
Task Scheduling in Large Camera Networks

Paper No. 649

No Institution Given

Abstract. Camera networks are increasingly being deployed for security. In most
of these camera networks, video sequences are captured, transmitted and archived
continuously from all cameras, creating enormous stress on available transmis-
sion bandwidth, storage space and computing facilities. We describe an intelli-
gent control system for scheduling Pan-Tilt-Zoom cameras to capture video only
when task-specific requirements can be satisfied. These videos are collected in
real time during predicted temporal “windows of opportunity”. We present a scal-
able algorithm that constructs schedules in which multiple tasks can possibly be
satisfied simultaneously by a given camera. We describe two scheduling algo-
rithms: a greedy algorithm and another based on Dynamic Programming (DP).
We analyze their approximation factors and present simulations that show that
the DP method is advantageous for large camera networks in terms of task cover-
age. Results from a prototype real time active camera system however reveal that
the greedy algorithm performs faster than the DP algorithm, making it more suit-
able for a real time system. The prototype system, built using existing low-level
vision algorithms, also illustrates the applicability of our algorithms.

1 Introduction

Large scale camera network systems are being increasingly deployed for purposes that
include security, traffic monitoring, etc. These systems typically consist of a large num-
ber of cameras, which can either be active (specifically, Pan-Tilt-Zoom or PTZ cameras)
or static, transmitting in real time video streams to processing and/or storage systems.
Our interest is in controlling these cameras to acquire video segments that satisfy task-
specific constraints. For example, one may wish to acquire at least a few images of each
person who enters a given region, capture video segments lasting k seconds and con-
taining well-magnified facial images for facial recognition, or, capture k seconds long
video segments of the side view of a person for gait modeling and recognition. By intel-
ligently transmitting and storing only video segments satisfying task requirements, we
can reduce the bandwidth requirements and storage space significantly and increase the
efficiency and effectiveness with which the collected video segments can be processed.

The control of the cameras to collect these video segments is a challenging problem.
The system must detect and track moving objects both within and between cameras in
a sensing stage, a problem which is not fully solved yet. Papers such as [1–3] deal
with tracking under occlusions, and other papers such as [4, 5] describe algorithms for
tracking across non-overlapping views.

A second challenge is to predict, given a set of tracked targets, the time intervals
during which video segments meeting the requirements of the tasks can be collected
from available cameras. These requirements include ensuring (1) that the associated
object is unobstructed by other objects, (2) that it is moving in a direction suitable for
the task, (3) that it can be captured in a field of view of the camera (PTZ) assigned
to collect its video segments, and (4) that the collected video segments must satisfy

task-specific minimum resolution and duration. For example, if the task is to collect
facial images, then we must ensure that the video segments are collected only during
time intervals when the person is predicted to be walking towards the camera and un-
obstructed by other moving objects.This can be done using the observed tracks of the
person and other moving objects, predicting their trajectories into the future, and then
identifying periods of crossings between the predicted trajectories with respect to each
of the available cameras. The complements of these periods of crossings are visibil-
ity time intervals during which the person is unobstructed, and camera settings can be
determined within these temporal visibility predictions to capture the person in a well-
magnified frontal image or video sequence satisfying the four requirements above. This
problem has been addressed in earlier work. [6] described the construction of so-called
“Task Visibility Intervals” (TVI’s) and “Multiple Task Visibility Intervals” (MTVI’s),
that represent time-varying camera setting ranges that can be used to collect video seg-
ments satisfying one (TVI) or multiple tasks simultaneously (MTVIs).

A TVI is a 6-tuple:

(c, (T, o), [r, d], V alidψ,φ,f(t)). (1)

where c represents a PTZ camera, (T, o) is a (task, object) pair - T is the index of a task
to be accomplished and o is the index of the object to which the task is to be applied,
and [r, d] is a future time interval during which task requirements can be satisfied using
camera c. Then, for each time instance t ∈ [r, d], V alidψ,φ,f(t) is the range of valid
combinations of the pan angle (ψ), tilt angle (φ) and focal length (f) settings that camera
c can employ to capture object o at time t. The tasks themselves are 3-tuples:

(p, α, β), (2)

where p is the required duration of the task, α is the orientation of the object relative to
the optical axis of the camera used to accomplish the task, and β is the minimum image
resolution needed to accomplish the task.

[6] also described the composition of TVI’s into MTVI’s, time intervals during
which collections of tasks can be satisfied simultaneously by one camera. A set of n
TVI’s, each represented in the form:

(c, (Ti, oi), [ri, di], V alidψi,φi,fi
(t)),

for TVI i [Eqn. 1] can be combined into a valid MTVI, represented as:

(c,
⋃

i=1...n

(Ti, oi),
⋂

i=1...n

[ri, di],
⋂

i=1...n

V alidψi,φi,fi
(t), (3)

such that: ⋂

i=1...n

[ri, di] 6= ∅, (4)

i.e., there is some common time interval during which they can be scheduled, and:

⋂

i=1...n

[ri, di] ≥ pmax,

where pmax is the largest processing time among the tasks, and for all t ∈
⋂
i=1...n[ri, di],

⋂

i=1...n

V alidψi,φi,fi
(t) 6= ∅, (5)

i.e., the tasks can be captured with common PTZ settings.
Besides [6], other work that has focused on temporal analysis and planning for cam-

era scheduling includes [7, 8], which discuss a dynamic sensor planning system, called
the MVP system. They were concerned with determining occlusion-free viewpoints of
a target. This involves handling occlusions between the target and the different moving
objects in a scene, each of which generates a swept volume in temporal space. Using a
temporal interval search, they divide the temporal intervals into halves while searching
for a viewpoint that is not occluded in time by these sweep volumes. This is then inte-
grated with other constraints such as focus and field of view in [8]. The culmination of
this work is found in [7], where the algorithms are applied to an active robot work cell.

In this paper, we will address the problem of job scheduling given the TVIs and
MTVIs generated as in [6]. In general, job scheduling problems are NP-hard, and ap-
proximation algorithms have to be employed. We first analyze the approximation factor
of a greedy scheduling algorithm (as a function of the number of cameras), which re-
veals that its performance deteriorates significantly as the number of cameras increases.
We then describe a Dynamic Programming (DP) approximation algorithm with an ap-
proximation factor that is much better than the greedy approach. The performance ad-
vantage of the DP algorithm is confirmed by simulations.

Finally, we describe a prototype real time active camera system. A scheduler con-
trols PTZ cameras in real time to capture video segments based on automatically con-
structed TVI’s and MTVI’s. While the prototype system includes only a small number
of cameras due to limited resources, the results illustrate the applicability of the algo-
rithms for large scale camera networks.

2 Single-camera Scheduling

We first study the scheduling problem when only a single camera is used. This will be
extended to the problem of multiple cameras in the next section. Also, we will limit our
analysis to non-preemptive schedules in this paper.

We introduce the following theorems that make the single-camera scheduling prob-
lem tractable:

Theorem 1. Let the slack for the i-th task be δi = [t−δi
, t+δi

], and define δmax =

max(|δi|) and pmin as the smallest processing time among all (M)TVI’s for some cam-
era. Then, if |δmax| < pmin, then any feasible schedule for the camera is ordered by
the slacks’ start times.

Proof. Consider that the slack δ1 = [t−δ1 , t
+
δ1

] precedes δ2 = [t−δ2 , t
+
δ2

] in a schedule and

t−δ1 > t−δ2 . Let the processing time corresponding to δ1 be p1. Then t−δ1 + p1 > t−δ2 + p1.

We know that if t−δ1 + p1 > t+δ2 , then the schedule is infeasible. This happens if t+δ2 ≤

t−δ2 + p1 - i.e., t+δ2 − t−δ2 ≤ p1. Given that |δmax| < pmin, t+δ2 − t−δ2 ≤ p1 is true.

Theorem 1 implies that if |δmax| < pmin, we can limit our attention to feasible sched-
ules that are ordered by the slacks’ start times. This is a reasonably close assumption

in many cases since the time to move the cameras and capture an objects is generally
quite large compared to the slack times in crowded scenes where such scheduling mat-
ters most. This assumption allows us to construct a Directed Acyclic Graph (DAG),
where each (M)TVI is a node with an incoming edge from a common source node and
outgoing edge to a common sink node, with the weights of the outgoing edges initial-
ized to zero. An outgoing edge from one (M)TVI node to another exists iff the slack’s
start time of the first node precedes that of the second (Theorem 1), which can however
be removed if it makes the schedule infeasible. Consider the following theorem and
corollary:

Theorem 2. A feasible schedule is a sequence of n (M)TVI’s each with slack δi =
[t−δi

, t+δi
], where i = 1...n represents the order of execution, such that t+δn

− t−δ1 ≥

(
∑

i=1...n−1 pi) − (
∑

i=1...n−1 |δi|), pi being the processing time of the ith (M)TVI in
the schedule.

Proof. For the schedule to be feasible the following must be true: t−δ1 + p1 ≤ t+δ2 ,

t−δ2 + p2 ≤ t+δ3 , ... , t−δn−1
+ pn−1 ≤ t+δn

. Summing them up gives t−δ1 + t−δ2 + ... +

t−δn−1
+

∑
i=1...n−1 pi ≤ t+δ2 +t+δ3 +...+t+δn

, which can then be simplified as t+δn
−t−δ1 ≥

(
∑

i=1...n−1 pi) − (
∑

i=1...n−1 |δi|). The condition, t−δ1 + p1 ≤ t+δ2 , t−δ2 + p2 ≤ t+δ3 , ...

, t−δn−1
+ pn−1 ≤ t+δn

, is however only a sufficient condition for a feasible schedule.

Corollary 1. Define a new operator �, such that if δ1(= [t−δ1 , t
+
δ1

]) � δ2(= [t−δ2 , t
+
δ2

]),

then t−δ1 + p1 ≤ t+δ2 . Consider a schedule of (M)TVI’s with slacks δi...n. The condition:

δ1 � δ2, δ2 � δ3, ..., δn−1 � δn, is necessary for the schedule to be feasible. Con-
versely, if a schedule is feasible, then δ1 � δ2, δ2 � δ3, ..., δn−1 � δn. Proof is omitted
since it follows easily from Theorem 2.

Due to Corollary 1, an edge between two (M)TVI nodes can be removed if it violates
the � relationship since it can never be part of a feasible schedule.

Using such a DAG, a Dynamic Programming (DP) algorithm can be used to solve
the single-camera scheduling problem. Consider the following set of (M)TVI’s that
have been constructed for a given camera, represented by the tasks (T1...6) they sat-
isfy and sorted in order of their slacks’ start times:{node1 = {T1, T2}, node2 =
{T2, T3}, node3 = {T3, T4}, node4 = {T5, T6}}, where the set of nodes in the DAG in
Figure 1 is given as nodei=1...4. DP is run by first initializing paths of length 1 starting
from each of the (M)TVI nodes to the sink, all with “merits” 0. At each subsequent
path length, the next node nodenext chosen for a given node nodecurr in the current
iteration is:

nodenext = arg max
n∈Scurr2next

|Sn
⋃
Tasks(nodecurr)|, (6)

where Scurr2next is the set of nodes that have valid paths starting from them in the
previous iteration and for which nodecurr has an outgoing edge to. Sn is defined as the
set of tasks covered by the path (in the previous iteration) starting from n, and Tasks()
gives the set of tasks covered by the (M)TVI associated with nodecurr. So, for example,
from node1, paths of length 2 exist by moving on to either one of node2...4, with the
move to node2, node3 and node4 covering {T1, T2, T3} (merits=3), {T1, T2, T3, T4}
(merits=4) and {T1, T2, T5, T6} (merits=4) respectively. We choose the path of length
2 from node1 to node3. Iterations are terminated when there is only one path left that
starts at the source node or a path starting at the source node that covers all the tasks. In

node4

Sink

00

0

0

0

Source

node1

node2

node3

Fig. 1. Single-camera scheduling: DAG formed from the set {node1 =
{T1, T2}, node2 = {T2, T3}, node3 = {T3, T4}, node4 = {T5, T6}}. The weights

between (M)TVI nodes are determined on the fly during DP. Assume that, in this

example, the � relationship is satisfied for the edges between the (M)TVI nodes.

our example, the optimal path becomes node1 → node3 → node4, terminated at paths
of length 4 from the sink when all the tasks are covered.

3 Multi-camera Scheduling

While single-camera scheduling using DP is optimal and has polynomial running time,
the multi-camera scheduling problem is unfortunately NP-hard. Consequently, compu-
tationally feasible solutions can only be obtained with approximation algorithms. We
consider both a simple greedy algorithm and a branch and bound-like algorithm.

3.1 Greedy Algorithm

The greedy algorithm iteratively picks the (M)TVI that covers the maximum number of
uncovered tasks, subject to schedule feasibility as given by Theorem 2. Under such a
greedy scheme, the following is true:

Theorem 3. Given k cameras, the approximation factor for multi-camera scheduling
using the greedy algorithm is 2+ kλµ, where the definitions of λ and µ are given in the
proof.

Proof. Let G =
⋃
i=1...kGi, where Gi is the set of (M)TVI’s scheduled on camera i

by the greedy algorithm, and let OPT =
⋃
i=1...kOPTi, where OPTi is the set of

(M)TVI’s assigned to camera i in the optimal schedule. We further define (1) H1 =⋃
i=1...kH1,i, where H1,i is the set of (M)TVI’s for camera i, that have been chosen by

the optimal schedule but not the greedy algorithm and each of these (M)TVI’s contains
tasks that are not covered by the greedy algorithm in any of the cameras, (2) H2 =⋃
i=1...kH=2,i, whereH2,i is the set of (M)TVI’s for camera i, that have been chosen by

the optimal schedule but not the greedy algorithm and each of these (M)TVI’s contains
tasks that are also covered by the greedy algorithm, and finally (3) OG = OPT

⋂
G.

Sink

0

0

Source1

Source2

node2

node1

node3

Sink1

Sink2

Fig. 2. Multi-camera scheduling: DAG formed from the set {node1 =
{T1, T2, T3}, node2 = {T3, T4}} for the first camera, and the set {node3 =
{T1, T2, T3}} for the second camera.

Clearly, OPT = H1

⋃
H2

⋃
OG. Then, for hj=1...ni

∈ H1,i where ni is the number
of (M)TVI’s in H1,i, ∃gj=1...ni

∈ Gi such that hj and gj cannot be scheduled together
based on the requirement given in Theorem 2, else hj should have been included by
G. If Tasks(hj)

⋂
Tasks(gj) = ∅, then hj contains only tasks that are not covered

by G. In this case, |hj | ≤ |gj|, else G would have chosen hj instead of gi. Note that
the cardinality is defined as the number of unique tasks covered. In the same manner,
even if Tasks(hj)

⋂
Tasks(gj) 6= ∅, hj could have replaced gj unless |hj | ≤ |gj |.

Consequently, |H1,i| = |h1

⋃
h2

⋃
...

⋃
hni

| ≤ |h1|+ |h2|+ ...+ |hni
| ≤ |g1|+ |g2|+

... + |gni
|. Let βj =

|gj |
|Gi|

and λi = max(βj ∗ ni). This gives |H1,i| ≤ β1|Gi| + ... +

βni
|Gi| ≤ λi|Gi|. Similarly, we know |H1| ≤ λ1|G1| + ... + λk|Gk| ≤ λ(|G1| +

... + |Gk|), where λ = max(λi). Introducing a new term, γi = |Gi|
|G| and letting µ =

max(γi), we get |H1| ≤ kλµ|G|. Since |H2| ≤ |G| and |OG| ≤ |G|, |OPT | ≤
(2 + kλµ)|G|.

3.2 Branch and Bound Algorithm

The branch and bound approach runs DP in a similar manner as single-camera schedul-
ing but on a DAG that consists of multiple source-sink pairs (one pair per camera), with
the node of one camera’s sink node linked to another camera’s source node. An example
is shown in Figure 2. Then, for a source node s, we define its “upper bounding set” Ss
as:

Ss =
⋃

c∈Slink

Sc, (7)

where Slink is the set of cameras for which paths starting from the corresponding sink
nodes to s exist in the DAG, and Sc is the set of all tasks that are covered by some
(M)TVI’s belonging to camera c. Intuitively, such an approach aims to overcome the
“shortsightedness” of the greedy algorithm by “looking forward” in addition to back-
tracking and using the tasks that can be covered by other cameras to influence the
(M)TVI nodes chosen for a particular camera. Admittedly, better performance is pos-
sibly achievable if “better” upper bounding sets are used, as opposed to blindly using
all the tasks that other cameras can cover without taking scheduling feasibility into
consideration.

The algorithm can be illustrated with the example shown in Figure 2, which shows
two cameras, c1 and c2, and the following sets of (M)TVI’s that have been constructed
for them, again ordered by the slacks’ start times and shown here by the tasks (T1...4)

they satisfy. For c1, the set is {node1 = {T1, T2, T3}, node2 = {T3, T4}} and for c2,
{node3 = {T1, T2, T3}}. The DAG that is constructed has two source-sink pairs, one
for each camera - (Source1, Sink1) belongs to c1 and (Source2, Sink2) to c2. The
camera sinks are connected to a final sink node as shown, with the weights of the edges
initialized to zero. Weights between nodes in the constructed DAG are similarly de-
termined on the fly like in the single-camera scheduling. Directed edges from Sink2

to Source1 connects c1 to c2. The DP algorithm is run in almost the same manner as
single-camera scheduling, except that at paths of length 3 from the final sink node, the
link from Source1 to node2, is chosen because the upper bounding set indicates that
choosing the link potentially covers a larger number of tasks (i.e., the upper bound-
ing set of Source1, {T1, T2, T3} combines with the tasks covered by node2 to form
{T1, T2, T3, T4}).

The branch and bound algorithm can be viewed as applying the single-camera DP
algorithm, camera by camera in the order given in the corresponding DAG, with the
schedule of one camera depending on its upper bounding set. This allows us to derive a
potentially better approximation factor than the greedy algorithm as follow:

Theorem 4. For k cameras, the approximation factor of the branch and bound algo-

rithm is
(1+kµ(1+u))k

(1+kµ(1+u))k−(kµ(1+u))k . µ and u are defined as follow. LetG∗ =
⋃
i=1...k G

∗
i ,

where G∗
i is the set of (M)TVI’s assigned to camera i by the branch and bound algo-

rithm. Then, µ = max(
|G∗

i |
|G∗|) and u = max(ui), where ui is the ratio of the cardinality

of the upper bounding set of camera i to |G∗
i |.

Proof. Let α be the approximation factor of the branch and bound algorithm. Then,
assuming that schedules for G∗

1, ..., G
∗
i−1 have been determined, |G∗

i | ≥
1
α
(|OPT | −∑i−1

j=1 |G
∗
j |). Adding

∑i−1
j=1 |G

∗
j | to both sides gives:

i∑

j=1

|G∗
j | ≥

OPT

α
+
α− 1

α

i−1∑

j=1

|G∗
j |).

A proof by induction shows, after some manipulation:

αk

αk − (α− 1)k

k∑

j=1

|G∗
j | ≥ |OPT |.

Let H =
⋃
i=1...kHi, Hi being the set of (M)TVI’s chosen by the optimal schedule on

camera i but not the branch and bound algorithm. The condition |Hi| ≤ |G∗
i | + ui|G∗

i |
is true; otherwise, Hi would have been added to G∗ instead. Consequently, |H | ≤
(|G∗

1|+ ...+ |G∗
k|) + (u1|G∗

1|+ ...+ uk|G∗
k|) ≤ kµ|G∗|+ kuµ|G∗| ≤ kµ(1 + u)|G∗|.

Since OPT = OG
⋃
H (Theorem 3), we get |OPT | ≤ 1 + kµ(1 + u)|G∗|. Thus,

α = 1 + kµ(1 + u).

By expressing the approximation factors of the greedy and branch and bound algo-
rithm as a function of the number of cameras, we see that the branch and bound algo-
rithm theoretically outperforms the greedy algorithm substantially in terms of task cov-
erage. This is illustrated in Figure 3, whereby the approximation factors of the greedy
and branch and bound algorithm are plotted as the “distribution” parameters vary when
different number of cameras are used. These distribution parameters refer to λ and µ
in Theorem 3, and µ and u in Theorem 4. They represent how well the tasks are dis-
tributed among the cameras and (M)TVI’s. The plots show that the greedy algorithm

0

1

2

3

0

0.5

1
0

10

20

30

40

λ

Greedy − 10 cameras

µ

A
p
p
ro

x
.
fa

c
to

r

0

1

2

3

0

0.5

1
0

50

100

150

200

λ

Greedy − 50 cameras

µ

A
p

p
ro

x
.

fa
c
to

r

0

1

2

3

0

0.5

1
0

100

200

300

400

λ

Greedy − 100 cameras

µ

A
p
p
ro

x
.
fa

c
to

r

(a)

0

0.5

1

0

1

2

3
1

2

3

4

5

µ

Branch and Bound − 10 cameras

u

A
p

p
ro

x
.

s
fa

c
to

r

0

0.5

1

0

1

2

3
1

2

3

4

5

µ

Branch and Bound − 50 cameras

u

A
p
p
ro

x
.
fa

c
to

r

0

0.5

1

0

1

2

3
1

2

3

4

5

µ

Branch and Bound − 100 cameras

u

A
p
p
ro

x
.
fa

c
to

r

(b)

Fig. 3. (a) The approximation factor for the greedy algorithm using 10, 50 and 100

cameras respectively. λ and µ here are as defined in Theorem 3. (b) The same plots for

the branch and bound algorithm. Here, the approximation factor depends only on the

distribution parameters and not on the number of cameras. u and µ are as defined in

Theorem 4.

is highly sensitive to the number of cameras, with the approximation factor becom-
ing prohibitively high when the tasks are unevenly distributed. On the other hand, the
performance of the branch and bound algorithm depends only on the distribution pa-
rameters and is not affected by the number of cameras.

Both the single-camera and branch and bound DP-based multi-camera algorithm
have a computational complexity of O(N3), N being the average number of (M)TVI’s
constructed for a given camera and used in the resulting DAG. On the other hand, the
greedy algorithm takes only O(N2) time, which could outweigh the benefits of better
scheduling for very large camera networks.

4 Implementation and Experiments

Although we have theoretically found the approximation factors for the scheduling al-
gorithms, it would interesting for practical purposes to investigate the performance of
the greedy algorithm relative to the DP algorithm under “normal” circumstances where
we would expect “reasonable” task distribution. For this purpose, we conducted simu-
lations using a scene of size 200m× 200m, and generated moving objects in the scene
by randomly assigning to them different starting positions in the scene, sizes and veloc-
ities. Cameras are also simulated with calibration data from real cameras. The objects
are assumed to be moving in straight lines at constant speeds, and the (M)TVI’s for
each camera are then constructed and utilized by the scheduler. We conducted simula-
tions for 20, 40, 60, and 80 cameras and 100, 120, 140, 160, 180, and 200 objects, and
plot the percentage of the total number of tasks that were captured by both the greedy

0
50

100

100
150

200
50

60

70

80

90

100

No. of cameras

Comparing DP and Greedy

No. of tasks

%
 o

f
ta

s
k
s
 c

o
v
e

re
d

Branch and Bound

Greedy

Fig. 4. The DP algorithm consistently covers more tasks than the greedy algorithm.

and DP algorithm. For each object, the task is to capture video segments in which the
full body of the object is visible. Since there is only one task for each object, the total
number of tasks equals the number of objects. The results are shown in Figure 4. The
DP algorithm schedules more tasks than the greedy algorithm by a minimum of 13.55
percent and a maximum of 33.78 percent.

Finally, we test our algorithms in a small-scale real time image analysis system.
Due to limited resources, building a system with large number of cameras was not pos-
sible. We developed a prototype multi-camera system consisting of four PTZ cameras
synchronized by a Matrox four-channel card.

For running the experiments, one camera is kept static, so that it can be used for
background subtraction and tracking in the sensing stage[9, 1]. From the detection and
tracking, the system recovers an approximate 3D size estimate of each detected object
from the ground plane and camera calibration. This is followed by the planning stage,
during which the observed tracks allow the system to predict the future locations of
the objects, and to use them for constructing (M)TVI’s, which are then scheduled for
capture. The predicted position of each detected object on the ground plane is mapped
to the PTZ cameras, after which the 3D size estimate of the object is used to construct
a rough 3D model of the object for the corresponding PTZ camera. Such a 3D model is
utilized to determine valid ranges of PTZ settings during the construction of TVI’s.

The experiments confirm that the greedy algorithm performs faster than the DP al-
gorithm. This makes the greedy algorithm more suitable for our prototype system. A
real time experiment using the greedy scheduler is illustrated in Figures 5Four remote-
controllable 12x14 inches robots move through the scene. Two PTZ cameras were
needed to capture the four robotsusing a (one task) TVI and a three-task MTVI

5 Conclusion

This paper addressed scheduling algorithms for smart video capture in large camera
networks. We developed approximation algorithms for scheduling using a greedy and
a DP based approach. While both theoretically and experimentally, the DP algorithms
gives very good results, it is computationally more expensive than the greedy algorithm.
A suitable algorithm can thus be chosed depending on the application scenario and
computational resources available.

(a)

(b) (c)

Fig. 5. (a) The robots are tracked (left and middle image), and the predicted tracks are

used to construct the TVI’s and MTVI’s, which are then used by the scheduler to assign

cameras to the (M)TVIs (annotated in the right image). Next, (b) camera 0 captures

robot 3, and (c) camera 1 captures robots 0, 1 and 2 simultaneously.

References

1. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking.
International journal of computer vision 29(1) (1998) 5–28

2. Mittal, A., Davis, L.: M2tracker: A multi-view approach to segmenting and tracking people
in a cluttered scene. In: European Conference on Computer Vision, Copenhagen, Denmark.
(2002)

3. Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situation. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition. (2003)

4. Kaucic, R., Perera, A.A., Brooksby, G., Kaufhold, J., Hoogs, A.: A unified framework for
tracking through occlusions and across sensor gaps. In: IEEE Conference on Computer Vision
and Pattern Recognition, San Diego, CA. (2005)

5. Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and tracking with a network of
non-overlapping sensors. In: IEEE Conference on Computer Vision and Pattern Recognition,
Washington DC. (2004)

6. Lim, S.N., Davis, L.S., Mittal, A.: Constructing task visibility intervals for video surveillance.
ACM Multimedia Systems (2006)

7. Abrams, S., Allen, P.K., Tarabanis, K.: Computing camera viewpoints in an active robot work
cell. International Journal of Robotics Research 18(2) (1999)

8. Tarabanis, K., Tsai, R., Allen, P.: The mvp sensor planning system for robotic vision tasks.
IEEE Transactions on Robotics and Automation 11(1) (1995) 72–85

9. W.E.L.Grimson, C.Stauffer: Adaptive background mixture models for real-time tracking. In:
IEEE Conference on Computer Vision and Pattern Recognition. (1999)

