associate a confidence
variable with each region, which represents the certainityur estimate of appearance. In our
experiments, we assume certainity is proportional to tledgioility of visibility of the region.

To reduce the effects of illumination changes, we use namedlicolor (i.e the ratiom and

r+§+b) instead of RGB color components.
The distance/difference between the appearance of twe {gacomputed using the weighted

Euclidean distance. If a part is divided intaegions,(a},, a2, ) respresent the normalized color

components of regiork of parti and c¢; represents the confidence in above estimate, the

difference in appearance of the two parts is given by

Sher iy (aly — aly)? + (af, — a3, )?

T
Zkzl Cik:Cjk

D(ai, aj) = (16)
C. Image Likelihoods

Each body part is modeled as a cylinder. Under orthographigegtion, the image of a
cylinder will consist of parallel lines for its two occludircontours, and two circular surfaces at

the joints, which are normally not detectable via image ysial The response of a filter shown

April 11, 2007 DRAFT



15

skeleton

Fig. 5. The division of a part along the length.

wl wl

Fig. 6. The filter used for finding image likelihoods for vedi parallel linesw represents the projected width of the body

part andh represents the height of the part. The white, black and geeioms have weights 1,-1 and O respectively.

in Figure 6 is used to measure the likelihood of paralleldiriEhe filter gives high response for
parallel lines separated by distaneeand is robust to moderate deviation from the parallel line
assumption.

An exponential dependence of the likelihood on the filtepoese is employed so that the

likelihood of the image given that the object-part is visititom the camera is:
Pi(L;|l;, v!(1;) = TRUE) oc 1= a7

Wherel{ Is the location where paitprojects in imagej, andp is the response of the filter at
a particular location. More complicated models and filtexs also be used[38]. Computation of
P,(I,|l;,v!(l;) = FALSFE) represents the case when the part is occluded. It can alsedted
as computing the likelihood of observing a random pattertoeation l{ with no preference

given to one pattern over anoth&rTherefore, the likelihood can be assigned a fixed constant

3although this is not entirely true since the observationoisadated to the appearance of the occluding part.
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Fig. 7. An example of complicated filters which can be usedlif@ihood computation. Such filters compute the response
for visible portions of part only. In this example, the miediortion(horizontally) of the part is occluded and henceeégim of

0 is used for that portion.

in this case.

Likelihood can be better computed using more complicategtilas shown in Figure 7. In such
a filter, the response is calculated only for the visible ipog of the part(each pixel weighted by
its probability of being visible). The response of such afilhas to be computed pixel-wise as
opposed to the integral images formulation [50] used in ggtesn. The approximation used in
our experiments is a trade-off made for efficiency, yieldargalgorithm which has complexity
O(n,) +O(m,) instead ofO(m.n,) wherem, is the number of possible part configurations and
n, is the number of pixels.

It should also be observed that the 2D likelihood model favpart configurations(length
and orientation) which project onto smaller image regioims €xample, the likelihood of a
limb pointing forward is generally higher than the likeldub of a limb visible in full length).
However, this is generally not observed in our estimatesesin a wide baseline stereo any
limb which projects onto a small region in one camera (dugst@iientation) generally projects
onto a bigger region in the other camera, and the 3D likelihobsuch a configuration is low
if there is absence of support in any camera. The configuratath smaller 3D limb lengths

are rejected because they do not satisfy anthropometristreonts.

VI. COMBINING BOTTOM-UP EVIDENCE WITH TOP-DOWN PRIORS FOREFFICIENT

ESTIMATION

The computation of the probability distribution for eachitpean be quite expensive due to the

very large space of possible part configurations (locatioth @rientation) Q(m.k¢) wherem,
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is the total number of possible configuratiokss the number of particles retained for message
passing and/ is the degree of a node). In order to deal with this computati@aomplexity,
Coughlan et. al [5] discussed accelerating belief propagaty belief-pruning and focussed
message updates. Belief pruning removes states with veryplusteriors from consideration
during future stages. However, in the case of occluded ljnitesbelief will be initially very low
and the approach might fail. Sigal et. al [42] use indepehgart detectors, called shouters, to
create the sampling function, which leads to better sargpBimilar sampling approaches for
belief propagation have been used in [17].

We propose using 2D evidence from images and combiningrirdton from multiple cameras
using epipolar geometry to obtain high likelihood bodypadions in 3D. Additionally, regions
with high priors for a given part are obtained using the philig distribution of connecting
parts. Since a high probability region must have either d Hiielihood or a high prior, the
search in the configuration space can then be confined to tivesgypes of regions.

In order to determine regions with high priors, we use theupaters of appropriate connecting
parts and anthropometric data. For example, after findiegothsterior distribution of the upper
arm, one can prune the search area in 3D for the lower arm.

Pruning via priors alone is not sufficient, especially fortpauch as the four end limbs. One
can further constrain the search space by considering comsd bottom up search process. The
approach is motivated by the fact that multiple 3D part camfigjons can project onto the same
2D configuration and thus a full search in 3D leads to a largaber of repeated likelihood
computations in the 2D images. Furthermore, search for hikglihood regions in 3D requires
transformations from 3D to 2D which are expensive compavetié 2D likelihood computations
themselves. These transformations are not required whewrdhresponding likelihood is very
small for the corresponding 2D locations. Our approach fimhputes 2D likelihoods and
combines only those instances that are above a certainhtiidesising epipolar geometry to
compute high likelihood configurations in 3D.

We first compute the search region for the starting and englmggs of each part in each view
using the priors from the connected parts. Figure 9(a) shbessearch region for the starting
point of the lower right leg in cyan color. For each possilatell in one view, there is a set of
possible limbs which satisfy epipolar constraints in thieeotview. Figure 9(b) shows the set of

possible limbs in the second image corresponding to the imthe reference image. Searching
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Fig. 8. Search for possible parts in 2D along the epipolaesliis constrained by regions(maked in cyan) where startidg a

endpoints should lie. Limbs with higher image likelihoods ¢hen back-projected to find possible parts.

along epipolar lines for the starting and ending points, itte#ances where the 2D likelihood
is above threshold in both images are back-projected to atenihe 3D position of these high
likelihood parts(See Figure 8). Such a pruning proceduretsapplicable when the limb is in
an occluded region and thus not used in such regions. Thehiblickis kept low to avoid false
negatives and handle partial occlusions.

Pruning by likelihoods is data-dependent but even in an enaigh a cluttered background,
pruning via likelihoods resulted in an additional speed3tifOx compared to using only pruning

via priors.

VIlI. SYSTEM OVERVIEW

The entire search space is very large. In order to tackleldéingee search space, the system
adopts a hierarchical approach where the crude locati@ishttve a high probability of having
a person are found first. This is followed by a belief propagaprocedure which finds the pose
of the person. To find the crude locations, an independemtdedector or a person detector [6]
can be used. In our experiments, we use face detector froinsjBbe the face is the most
discriminative body part. We apply epipolar constraintd amatching across views in order to
obtain a rough localization of faces in 3D, which are usednitate search for the rest of the

body in high probability regions.
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(@) (b) (€)

Fig. 9. (a) The cyan colored circular region shows possitdet points for the lower right leg. This region is obtainesing

the belief propagation particles. (b) Search along epipiah@s for a part in the other image. Again the top point igrieted
by the search region created from the upper leg. (c) Pospntes after pruning via likelihoods. For a candidate parthe

reference image, we have very few parts in the other imagehtihae a high likelihood.

The cameras are placed in a wide-baseline configurationtsorobiewing angles which allows
better handling of occlusion. The system is able to find paré if they are only partially visible
in both the views and yields a good probability distributadrihe part location even when the part
is completely occluded in one of the views. This is due to tieduision of visibility constraints
in the likelihood calculations.

The system flow is shown in Figure 10. Potential faces are diesécted using the face-
detector. Then at each iteration of belief propagation, we the torso and then search for the
other connected parts, in turn. The two search methodsidedcabove are used to search for
each part. Once the posterior distribution of all the pastestimated at the end of an iteration,
messages are passed that update the visibility variablkésapply the appearance constraints
across parts. The process is iterated until there is no eheamthe part distributions.

Anthropometric data was acquired using the NIST datasdt [litis data includes ratios of
heights and widths of different body parts and is used fonjigi the search region for a given
part. The angular constraints of the body parts were basdtieopossible movements of each
joint. For example, the maximum possible angular motionveen the upper and lower arm was

kept at 150 degrees. The constraints were relaxed to retteceumber of missed parts.

VIll. EXPERIMENTAL RESULTS AND EVALUATION

We performed a series of experiments to evaluate our aflgoritcomparing it to the algorithm

in [42] that does not use occlusion or appearance consistntstraints. The test dataset was
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Fig. 10. System Overview.

Class | Self-occlusion| Occlusion from others
1 NO NO
2 YES NO
3 MAYBE YES
TABLE |

THREE CLASSES OF DATASETS USED FOR EVALUATION

divided into three classes. The first two classes consistenes where only a single person
is present. In the first class, there is little or no self-osn of body parts; in the second
class, one or more body parts are severely occluded by otlusr farts. The third class consists
of multiple people sequences where confusion between ths p# different persons can be
significant. Table 1 lists the properties of each of the thrieesses.

All experiments were performed using two views. The impoctof modeling occlusion is
illustrated in Figure 11. Whenever a body part is occluded likelihood at the true position will
be generally reduced. Thus, without modeling the occlysioa observed posterior probability
will be lower compared to the one where the occlusion has beeteled. Figure 11(a) shows
the results of the algorithm without the occlusion constia(this is equivalent to the algorithm
in [42] with our likelihood model) for a scene where the ridag is occluded in one view.
The right leg is missed by the algorithm because the postpeaks at some other location.

Figure 11 (b) shows the result of the algorithm in one of thema with all of the constraints
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(c) without Occlusion Constraintgl) With Occlusion Constraints

Fig. 11. lllustration of the advantage of using occlusiongtaaints. (a) and (b): The right leg is missed if occlusionatraints
are not used. (c) and (d): If occlusion constraints are netluthe hand of the person in back is confused to be the hand of
the person whose pose is being estimated. By using occlusinsiraints, the likelihoods in the region of occlusion taieen

to be unknown.

considered. When occlusion information is passed betwaegly-parts, the left leg creates a
region of occlusion which leads to higher likelihood in thiegion using the evidence from
the other view. Figures 11(c) and (d) show another examplersvithe algorithm would fail
if occlusion constraints were not used. Here, there is a higihood at an incorrect location
because the left hand of the person in the back is confusédthatleft hand of the person whose
pose is being estimated. The likelihood at the true locasdow since the hand is occluded by
the torso. However, if occlusion constraints are used, #relttan be located at the true location
because of the evidence from the view where the part is ndtded.

In another experiment, the algorithm was tested withoutgisippearance constraints while
occlusion information and kinematic constraints were ustethn be seen from Figure 12(a) that
the lower right arm was missed. However, when the appearemastraints are added, correct
detection of the lower left arm guides the search for the tawght arm [Figure 12(b))]. Another

example of the importance of using appearance constrargeawn in Figures 12(c) and (d).
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(€) (d)

Fig. 12. (a): The lower right hand is missed when appearanost@ints are not used. (b) Appearance consistency with th

other hand helps in peaking the posterior at the correctitwta(c) If appearance constraints are not used, the logfethbnd
is confused with the lower hand of another person. (d) Appoeze of the lower hand correctly guides the search. Resuits f

both the views has been shown in figure 14

When appearance constraints are not used, the lower arme giettson in front is assumed to
be the lower arm of the person whose pose is being estimatedn\&ppearance constraints are
used, correct detection of the lower right arm guides thecketr the lower left arm.

Figure 13 shows the performance of the algorithm on a vaoéfyoses. Most of these poses
have significant self-occlusion. Figure 13(d), which hagese amount of self-occlusion shows
the limitation of our algorithm when edge information is yeveak.

When there are multiple people in the scélaés 3 sequencgst is very difficult to segment
one person from another. Figure 14 illustrates the perfaomaf our algorithm in such cases.
The algorithm was also tested to estimate the pose of twolpeming the same image pairs.
A separate belief-net was used for estimating the pose df parson. (Figure 15).

The current un-optimized implementation of the algorithmVisual C++ takes on average 45
second per frame for pose estimation. The running time gelaue to the search in the space

of possible part configurations.
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(@) (b) () (d)

Fig. 13. Results of our Detection algorithm on different gms

A. Quantitative Comparison

Balan et. al [2] discussed methods to quantitatively com@D person tracking algorithms.
There are several issues related to the quantitative ei@iuaf pose estimation algorithms
which we discuss next. First, Balan et. al [2] proposed theafsground truth data of 3D joint
locations obtained via markers for any quantitative ev#bna However, such data is available
only in laboratory environments and require people to weackl clothes and markers. Apart
from such data, we also propose to use hand-labeled positimints in images for evaluation.
We analyze the data in three classes separately. Some ah#dges from the data-set used are
shown in Figure 16.

Secondly, Balan et. al [2] suggest using the average jomot es the full body pose error. It
might also be important to determine if some body parts haenlmissed completely, so we
additionally consider the number of body parts missed as asuare of full body pose error.

Furthermore, Bayesian approaches do not estimate a siagie Ipcation but a posterior
distribution on the joint location. Hence, we have to coneptlie error of a posterior distribution

for each joint. Balan et. al [2] suggest approaches to meahis error ranging from the expected
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Fig. 14. Results of our Detection algorithm on Class 3 videguences.

joint location error to the minimum possible error over @hgles. However, an important issue
to consider is the potential multi-modality of the distrilauns that are being estimated. Assuming
that the posterior distribution of a joint location is medtiodal, we group the sample points into
Gaussian clusters and the cluster with minimum possibler asr chosen. The error between
the true joint location and this cluster of samples is coraguising a root-mean-square error
(RMSE). If 7 is given joint location and the cluster is represented by asGan\ (z, u, o),

the error is given by

Error = \// (x —Z)?P(x) = /(1n — T)* + 02 (18)

Using these methods for quantitative evaluations, we coegpthe performance of our ap-
proach with that of [42]. In the first experiment, we used tlagadrom Brown University [42]
which is of class 2(See Figure 17). The ground truth (the 3D joint position) floe data is

available. We used 7 random image pairs from this sequemgeofe estimation. The full body
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Fig. 15. More results of our Detection algorithm on Classdewi sequences where the pose of two persons has been edtimate

simultaneously in the same views.

Fig. 16. Sample Views from the data-set used for quantéagivaluation.
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Fig. 17. Pose estimation results on the frames from the Brdwiversity sequence that has ground truth data.

pose errors for both approaches are shown in Figure 18. Carmoagh improves significantly
upon the performance of the basic model used in [42].
In the second experiment, we randomly selected 30 scenesdtw dataset. This dataset is

much more complex to process because of the following reason

« Presence of multiple people creates confusion

« The images have low contrast

« The images have very cluttered backgrounds, which cre#deofofalse likelihood peaks.

While the first 21 image pairs had some occlusion, the remgifiiimage pairs had minimum
or no occlusion. The joint locations in the images were hiaheéled. Figure 19 compares the
performance of our algorithm with [42] by plotting the avgeaand the maximum of the error
in joint location estimation for each person. The maximunorefor the approach in [42] is very
high for the first 21 image pairs because of the mis-deteaifarccluded parts. Table Il shows
the average and the standard deviation of RMSE in estimafidhe eight joint locations in a
22 frame video. The average height of the person in thesedasmags 320 pixels.

We next consider performance in terms of detected and migadd. A part is said to be
missed if the RMSE is higher than a tolerance level. Ramanaal. §34] keep a very high
tolerance level and assume a part to be detected if thereyi®rlap between the true and

estimated limb. We compare the performance by varying tlegance level for the joint location
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Fig. 18. Comparison of full body pose estimation error (mm)bwown data set. Distance between joints is computed in 3D

space

error in terms of the limb length.

The performance of both algorithms is compared in Figure1l®9s of the limbs in the test
dataset were termed as occluded by human subjects. Ouithigaives a limb detection rate of
97% which is significantly higher than [42]. We have a loweted&on rate at low tolerance levels
because of the confusion introduced by occlusion boostiayvever, this occlusion boosting
helps in detecting the limbs which are completely missed igalSet. al [42] even at higher
tolerances.

We also compared the performance of our algorithm acro$sreift classes of videos. While
the detection rate is above 96% for Class 1 and 2 videos, R.B696 for Class 3 videos. Figure

21 shows the comparison across video classes for diffeotgriance levels.

IX. EXTENSION TO TRACKING - INCLUDING TEMPORAL CONSTRAINTS

A simple way to incorporate temporal consistency constsais to utilize the locations and
appearances of different parts at time1 to create priors for locations and appearances of parts
at timet. These constraints can be incorporated in a belief promag&tamework by adding

the potentialsr,_; ,(®%, ®!~'). The belief propagation message equation then changes to:
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Fig. 19. Comparison of performance of the algorithm with][d@ our dataset. The RMSE error is measured in pixels.

RMSE Std. Dev of the RMSE RMSE | Std. Dev of the RMSE

(Our approach (Our Approach) ([42]) ([42])
L. Elbow 11.53 4.6 11.77 7.37
L. Wrist 14.06 3.35 13.71 4.7
R. Elbow 1.77 3.24 9.64 3.33
R. Wrist 10.37 3.33 29.18 13.97
L. Knee 6.79 3.01 7.63 2.73
L. Ankle 14.42 4.67 15.53 5.77
R. Knee 7.22 2.59 7.13 291
R. Ankle 12.36 4.34 16.84 6.05

TABLE I

April 11, 2007

AVERAGE RMSE(IN PIXELS) OF THE EIGHT JOINTS PROJECTED FRORD POSE IN DIFFERENT VIEWS FOR A VIDEO WHERE

RIGHT HAND AND RIGHT LEG HAVE BEEN OCCLUDED BY OTHER PARTS
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Fig. 20. Performance of our algorithm in terms of percentafydetections compared to Sigal et. al [42]
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Fig. 21. Performance of our algorithm across different sgasof videos.

177

(@) = [ s s o) (@1, 071 Pos (81)d (19)

Hence, the posterior at thé” iteration can be written as

Pos"(®}) oc > Bi(Iy... Iy |95, V75 (1) POV i(I) i1 4 (@5, @) T mra(®D) [T mi(@)
i keEk\] OeEa\]
(20)
We illustrate the approach using a very simple temporal tcaimé of small motion (no major
location changes between two frames). This constraintlid @ videos with high frame rates
and imposes the least restrictions in terms of body motiblesice,r; ; ;(®%, ®.~') is modeled
as a Gaussian given by

T (®F, B = N(d(IF, 1;71), 0, 07;) (21)

177
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We assume that the appearance remains the same over timencamgorate appearance
consistency in our likelihood model. This assumption ietfar short period of time and the
appearance models can be updated after every few frameguifed. The new likelihood model

can then be written as:

Py(Iy... Iy |88, vFi(10) = PE9(I . Iy | @, v&;(1D) Prrrearance (I Ly | @0, v&i(1D)  (22)

Also, instead of using full visibility to initialize beliepropagation iterations, we use the
occlusion maps estimated from the previous frames. Thacgbipin of these constraints speeds

up the inference substantially in tracking applications.

Fig. 22. Results of tracking on Class 2 videos.

A. Experimental Results

We show the performance of our algorithm in the tracking famrk using the temporal

constraints discussed above. We use sequences that haweuphe been used in [28]. The
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Fig. 23. Results of tracking on Class 3 videos.

average execution time for the algorithm reduced to 30 sedrames by using the pruning via
temporal priors in addition to the pruning approaches dised earlier. For smooth variations
between frames, a smoothing filter was applied to our results

Figure 22 shows the performance of the algorithm using teaipoonstraints on a Class

2 video sequence. The accuracy of the system increased tof@8#96% when temporal
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constraints were used (with a tolerance level of 50% of liergth).

Figure 23 shows the performance of the tracker when mulpplsons are present( a Class 3
video) in the same view. In many frames there is considerabttusion and confusion in the
localization of parts because of high likelihoods from otpheople. Our system had 96% correct

part detection when the tolerance level in the joint erros W% of limb length.

X. CONCLUSION

We presented an approach for automatic initialization amadking of the human pose in
cluttered scenes. The paper integrates several constnaptesented by a general non-tree
constraint graph in a unified framework. These constramtiide the occlusion of one part by
another and the similarity in the appearance of certainspdite approach avoids background
subtraction and does not require any pixel-wise computdtbo reasoning about self-occlusions.
We also presented an efficient method based on 2D likelihandsepipolar geometry to search
for the high likelihoods regions in the large 3D search spdbés speeds up the performance of
the system substantially and leads to better and fastereogperce in many cases. We achieve
significant improvement in results compared to existingntégues, especially when some parts

are occluded in one or more views.
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