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Abstract

Automatic initialization and tracking of human pose is an important task in visual surveillance.

We present a part-based approach that incorporates a variety of constraints in a unified framework.

These constraints include the kinematic constraints between parts that are physically connected to

each other, the occlusion of one part by another and the high correlation between the appearance

of certain parts, such as the arms. The location probabilitydistribution of each part is determined by

evaluating appropriate likelihood measures. The graphical (non-tree) structure representing the inter-

dependencies between parts is utilized to “connect” such part distributions via nonparametric belief

propagation. Methods are also developed to perform this optimization efficiently in the large space of

pose configurations.

Index Terms

3D/stereo scene analysis, Motion capture, Tracking

I. INTRODUCTION

Automatic initialization and tracking of human pose in unconstrained and varying conditions

is one of the most challenging problems in visual surveillance because of occlusion, a high

dimensional search space and high variability in appearance due to shape and clothing variations.

Desirable properties of a human tracker include accuracy, efficiency, ability to self-start, automatic

detection of failures and ability to re-initialize [34]. Most early work focused on tracking, where

an initialization is given[7], [41]. Recently, there has been an increased interest in automatic

detection of body pose to initialize/re-initialize tracking systems[11], [24], [42].

In this paper, we present an efficient multiple camera based approach for estimating the 3D

pose of humans in cluttered scenes1. The system incorporates a variety of constraints, including

the occlusion of one part by another and appearance consistency across parts, in a unified

framework.

Most of the current pose estimation systems fail when there is considerable self occlusion

because the image likelihoods are low for the occluded parts. In our approach, we boost the

likelihoods of the possibly occluded part in proportion to the expected amount of occlusion.

We use an iterative approach, where at each iteration we compute a pose likelihood distribution

1A preliminary version of this paper appears in 3DPVT’06 [14]
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which is used to infer the occluding properties and appearance of each part. The system uses

these better appearance and occlusion estimates at each iteration to refine the pose estimates.

Unlike most previous approaches, our method does not require segmented human silhouettes.

Our edge based likelihood model allows us to eschew the static background assumption required

for background subtraction. The major features of our approach are:

• Occlusion, appearance, kinematic and temporal constraints are incorporated in a unified

multi-view framework.

• A computationally efficient approach, as compared to [47], is presented to handle self-

occlusions. The occluding properties of a part are utilizedto determine the visibility of

other parts directly and to give more weight to those views that have a less occluded view

of a part.

• A method that combines bottom up and top down approaches to prune the search and make

the estimation process efficient is presented. Search is performed only in high prior 3D

regions and evidence is collected only once in the image, which is then combined in 3D

via epipolar constraints.

The paper is organized as follows. We discuss related work inSection II. Section III discusses

the human body model, followed by a discussion of the messagepassing framework in Section

IV. Section V provides a description of visibility analysisand likelihood computations. We

then explain how bottom up search is incorporated in a top down framework in Section VI.

This is followed by a system overview in Section VII. Experimental results are presented in

Section VIII. Finally, we conclude by a description of how toextend the framework to include

temporal constraints in Section IX.

II. RELATED WORK

There is a wide range of approaches to human pose estimation [12], [30]. These algorithms

can be broadly divided into two categories:

• Bottom-Up: Here, possible parts are first found using part detectors andthen are combined

to form the whole body [19], [31], [37], [34], [27].

• Top Down: These algorithms use an explicit 3D human model, along with the kinematic

structure and other constraints, to reconstruct the pose[22], [25], [8]. The probability dis-

tribution of the whole body configuration is then searched for through techniques such
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as Monte Carlo Markov Chain (MCMC). Possible parts are then found by sampling the

posterior obtained for each part.

Bottom-up part-based approaches estimate human body partsby combining image evidence

with constraints on joint locations. Most prior work uses only kinematic constraints on body part

locations. These constraints limit the body part positionsby requiring some body parts to be

close to others. This requirement leads to a tree-structured graph that can be modeled either in 2D

[10], [35] or 3D [44]. Felzenszwalb et. al. [11] presented a deterministic linear time algorithm

using dynamic programming to solve for the best pose configuration in such tree structures.

Top-down approaches, on the other hand, try to search in the high dimensional space of whole

body configurations. Lee et. all [24] combined a probabilistic proposal map representing pose

likelihoods with a 3D model to recover the 3D pose from a single image. Data driven Markov

chain Monte Carlo [49] is used to search in the high dimensional space of possible poses. Other

approaches include Data Driven Belief Propagation [17], particle filtering [25] and annealed

particle filtering [8].

Most of these methods assume a tree structure for the constraints to be satisfied. However,

there are limitations to a tree structure. Kinematic relations between parts that are not connected

to each other cannot be represented. Furthermore, occlusion of one part by another cannot be

modeled nor can the constraint due to the high correlation between the appearance of pair of

parts such as the hands [32].

There has been some recent work to overcome these limitations. Lan et. al [23] use factor

graphs to add constraints such as the balance of a body while walking; Ren et. al [36] use

Integer Quadratic Programming (IQP) to add pairwise constraints such as the similarity in the

appearance of left and right body-parts. Sigal et. al [42] present an approach to detect and

track humans from multiple views. Kinematic constraints combined with temporal constraints

lead to the formation of a loopy graph which can be optimized using Non Parametric Belief

Propagation(NBP). However, they do not explicitly model self-occlusion where one part occludes

another as shown in Figure 1.

Ioffe et. al [20] proposed using a mixture of trees to handle such occlusions. The mixture

includes all possible trees resulting from removing nodes from the base tree under different

occlusion scenarios. However, modeling the conditionals between non-connected parts is difficult

and does not provide strong constraints, leading to false part localizations. For example, the
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a b

Fig. 1. Self occlusion is a problem in likelihood computation. It leads to low likelihood at the true location when one part

occludes another. (a) Right leg occludes the left leg and thetorso occludes the left hand. (b) Both hands occlude the torso

partially.

position of the torso provides weak constraints on the possible positions of the lower arms in

scenarios where the upper arms might be occluded. At the sametime, the problem space becomes

very large due to the need to optimize over the entire ensemble of trees.

Sudderth et. al [47] handle a different but related problem of tracking a human hand under

self occlusion using NBP. They use only a single camera for tracking the hand in 3D. In order to

handle occlusion, they augment the state of each particle bya set of binary hidden variables that

represent the set of occluded pixels in the projection of thepart. The non-tree structure obtained

is then optimized in a non-parametric belief propagation framework. However, the introduction

of such variables increases the problem state space exponentially and the resulting optimization

problem can be quite unstable, especially in the presence ofambiguity in the part likelihoods.

Furthermore, the technique does not generalize well to multiple views since the occlusion state

of part pixels is view specific, and extension to multiple views would require introduction of a

very large number of extraneous hidden variables. We use a similar but more tractable approach

of determining the probability of visibility/occlusion directly from the probability distributions

of the locations of other parts and use it to improve the estimation of the part likelihoods. The

resulting problem can again be solved using non-parametricbelief propagation. In work parallel

to ours, Sigal et. al [43] use a formulation similar to the above[47] for handling self-occlusions,

but with a different likelihood model, and apply it to 2D poseestimation.
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The pose estimation problem can be simplified significantly by assuming that the person can

be segmented from the image, say using background subtraction [4], [23], [29]. While this

reduces the search space significantly, it does not handle the problem of self-occlusion or people

occluding one another.

A complementary approach, commonly known as discriminative methods [1], [3], [9], [39],

[13], [15], [40], [45], is to learn pose configurations from training images and use appearance-

based associative models to ”look up” the pose from the training data. These methods use a

parametric model of posterior probabilities and learn the parameters using the training data. On

the other hand, generative approaches like ours model the joint probability distribution using

class conditional densities and class prior probabilities. Compared to discriminative approaches,

generative approaches have the following advantages:

• Generative models generalize well, whereas discriminative models depend heavily on the

learned poses. Due to the large space of pose configurations,it is very difficult to identify

new poses.

• Generative models can handle compositionality (e.g peoplewith extra clothings like hats,

or people with bags) whereas discriminative approaches need to see all possibilities in the

training dataset.

On the other hand, discriminative approaches offer the following advantages:

• Discriminative models are generally faster due to the lowerdimensionality of the models

employed.

• Discriminative models generally provide better predictive performance when the training

set is large and comprehensive.

Another approach [4], [26] for estimating the 3D human pose from multiple cameras is based

on segmenting the visual hull based on prior knowledge of theshapes of the body parts, their

relative sizes and possible configurations. While volume intersection methods like these produce

accurate results, they can only be used for studio-like applications since they require static

backgrounds and are too sensitive to background subtraction errors. Apart from this, occlusion

and self-occlusion is a major problem in such applications,especially if the number of cameras

is not very large.
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Fig. 2. The human model. The solid lines represent edges in set Ek and the dashed lines represent edges in the setEa.

Occlusion edges are not shown in the above graph. Every part is connected to all other parts by occlusion constraint edge.

III. M ODELING THE HUMAN BODY AND PROBLEM FORMULATION

Our 3D human body model (Figure 2) consists ofn = 10 body parts (head, torso, left upper

arm etc.). Each body part (except the torso which is modeled as a cuboid) is modeled as a

cylinder and is represented by a node in a graph with a random vector Φi = (li, ai), where

li and ai represent the location and appearance parameters of parti respectively. The location

parameters of each part,li, is further parameterized asli = (lsi , l
e
i ) where lsi and lei are the 3D

positions of the two ending points of the limb.

The nodes of the graph are connected by three types of edges. The first enforces kinematic

constraints between parts. The second represents appearance constraints which are introduced by

the symmetry of left and right body part appearances. The third represents occlusion constraints

across parts that can occlude each other. The model is represented byθ = (Ek, Ea, Eo, ck, ca, co),

where the set of edgesEk, Ea andEo indicates which parts are connected by edges of the first,

second and third type respectively;ck, ca andco are the connection parameters for these edges.

Our goal is to find the probability distribution of the pose configuration of a human body, given

by Φ ≡ (Φ1, Φ2........Φn). In an M camera setup, ifIj denotes the image from thejth camera,

thenP (I1....IM |Φ) is the likelihood of observing the set of images given the 3D locations and

appearances of the body parts. The distribution ofP (Φ) is the prior over the possible body
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configurations. The goal is to find the posterior distribution, P (Φ|I1....IM), which measures the

probability of a particular configuration of the human body givenM views and the object model.

Using Bayes’ rule,

P (Φ|I1....IM) ∝ P (I1....IM |Φ)P (Φ) (1)

Assuming that the location and appearance priors are independent of each other, the prior

distributionP (Φ) is

P (Φ) = P (l1.....ln)P (a1.....an) (2)

As any particular location or orientation of a part is not prefered over another, we neglect

priors of single part locations. Furthermore, we use potential functions to avoid normalization

computations. Then, the joint distribution of the tree structured priorEk andEa can be written

as:

P (l1, l2......ln) ∝
∏

(vi,vj)∈Ek

κij(li, lj) (3)

P (a1, a2....., an) ∝
∏

(vi,vj)∈Ea

αij(ai, aj) (4)

whereκij and αij are the potential functions for kinematic and appearance constraints over

the cliques(pair of nodes in this case).

For articulated objects, pairs of parts are connected by flexible joints. Ideally, the location of

the ending-point of the first part should be the same as the starting point of the second connected

part. The clique potential for a pair of parts, connected by edges inEk (kinematic connections)

is modeled as a Gaussian:

κij(li, lj) = N (d(li, lj), 0, σ
κ
ij) (5)

whered(li, lj) denotes the Euclidean distance between the connecting end points of theith

and jth body parts.(Figure 3).
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Fig. 3. The connecting end-points of the two connected parts.

For appearance constraints, letD(ai, aj) denote the distance between two appearance vectors.

Ideally, the distance should be zero, assuming left and right body parts have similar appearance.

The appearance potential,αij , is modeled as:

αij(ai, aj) = N (D(ai, aj), 0, σ
α
ij) (6)

Section V-B discusses how part appearances are modeled and how the distance,D(ai, aj), is

computed.

Computation of the likelihoodP (I1....IM |Φ) is complicated due to occlusion. Sudderth et.

al [47] introduce hidden variables to represent the occlusion mask and use only unoccluded pixels

for likelihood computation. This process increases the size of the solution space exponentially.

Instead, we compute the probability of visibility of each part in different views using the

probability distribution of all other parts and use it to compute the likelihood over all the views

as explained below.

The imaging from every camera is modeled as a conditionally independent process. Similarly,

the observation of different parts is assumed to be conditionally independent. This allows us to

decompose the image likelihood for the configurationΦ as:

P (I1....IM |Φ) ∝
n

∏

i=1

M
∏

j=1

Pi(Ij|l1...ln, ai) (7)

Note that due to the possibility of occlusion, the likelihood of each part depends not only

on the position of the part, but also on the positions of otherparts. While one may be able

to use the likelihood in this form in tracking applications,using it for automatic “detection” is

prohibitively expensive. To overcome this, we introduce a new set of binary ‘visibility’ variables

v
j
i (li), that refer to the visibility of a parti at locationli from cameraj. While these visibility
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variables are dependent upon the position of all other parts, the observation likelihood for part

i is independent of the location of other parts if its visibility is known. Then, one can write the

likelihood, P (I1....IM |Φ), as:

n
∏

i=1

M
∏

j=1

∑

v
j
i ∈{T,F}

Pi(Ij |li, v
j
i (li))P (vj

i (li)|l1....li−1, li+1....ln) (8)

The termPi(Ij|li, v
j
i (li) = TRUE) represents the likelihood of observing the image from

camera j given that the part is visible from this camera whilePi(Ij|li, v
j
i (li) = FALSE)

represents the likelihood of observing the image given thatthe part is occluded from the

camera. However, parts may be partially visible in which case v
j
i (li) is neither true nor false.

To approximate this,vj
i (li) is defined as the visibility of a random point on the skeleton of the

part. In Section V-A, we discuss how to compute the visibility variables and in section V-C,

we discuss how to compute the likelihoods.

IV. PARTICLE-BASED BELIEF PROPAGATION

In the previous section, a graphical model for human body parts was developed. In order

to solve for the best configuration in such a graphical model with loops, a belief propagation

framework can be used( [33], [52]). Essentially, we optimize for the posterior of each part; the

interactions between different parts are handled via belief messages. Since representing exact

probability distributions is computationally and memory intensive, we use the non-parametric

belief propagation framework presented in [21], [46] wherethe probability distributions of

the part locations and appearances are represented via Monte-Carlo particles. The framework

provides a natural approach for enforcing constraints across parts, including those of occlusion

and appearance matching.

There are, essentially, two sets of unknowns that need to be estimated simultaneously: the

locations and the appearances. The computation of the posterior distribution at a particular node

requires locations, appearances and occluding properties(represented via occlusion-maps) of

other connected nodes in the graph. The following messages are used to pass this information

to a part:

• The locations of neighboring connected body parts (e.g. thelocations of the lower left leg

and torso are passed to the upper left leg).
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• The appearance of the corresponding symmetric part (e.g. the appearance of the right upper

leg is passed to the left upper leg).

• The occlusion maps of other parts that may occlude this part (e.g. the upper left leg receives

the occlusion map from all other parts in order to update its likelihood distribution)

A message from parti to partj imposes constraints on the configuration of partj for possible

configurations of parti. The contribution of any configuration of parti is weighted by its

posterior. At iterationr, a messagemij from nodei to j along an edge inEk or Ea may be

represented as:

mr
ij(Φj) =

∫

κij(li, lj)αij(ai, aj)Posr−1(Φi)dΦi (9)

wherePosr−1(Φi) represents the posterior distribution of parti at iterationr − 1. Note that

κij(li, lj) = 1 for messages along edges inEa andαij(ai, aj) = 1 for messages along edges in

Ek. The posterior distribution of a body-partPosr(Φi) can be computed as:

Posr(Φi) ∝
∑

vi

Pi(I1....IM |Φi,v
r

i(li))P (vr

i(li))
∏

k∈Ek\j

mr
ki(Φi)

∏

o∈Ea\j

mr
oi(Φi) (10)

wherev
r

i = (vr,1
i , ..., v

r,M
i ) represents the visibility maps of parti at iterationr in all the

cameras. The visibility maps are computed by combining the probabilistic occlusion maps which

are passed as messages along the edges inEo. Section V-A discusses how to compute visibility

maps from the probabilistic occlusion maps.

To initialize the system, uniform appearance priors and full visibility. At any iteration, the

posterior distribution of each part is approximated by a setof particles which are sampled using

importance sampling. These particles are used to generate the messages to be passed along

appropriate edges to enforce inter-part relationships. Updating the parameters for different parts

in turn, the method eventually leads to stable parameter estimation after several iterations. The

particle-based belief propagation is especially effective since the probability distributions are

typically not gaussian in nature and hence using any parametric model would lead to a loss of

accuracy.

The study of convergence properties of belief propagation systems is an active area of re-

search [53], [54], [48], [51], [18]. When the graph is singlyconnected, belief propagation

systems are guaranteed to converge to the correct posteriorprobabilities. However, in the case
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of graphs with loops, the convergence behavior is more complicated. Weiss et. al [53] studied

the convergence properties of belief propagation with single loops. Recently, some papers [48]

have derived sufficient (although not necessary) conditions that guarantee the convergence of

loopy belief propagation systems. Especially when complicated continuous distributions are

approximated through parametric (Gaussian belief propagation) and non-parametric techniques

(NBP [46], [21]) , the convergence properties are poorly understood. Many recent papers [42],

[46], [21] have empirically demonstrated good performanceof the NBP algorithm on graphs

with loops.

V. COMPUTING PRIORS AND L IKELIHOODS

A. Computing Part Visibility

We discuss how to computeP (vj
i (li)|l1..li−1, li+1, ..ln), which represents the probability of visi-

bility of a random point on the skeleton of parti in view j, given the pdf’s of the locations of parts

l1 . . . ln. If the exact positions of parts in 3D were known, computingP (vj
i (li)|l1..li−1, li+1, ..ln)

would be straightforward. However, only the posterior distributions of the locations of the parts

after the previous iteration are known. To compute the probability, notice that a part is not

occluded if and only if it is not occluded by any part, allowing us to utilize an independence

relation between the occlusion from different parts. Thus,the probability of visibility of a part

i in view j, P (vj
i (li)|l1..li−1, li+1..ln) represented byPv

j
i , can be broken down into the product

of the probability of visibilities from different parts:

Pv
j
i =

∏

k=1,2..i−1,i+1...n

P (vj
ik(li)|l1..li−1, li+1..ln) (11)

=
∏

k=1,2..i−1,i+1...n

P (vj
ik(li)|lk) (12)

The above equation requires computingP (vj
ik(li)|lk), the probability that parti is not occluded

by partk.

To compute this probability efficiently, “occlusion maps” are introduced. An occlusion map

of a partk, O
j
k(x, y, z), denotes the probability that a 3D point(x, y, z) will be occluded by

part k in view j (Figure 4 illustrates an occlusion map of a sphere). The occlusion map of a

body part depends on its shape and location. The occlusion maps are updated at every iteration
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because the probability distribution of the part locationschange at each iteration. For computing

the occlusion map of partk, the region of occlusion2 for each particle ofk is computed. The

occlusion map is defined by the following equation:

O
r+1,j
k (x, y, z) =

nocc

n
(13)

wherer is the iteration number,nocc is the number of particles that support the fact that a

point (x, y, z) will be occluded by partk in view j, andn is the total number of particles used

for computing the message. Intuitively, the probability that a 3D point(x, y, z) is occluded by

part k is proportional to the number of particles of partk that occlude that point.

To provide smooth updates to the occlusion maps, it is usefulto update the occlusion maps

incrementally:

O
r+1,j
k (x, y, z) = (1 − β)Or,j

k (x, y, z) + β(
nocc

n
) (14)

where β determines the rate of change of the occlusion maps (β = 0.2 was used in our

experiments).

Using the occlusion map of partk for view j, the probability of visibility of a point objecti

at location,pi = (x, y, z) in view j, can be computed as:

P (vj
ik(pi)|lk) = 1 − O

j
k(x, y, z) (15)

In order to address the finite size of the part,P (vj
i (li)|lk) is approximated by averaging the

visibility probabilities along the part skeleton. Computation of occlusion maps is linear in the

number of particles, typically just a few hundred.

B. Part Appearance

The appearance of a part is modeled by its color distributionalong the length of the part.

While a single color model for the whole part would not be ableto capture the color variations,

modeling the appearance using a histogram will be computationally expensive. A part is divided

into regions along its length, and a single color model is developed for each such region (See

2The region of occlusion is the 3D region that will be occludedby the part
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Fig. 4. The occlusion map created by a sphere. The cone behindthe sphere is the region of occlusion in 3D. The probability

of visibility is decreased for every 3D point lying within the cone.

Fig 5). For each part hypothesis, a few pixel are sampled along the skeleton of the part to

capture the color variations along the length. To handle occlusions, we also associate a confidence

variable with each region, which represents the certainityin our estimate of appearance. In our

experiments, we assume certainity is proportional to the probability of visibility of the region.

To reduce the effects of illumination changes, we use normalized color (i.e the ratios r
r+g+b

and
g

r+g+b
) instead of RGB color components.

The distance/difference between the appearance of two parts is computed using the weighted

Euclidean distance. If a part is divided intor regions,(a1
ik, a

2
ik) respresent the normalized color

components of regionk of part i and cik represents the confidence in above estimate, the

difference in appearance of the two parts is given by

D(ai, aj) =

∑r

k=1 cikcjk

√

(a1
ik − a1

jk)
2 + (a2

ik − a2
jk)

2

∑r

k=1 cikcjk

(16)

C. Image Likelihoods

Each body part is modeled as a cylinder. Under orthographic projection, the image of a

cylinder will consist of parallel lines for its two occluding contours, and two circular surfaces at

the joints, which are normally not detectable via image analysis. The response of a filter shown
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skeleton

Fig. 5. The division of a part along the length.
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Fig. 6. The filter used for finding image likelihoods for vertical parallel lines.w represents the projected width of the body

part andh represents the height of the part. The white, black and grey portions have weights 1,-1 and 0 respectively.

in Figure 6 is used to measure the likelihood of parallel lines. The filter gives high response for

parallel lines separated by distancew and is robust to moderate deviation from the parallel line

assumption.

An exponential dependence of the likelihood on the filter response is employed so that the

likelihood of the image given that the object-part is visible from the camera is:

Pi(Ij |li, v
j
i (li) = TRUE) ∝ e(1−ρ(lji )) (17)

wherel
j
i is the location where parti projects in imagej, andρ is the response of the filter at

a particular location. More complicated models and filters can also be used[38]. Computation of

Pi(Ij |li, v
j
i (li) = FALSE) represents the case when the part is occluded. It can also be treated

as computing the likelihood of observing a random pattern atlocation l
j
i with no preference

given to one pattern over another3. Therefore, the likelihood can be assigned a fixed constant

3although this is not entirely true since the observation is correlated to the appearance of the occluding part.
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Fig. 7. An example of complicated filters which can be used forlikelihood computation. Such filters compute the response

for visible portions of part only. In this example, the middle portion(horizontally) of the part is occluded and hence a weight of

0 is used for that portion.

in this case.

Likelihood can be better computed using more complicated filters as shown in Figure 7. In such

a filter, the response is calculated only for the visible portions of the part(each pixel weighted by

its probability of being visible). The response of such a filter has to be computed pixel-wise as

opposed to the integral images formulation [50] used in our system. The approximation used in

our experiments is a trade-off made for efficiency, yieldingan algorithm which has complexity

O(np)+O(mc) instead ofO(mcnp) wheremc is the number of possible part configurations and

np is the number of pixels.

It should also be observed that the 2D likelihood model favors part configurations(length

and orientation) which project onto smaller image regions (for example, the likelihood of a

limb pointing forward is generally higher than the likelihood of a limb visible in full length).

However, this is generally not observed in our estimates since in a wide baseline stereo any

limb which projects onto a small region in one camera (due to its orientation) generally projects

onto a bigger region in the other camera, and the 3D likelihood of such a configuration is low

if there is absence of support in any camera. The configurations with smaller 3D limb lengths

are rejected because they do not satisfy anthropometric constraints.

VI. COMBINING BOTTOM-UP EVIDENCE WITH TOP-DOWN PRIORS FOREFFICIENT

ESTIMATION

The computation of the probability distribution for each part can be quite expensive due to the

very large space of possible part configurations (location and orientation) (O(mck
d) wheremc
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is the total number of possible configurations,k is the number of particles retained for message

passing andd is the degree of a node). In order to deal with this computational complexity,

Coughlan et. al [5] discussed accelerating belief propagation by belief-pruning and focussed

message updates. Belief pruning removes states with very low posteriors from consideration

during future stages. However, in the case of occluded limbs, the belief will be initially very low

and the approach might fail. Sigal et. al [42] use independent part detectors, called shouters, to

create the sampling function, which leads to better sampling. Similar sampling approaches for

belief propagation have been used in [17].

We propose using 2D evidence from images and combining information from multiple cameras

using epipolar geometry to obtain high likelihood bodypartregions in 3D. Additionally, regions

with high priors for a given part are obtained using the probability distribution of connecting

parts. Since a high probability region must have either a high likelihood or a high prior, the

search in the configuration space can then be confined to thesetwo types of regions.

In order to determine regions with high priors, we use the parameters of appropriate connecting

parts and anthropometric data. For example, after finding the posterior distribution of the upper

arm, one can prune the search area in 3D for the lower arm.

Pruning via priors alone is not sufficient, especially for parts such as the four end limbs. One

can further constrain the search space by considering cues from a bottom up search process. The

approach is motivated by the fact that multiple 3D part configurations can project onto the same

2D configuration and thus a full search in 3D leads to a large number of repeated likelihood

computations in the 2D images. Furthermore, search for highlikelihood regions in 3D requires

transformations from 3D to 2D which are expensive compared to the 2D likelihood computations

themselves. These transformations are not required when the corresponding likelihood is very

small for the corresponding 2D locations. Our approach firstcomputes 2D likelihoods and

combines only those instances that are above a certain threshold using epipolar geometry to

compute high likelihood configurations in 3D.

We first compute the search region for the starting and endingpoints of each part in each view

using the priors from the connected parts. Figure 9(a) showsthe search region for the starting

point of the lower right leg in cyan color. For each possible limb in one view, there is a set of

possible limbs which satisfy epipolar constraints in the other view. Figure 9(b) shows the set of

possible limbs in the second image corresponding to the limbin the reference image. Searching
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Fig. 8. Search for possible parts in 2D along the epipolar lines is constrained by regions(maked in cyan) where starting and

endpoints should lie. Limbs with higher image likelihoods are then back-projected to find possible parts.

along epipolar lines for the starting and ending points, theinstances where the 2D likelihood

is above threshold in both images are back-projected to compute the 3D position of these high

likelihood parts(See Figure 8). Such a pruning procedure isnot applicable when the limb is in

an occluded region and thus not used in such regions. The threshold is kept low to avoid false

negatives and handle partial occlusions.

Pruning by likelihoods is data-dependent but even in an image with a cluttered background,

pruning via likelihoods resulted in an additional speed-upof 10x compared to using only pruning

via priors.

VII. SYSTEM OVERVIEW

The entire search space is very large. In order to tackle thislarge search space, the system

adopts a hierarchical approach where the crude locations that have a high probability of having

a person are found first. This is followed by a belief propagation procedure which finds the pose

of the person. To find the crude locations, an independent part detector or a person detector [6]

can be used. In our experiments, we use face detector from [50] since the face is the most

discriminative body part. We apply epipolar constraints and matching across views in order to

obtain a rough localization of faces in 3D, which are used to initiate search for the rest of the

body in high probability regions.
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(a) (b) (c)

Fig. 9. (a) The cyan colored circular region shows possible start points for the lower right leg. This region is obtained using

the belief propagation particles. (b) Search along epipolar lines for a part in the other image. Again the top point is restricted

by the search region created from the upper leg. (c) Possibleparts after pruning via likelihoods. For a candidate part inthe

reference image, we have very few parts in the other image that have a high likelihood.

The cameras are placed in a wide-baseline configuration to obtain viewing angles which allows

better handling of occlusion. The system is able to find partseven if they are only partially visible

in both the views and yields a good probability distributionof the part location even when the part

is completely occluded in one of the views. This is due to the inclusion of visibility constraints

in the likelihood calculations.

The system flow is shown in Figure 10. Potential faces are firstdetected using the face-

detector. Then at each iteration of belief propagation, we find the torso and then search for the

other connected parts, in turn. The two search methods described above are used to search for

each part. Once the posterior distribution of all the parts is estimated at the end of an iteration,

messages are passed that update the visibility variables and apply the appearance constraints

across parts. The process is iterated until there is no change in the part distributions.

Anthropometric data was acquired using the NIST dataset [16]. This data includes ratios of

heights and widths of different body parts and is used for pruning the search region for a given

part. The angular constraints of the body parts were based onthe possible movements of each

joint. For example, the maximum possible angular motion between the upper and lower arm was

kept at 150 degrees. The constraints were relaxed to reduce the number of missed parts.

VIII. E XPERIMENTAL RESULTS AND EVALUATION

We performed a series of experiments to evaluate our algorithm, comparing it to the algorithm

in [42] that does not use occlusion or appearance consistency constraints. The test dataset was
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Next Iteration

Detect Face Compute posterior
probability of the TORSO

Compute posterior probability

Compute posterior probability

Compute posterior probability

Compute posterior probability

of the Upper Left Arm

of the Upper Right Arm

of the Upper Left Leg

of the Upper Right Leg

Compute posterior probability

Compute posterior probability

Compute posterior probability

Compute posterior probability

of the Lower Left Arm

of the Lower Right Arm

of the Lower Left Leg

of the Lower Right Leg

Calculate posterior
probability distributions
using current information

Update Occlusion
maps

Compute Messages for kinematic,
appearance and visibility
constraints

Fig. 10. System Overview.

Class Self-occlusion Occlusion from others

1 NO NO

2 YES NO

3 MAYBE YES

TABLE I

THREE CLASSES OF DATASETS USED FOR EVALUATION

divided into three classes. The first two classes consist of scenes where only a single person

is present. In the first class, there is little or no self-occlusion of body parts; in the second

class, one or more body parts are severely occluded by other body parts. The third class consists

of multiple people sequences where confusion between the parts of different persons can be

significant. Table I lists the properties of each of the threeclasses.

All experiments were performed using two views. The importance of modeling occlusion is

illustrated in Figure 11. Whenever a body part is occluded, the likelihood at the true position will

be generally reduced. Thus, without modeling the occlusion, the observed posterior probability

will be lower compared to the one where the occlusion has beenmodeled. Figure 11(a) shows

the results of the algorithm without the occlusion constraints (this is equivalent to the algorithm

in [42] with our likelihood model) for a scene where the rightleg is occluded in one view.

The right leg is missed by the algorithm because the posterior peaks at some other location.

Figure 11 (b) shows the result of the algorithm in one of the views with all of the constraints
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(a) Without Occlusion Constraints(b) With Occlusion Constraints

(c) Without Occlusion Constraints(d) With Occlusion Constraints

Fig. 11. Illustration of the advantage of using occlusion constraints. (a) and (b): The right leg is missed if occlusion constraints

are not used. (c) and (d): If occlusion constraints are not used, the hand of the person in back is confused to be the hand of

the person whose pose is being estimated. By using occlusionconstraints, the likelihoods in the region of occlusion aretaken

to be unknown.

considered. When occlusion information is passed between body-parts, the left leg creates a

region of occlusion which leads to higher likelihood in thisregion using the evidence from

the other view. Figures 11(c) and (d) show another example where the algorithm would fail

if occlusion constraints were not used. Here, there is a highlikelihood at an incorrect location

because the left hand of the person in the back is confused with the left hand of the person whose

pose is being estimated. The likelihood at the true locationis low since the hand is occluded by

the torso. However, if occlusion constraints are used, the hand can be located at the true location

because of the evidence from the view where the part is not occluded.

In another experiment, the algorithm was tested without using appearance constraints while

occlusion information and kinematic constraints were used. It can be seen from Figure 12(a) that

the lower right arm was missed. However, when the appearanceconstraints are added, correct

detection of the lower left arm guides the search for the lower right arm [Figure 12(b))]. Another

example of the importance of using appearance constraints is shown in Figures 12(c) and (d).
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(a) (b)

(c) (d)

Fig. 12. (a): The lower right hand is missed when appearance constraints are not used. (b) Appearance consistency with the

other hand helps in peaking the posterior at the correct location. (c) If appearance constraints are not used, the lower left hand

is confused with the lower hand of another person. (d) Appearance of the lower hand correctly guides the search. Results for

both the views has been shown in figure 14

When appearance constraints are not used, the lower arm of the person in front is assumed to

be the lower arm of the person whose pose is being estimated. When appearance constraints are

used, correct detection of the lower right arm guides the search for the lower left arm.

Figure 13 shows the performance of the algorithm on a varietyof poses. Most of these poses

have significant self-occlusion. Figure 13(d), which has severe amount of self-occlusion shows

the limitation of our algorithm when edge information is very weak.

When there are multiple people in the scene(Class 3 sequences), it is very difficult to segment

one person from another. Figure 14 illustrates the performance of our algorithm in such cases.

The algorithm was also tested to estimate the pose of two people using the same image pairs.

A separate belief-net was used for estimating the pose of each person. (Figure 15).

The current un-optimized implementation of the algorithm in Visual C++ takes on average 45

second per frame for pose estimation. The running time is large due to the search in the space

of possible part configurations.
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(a) (b) (c) (d)

Fig. 13. Results of our Detection algorithm on different poses.

A. Quantitative Comparison

Balan et. al [2] discussed methods to quantitatively compare 3D person tracking algorithms.

There are several issues related to the quantitative evaluation of pose estimation algorithms

which we discuss next. First, Balan et. al [2] proposed the use of ground truth data of 3D joint

locations obtained via markers for any quantitative evaluation. However, such data is available

only in laboratory environments and require people to wear special clothes and markers. Apart

from such data, we also propose to use hand-labeled positionof joints in images for evaluation.

We analyze the data in three classes separately. Some of the images from the data-set used are

shown in Figure 16.

Secondly, Balan et. al [2] suggest using the average joint error as the full body pose error. It

might also be important to determine if some body parts have been missed completely, so we

additionally consider the number of body parts missed as a measure of full body pose error.

Furthermore, Bayesian approaches do not estimate a single joint location but a posterior

distribution on the joint location. Hence, we have to compute the error of a posterior distribution

for each joint. Balan et. al [2] suggest approaches to measure this error ranging from the expected
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Fig. 14. Results of our Detection algorithm on Class 3 video sequences.

joint location error to the minimum possible error over all samples. However, an important issue

to consider is the potential multi-modality of the distributions that are being estimated. Assuming

that the posterior distribution of a joint location is multi-modal, we group the sample points into

Gaussian clusters and the cluster with minimum possible error is chosen. The error between

the true joint location and this cluster of samples is computed using a root-mean-square error

(RMSE). If x̄ is given joint location and the cluster is represented by a GaussianN (x, µ, σ),

the error is given by

Error =

√

∫

(x − x̄)2P (x) =
√

(µ − x̄)2 + σ2 (18)

Using these methods for quantitative evaluations, we compared the performance of our ap-

proach with that of [42]. In the first experiment, we used the data from Brown University [42]

which is of class 2(See Figure 17). The ground truth (the 3D joint position) forthe data is

available. We used 7 random image pairs from this sequence for pose estimation. The full body
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Fig. 15. More results of our Detection algorithm on Class 3 video sequences where the pose of two persons has been estimated

simultaneously in the same views.

Fig. 16. Sample Views from the data-set used for quantitative evaluation.
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Fig. 17. Pose estimation results on the frames from the BrownUniversity sequence that has ground truth data.

pose errors for both approaches are shown in Figure 18. Our approach improves significantly

upon the performance of the basic model used in [42].

In the second experiment, we randomly selected 30 scenes from our dataset. This dataset is

much more complex to process because of the following reasons:

• Presence of multiple people creates confusion

• The images have low contrast

• The images have very cluttered backgrounds, which create lots of false likelihood peaks.

While the first 21 image pairs had some occlusion, the remaining 9 image pairs had minimum

or no occlusion. The joint locations in the images were hand-labeled. Figure 19 compares the

performance of our algorithm with [42] by plotting the average and the maximum of the error

in joint location estimation for each person. The maximum error for the approach in [42] is very

high for the first 21 image pairs because of the mis-detectionof occluded parts. Table II shows

the average and the standard deviation of RMSE in estimationof the eight joint locations in a

22 frame video. The average height of the person in these images was 320 pixels.

We next consider performance in terms of detected and missedparts. A part is said to be

missed if the RMSE is higher than a tolerance level. Ramanan et al. [34] keep a very high

tolerance level and assume a part to be detected if there is any overlap between the true and

estimated limb. We compare the performance by varying the tolerance level for the joint location
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Fig. 18. Comparison of full body pose estimation error (mm) on brown data set. Distance between joints is computed in 3D

space

error in terms of the limb length.

The performance of both algorithms is compared in Figure 20.15% of the limbs in the test

dataset were termed as occluded by human subjects. Our algorithm gives a limb detection rate of

97% which is significantly higher than [42]. We have a lower detection rate at low tolerance levels

because of the confusion introduced by occlusion boosting.However, this occlusion boosting

helps in detecting the limbs which are completely missed by Sigal et. al [42] even at higher

tolerances.

We also compared the performance of our algorithm across different classes of videos. While

the detection rate is above 96% for Class 1 and 2 videos, it is 92.86% for Class 3 videos. Figure

21 shows the comparison across video classes for different tolerance levels.

IX. EXTENSION TO TRACKING - INCLUDING TEMPORAL CONSTRAINTS

A simple way to incorporate temporal consistency constraints is to utilize the locations and

appearances of different parts at timet−1 to create priors for locations and appearances of parts

at time t. These constraints can be incorporated in a belief propagation framework by adding

the potentialsτt−1,t(Φ
t
i, Φ

t−1
i ). The belief propagation message equation then changes to:
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Fig. 19. Comparison of performance of the algorithm with [42] on our dataset. The RMSE error is measured in pixels.

RMSE Std. Dev of the RMSE RMSE Std. Dev of the RMSE

(Our approach) (Our Approach) ([42]) ([42])

L. Elbow 11.53 4.6 11.77 7.37

L. Wrist 14.06 3.35 13.71 4.7

R. Elbow 7.77 3.24 9.64 3.33

R. Wrist 10.37 3.33 29.18 13.97

L. Knee 6.79 3.01 7.63 2.73

L. Ankle 14.42 4.67 15.53 5.77

R. Knee 7.22 2.59 7.13 2.91

R. Ankle 12.36 4.34 16.84 6.05

TABLE II

AVERAGE RMSE(IN PIXELS) OF THE EIGHT JOINTS PROJECTED FROM3D POSE IN DIFFERENT VIEWS FOR A VIDEO WHERE

RIGHT HAND AND RIGHT LEG HAVE BEEN OCCLUDED BY OTHER PARTS.
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Fig. 20. Performance of our algorithm in terms of percentageof detections compared to Sigal et. al [42]

Fig. 21. Performance of our algorithm across different classes of videos.

mr
ij(Φ

t
j) =

∫

κij(l
t
i, l

t
j)αij(a

t
i, a

t
j)τt−1,t(Φ

t
i, Φ

t−1
i )Posr−1(Φt

i)dΦt
i (19)

Hence, the posterior at therth iteration can be written as

Posr(Φt
i) ∝

∑

vi

Pi(I1....IM |Φt
i,v

r

i(l
t
i))P (vr

i(l
t
i))τt−1,t(Φ

t
i, Φ

t−1
i )

∏

k∈Ek\j

mr
ki(Φ

t
i)

∏

o∈Ea\j

mr
oi(Φ

t
i)

(20)

We illustrate the approach using a very simple temporal constraint of small motion (no major

location changes between two frames). This constraint is valid for videos with high frame rates

and imposes the least restrictions in terms of body motions.Hence,τt−1,t(Φ
t
i, Φ

t−1
i ) is modeled

as a Gaussian given by

τt−1,t(Φ
t
i, Φ

t−1
i ) = N (d(lti, l

t−1
i ), 0, σt

ij) (21)
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We assume that the appearance remains the same over time, andincorporate appearance

consistency in our likelihood model. This assumption is true for short period of time and the

appearance models can be updated after every few frames, if required. The new likelihood model

can then be written as:

Pi(I1....IM |Φt
i,v

r

i(l
t
i)) = P

Edge
i (I1....IM |Φt

i,v
r

i(l
t
i))P

appearance
i (I1....IM |Φt

i,v
r

i(l
t
i)) (22)

Also, instead of using full visibility to initialize beliefpropagation iterations, we use the

occlusion maps estimated from the previous frames. The application of these constraints speeds

up the inference substantially in tracking applications.

Fig. 22. Results of tracking on Class 2 videos.

A. Experimental Results

We show the performance of our algorithm in the tracking framework using the temporal

constraints discussed above. We use sequences that have previously been used in [28]. The
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Fig. 23. Results of tracking on Class 3 videos.

average execution time for the algorithm reduced to 30 sec per frames by using the pruning via

temporal priors in addition to the pruning approaches discussed earlier. For smooth variations

between frames, a smoothing filter was applied to our results.

Figure 22 shows the performance of the algorithm using temporal constraints on a Class

2 video sequence. The accuracy of the system increased to 98%from 96% when temporal
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constraints were used (with a tolerance level of 50% of limb length).

Figure 23 shows the performance of the tracker when multiplepersons are present( a Class 3

video) in the same view. In many frames there is considerableocclusion and confusion in the

localization of parts because of high likelihoods from other people. Our system had 96% correct

part detection when the tolerance level in the joint error was 50% of limb length.

X. CONCLUSION

We presented an approach for automatic initialization and tracking of the human pose in

cluttered scenes. The paper integrates several constraints represented by a general non-tree

constraint graph in a unified framework. These constraints include the occlusion of one part by

another and the similarity in the appearance of certain parts. The approach avoids background

subtraction and does not require any pixel-wise computation for reasoning about self-occlusions.

We also presented an efficient method based on 2D likelihoodsand epipolar geometry to search

for the high likelihoods regions in the large 3D search space. This speeds up the performance of

the system substantially and leads to better and faster convergence in many cases. We achieve

significant improvement in results compared to existing techniques, especially when some parts

are occluded in one or more views.
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