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Abstract

Background modeling and subtraction are core components invideo processing. To this
end, one aims to recover and continuously update a representation of the scene that is com-
pared with the current input to perform subtraction. Most ofthe existing methods treat each
pixel independently and attempt to model the background perturbation through statistical
modeling such as a mixture of Gaussians. While such methods have satisfactory perfor-
mance in many scenarios, they do not model the relationshipsand correlation amongst
nearby pixels. Such correlation between pixels exists bothin space and across time es-
pecially when the scene consists of image structures movingacross space. Waving trees,
beach, escalators and natural scenes with rain or snow are examples of such scenes. In this
paper, we propose a method for differentiating between image structures and motion that
are persistent and repeated from those that are “new”. Towards capturing the appearance
characteristics of such scenes, we propose the use of an appropriate subspace created from
image structures. Furthermore, the dynamical characteristics are captured by the use of a
prediction mechanism in such subspace. Since the model mustadapt to long-term changes
in the background, an incremental method for fast online adaptation of the model parame-
ters is proposed. Given such adaptive models, robust and meaningful measures for detection
that consider both structural and motion changes are considered. Promising experimental
results that include qualitative and quantitative comparisons with existing background mod-
eling/subtraction techniques demonstrate the very promising performance of the proposed
framework when dealing with complex backgrounds.

Key words: Scene Analysis, Background Subtraction, Time Series, Principal Component
Analysis.
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1 Introduction

The proliferation of cheap sensors and increased computational power has made
the acquisition and processing of video information more feasible. Real-time video
analysis tasks such as object detection and tracking can nowbe efficiently per-
formed on standard PC’s for a variety of applications such as: Industrial automa-
tion, transportation, automotive, security & safety, and communications. The use
of stationary cameras is rather common in such applications.

Background subtraction is a core component in many of such applications where
the objective is to separate the new objects from the repetitive parts of the scene.
The information provided by such a module can be considered as a valuable low-
level visual cue to perform high-level tasks of object analysis, like object detection,
tracking, classification and event analysis ([45,33,20,24,6,2,53,7,42]).

The task of background modeling and subtraction consists ofrecovering and con-
tinuously updating a representation of the scene that is compared with the current
input to perform detection. Methods for such modeling of thebackground may
be classified into two categories:predictiveandnon-predictive. Predictivemeth-
ods attempt to model the scene as a time series and develop a dynamical model to
determine the current input based on past observations. Themagnitude of the devi-
ation between the predicted and actual observation can thenbe used as a measure of
change. The second class of methods (which we callnon-predictive density-based
methods) neglect the particular order of the input observations and attempt to build
a probabilistic representation (i.e. ap.d.f.) of the data at a given point in the scene2 .
A new observation can then be classified as background or foreground based on the
probability that this observation belongs to the background.

1.1 Non-Predictive Density-Based Methods

Various methods have been proposed in the literature for developing a pixel-level
statistical representation of the scene. The simplest model keeps a single back-
ground image that refers to the ”empty” scene. Several authors discuss methods

Email addresses:amittal@cs.iitm.ernet.in (Anurag Mittal),
nikos.paragios@ecp.fr (Nikos Paragios).
1 Most of this work was done while the authors were with the Real-Time Vision and Mod-
eling Department at Siemens Corporate Research, Princeton, NJ 08540.
2 In a more general sense, non-predictive methods may be considered as a subset of predic-
tive methods since they also retain some temporal information. However, since the temporal
relationship between consecutive observations is mostly lost and such methods are unable
to model short-term relationships in fast changing periodic and persistent signals such as a
sinusoid, we have classified these methods in a separate category.
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to perform illumination-invariant change detection usingsuch background repre-
sentation ([23,38,18]). Along this direction, a more advanced technique consists
of a running average of the intensity, which would be a computationally efficient
approach towards providing a rough description of the static scene in the absence
of any moving objects. Variations of this method include - taking the median of
the observed values, calculating spatially weighted values in order to reduce the ef-
fect of outliers and keeping the maximum, minimum and largest consecutive values
[21]. Such methods do not explicitly model the background versus foreground, and
are therefore not very effective for scenes where many moving objects are present
and acquisition of a background image ”free” of foreground objects is not easy.

A static scene may be reasonably modeled with a single Normaldistribution if the
noise is modeled as being zero mean Normally distributed[59]. This can be used
to classify a pixel as belonging to the foreground or background. Such decisions
can also then be used to update the meanµ and the covariance matrixΣ of the
background Gaussian incrementally.

Friedman et. al.[14] use a mixture of three Gaussians to model the visual proper-
ties of the background and foreground in traffic surveillance applications. Three
hypotheses are considered - road, shadow and vehicles. The EM algorithm is a
near-optimal method for simultaneously recovering both the parameters of the in-
dividual models and the classification of the data into different groups (since this is
a chicken-and-egg problem). However, due to the computational complexity of the
algorithm and real-time update requirements of the traffic surveillance problem, an
incremental EM algorithm was considered to learn and updatethe model param-
eters efficiently. The background (i.e. road), however, is still modeled by a single
Gaussian in this case.

Stauffer and Grimson ([20,52]) extended this idea by using multiple Gaussians to
model the scene. Such an approach is capable of dealing with multiple hypothe-
ses for the background and can be useful in scenes such as waving trees, beaches,
escalators, rain and snow. In order to improve the efficiencyof the method com-
pared to the EM algorithm, they propose a simple exponentialupdate scheme for
the mixture model. Mittal and Huttenlocher [34] introduce amodification of this
scheme by proposing the use of constant weighting along withexponential weight-
ing and specify methods for selection of the scheme to be usedat a particular time.
The mixture-of-Gaussians method is quite popular and was tobe the basis for a
large number of related techniques ([19,34,57,26,22]). Gao et. al. [16] present a
statistical characterization of the error associated withthis algorithm.

Parametric methods are a reasonable compromise between lowcomplexity and a
reasonable approximation of the visual properties of the scene when the statistics
of such a scene obeys the general assumptions imposed by the selected model.
When these assumptions fail, non-parametric approaches are more suitable. A pop-
ular non-parametric approach is to use kernels ([48,56]). In this method, a kernel
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is created around each of the previous samples and the density is estimated using
an average over the kernels. While different kernels can be considered, the Normal
kernel was proposed by Elgammal et. al. ([12,11]). The advantage of such approach
is its ability to handle arbitrary shapes of the density function. However, it is com-
putationally expensive, both in terms of memory requirements and running time.

Treating background subtraction as a state identification problem, some authors
have utilized Hidden Markov Models (HMM) in order to reason about state changes
either at the pixel level[47], global level [54], or some combination of the two[57].
In ([61,25]), edge features have been utilized in order to detect the objects at their
boundaries. Furthermore, Eveland et. al. [13] propose a background model for
stereo images.

Last but not least, Oliver et. al. [40] model the background at the image level.
Treating images as vectors, the means and variances are collected andPrincipal
Component Analysis (PCA)over the difference from the mean is performed. De-
tection is recovered by projection of the input images onto the subspace of basis
vectors and thresholding the Euclidean distance between the input image and the
projected image (DFFS).

Although a number of non-predictive methods include some form of gradual for-
getting for the past observations, most of the temporal information in the data is
lost. Such an outcome does not affect the detection results when the scene is static
or almost static and the changes in the appearance of the background are rather
gradual. In scenes where there is a more drastic change in thebackground and the
observed input is periodic and/or persistent, however, such temporal information
is critical. For instance, sinusoidal data cannot be modeled well by such methods.
For such scenes, more complexpredictivemethods that are able to capture such
short-term temporal relationships are required.

1.2 Predictive Methods

The central idea behindpredictivemethods is to model the scene as a time series
and to develop a dynamical model to recover the current inputbased on past obser-
vations. Methods of varying complexity have been considered in the past towards
such an objective.

A Kalman-filter at the pixel level is the most popular dynamical model that has
been considered in the literature ([46,28–30]). Within such an approach, the ob-
jective is to determine the current state of a system governed by a linear process.
The estimation process is recursive: the previousa posterioriestimates are used to
predict the newa priori estimates, while the current measurement is used to correct
the estimates to obtain currenta posterioriestimates.
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(a) (b) (c) (d) (e)

Fig. 1. (a) Original Images. Detection result using (b) a mixture of Gaussians model [53],
(c) a non-parametric model [12], and (d) the non-parametricmodel with low detection
threshold. (e) Our method, where the presence of white in a block denotes detection (for
full explanation of the color code used, kindly refer to Fig.6)

Koller et. al. [30] use a simple state model that refers to the1D value of the back-
ground intensity. The state is updated differently depending on whether it is hy-
pothesized to be part of the background or not. Toyama et. al.[55] use a simpler
version of the Kalman filter calledWeiner filterthat operates directly on the data
rather than recursively capturing the essence of past observations in a state vector.
Such a filter was able to capture simple repetitive behaviors(like flickering of the
screen). In their system, integration of such a pixel-levelmethod with region and
frame-level information led to a promising solution.

Kalman filters that use more complex state vectors often include higher order mo-
tion characteristics such as velocity and acceleration andare be able to capture
more complex dynamic behavior. However, even such extensions of the linear-filter
driven methods suffer from various limitations: (i) restriction of these filters to lin-
ear models, and (ii) lack of the ability to capture complex relationships between
neighboring pixels.

Fig. 1. demonstrates the strengths and the limitations of the state-of-the-art meth-
ods for a complex scene that is dynamic and exhibits non-stationary properties in
time. Examples of scenes with such complex and dynamic behavior include ocean
waves, waving trees, rain and moving clouds. Modeling such scenes is a topic that
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Fig. 2. Comparison of our method with an optical flow-based method of [35] on frames
where the color matches the background and the object is stationary. Top Row: Detection
using our method, shown by red squares around the detected blocks. Bottom Row: Results
using [35].

has drawn attention recently. In [50,49], an approach that is based on modeling
the co-occurrence of neighboring image patterns was proposed, while in [63], a
Kalman filter is considered in a subspace [63]. Furthermore,the VANDAL project
at the Washington University at St. Louis ([60,44,43]) has considered raw spatial
and temporal derivatives and developed methods to deal withsuch scenes by clus-
tering the data in such space. The main idea in this work is that persistent motion
in a certain direction will create cylinders in this space that pass through the origin,
and different directions will create cylinders in different orientations. In another
related work by us [35], we have looked at the use of optical flow as an additional
feature at each point in order to model the dynamics of the scene. While such a
method can be effective modeling the dynamics of individualpoints, it cannot han-
dle changes in the structure of the scene (spatial relationships). Hence, the current
method, that handles both the structure as well as the temporal relationships can be
considered as a more powerful and generic approach, although the modeling ap-
proximations needed to make the method real-time can have some adverse effect
on the performance. In Fig. 2, we show how our method outperforms the method
in [35] when color of the foreground matches with the background and the object
is stationary. The performance of the two methods on the scene in Fig. 1 was quite
similar.

In this paper, we extend the scope of predictive methods withthe objective of han-
dling scenes that exhibit more complex spatio-temporal pattern of change of the
observation space. To this end, we present a predictive method based on a subspace
analysis of the signal. The method is able to capture:

• long term dynamical characteristics of the scene, and
• temporal and structural relationships between different pixels

where detection is based on measures that are adaptive to thevariation present in
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the scene.

The main contribution of our approach is the use of the concept of dynamic se-
ries to model repetitive scenes. Towards addressing the real-time demand as well
as the ill-posedeness of the problem, we consider a subspaceapproach. This has
been initially proposed in a very different context to modeland generate dynamic
textures[10]. Our approach first assumes an evolving base, both in terms of the
number as well as the base of retained eigen vectors. This is done through an in-
cremental approach which to the best in our knowledge has been never considered
before in the contest of background modeling. Then, a dynamical model in such a
subspace is utilized to perform prediction. This dynamicalmodel is also updated
using an incremental approach for efficiency purposes. Furthermore, we introduce
two novel measures to determine the appropriateness of the prediction mode with
respect to the observation. One measure mostly encodes changes in appearance
while the second encodes changes in the dynamics of the scene. Qualitative and
Quantitative comparisons with existing methods validate the advantages of the pro-
posed approach when dealing with dynamic backgrounds.

The reminder of this paper is organized as follows. The next section describes the
feature space and the prediction model that is utilized to approximate the dynamic
behavior of the scene. Initial and incremental construction of the utilized models
is considered in Section 3. Detection measures are introduced in section 4. Finally,
we conclude the paper with implementation details and experimental evaluation in
section 5.

2 Scene Modeling

Let {I(t)}t=1...T be a given set of images. The central idea behind our approach
is to generate a prediction mechanism that can determine thecurrent frame using
the latestk observed images. Such an objective can be defined mathematically as
follows:

Ipred(t) = f(I(t − 1), I(t − 2), . . . , I(t − k)) (1)

wheref , ak-th order function is to be determined. One possibility is tomodel such
prediction mechanism via a multi-variate time series in thespace of input images.
However, it can be claimed that the modeling in such high-dimensional space is
rather complex, contains redundancies and is not in a form that can be used directly
for efficient prediction. This limitation can be addressed through the reduction of
the dimensionality of the feature space according to some filter operators.
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2.1 Feature space

Let {φi}
n
i=1, be a filter bank andsi(t) = φi(I(t)), the output of the convolution

between the operatorφi and the imageI(t). The outcome of such a convolution
process can be combined into a vector that represents the current states(t) of the
system.

s
T (t) = [s1(t), . . . , sn(t)]

Examples of such filter operators include wavelet, gabor or anisotropic non-linear
filters. Within the proposed framework, we adopt linear filters due to computation-
ally efficient techniques for their implementation and their low complexity. More-
over, such filters are able to capture a significant amount of variations in real scenes.

Principal component analysis3 ([27,1,9]) refers to a linear transformation of vari-
ables that retains - for a given numbern of operators - the largest amount of varia-
tion within the training data. In a prediction mechanism, such a module can retain
and recover in an incremental manner the core variations of the observed data.

The estimation of such operators will be addressed in the next section. In order
to facilitate the introduction of the method, one can consider them known:{φi =
bi}

n
i=1, wherebi are the set of basis vectors. These can be considered to produce

the state vectors(t):

s(t) = [bT
1 · Ĩ(t),bT

2 · Ĩ(t), . . . ,bT
n · Ĩ(t)]T

= B
T · Ĩ(t)

whereB = [b1,b2,b3, . . . ,bn] denotes the matrix of basis vectors, andĨ(t) =
I(t) − Ī denotes the mean (Ī) subtracted input.

2.2 Prediction mechanism

Based on the predictive model that was earlier introduced (Equation 1), one can
define a similar concept in the state space:

spred(t) = f(s(t − 1), s(t − 2), . . . , s(t − k)) (2)

One can consider various forms (linear or non-linear) for the prediction functionf .
Non-linear mechanisms involve higher sophistication and can capture more compli-
cated structures. However, the estimation of such functions is computationally ex-
pensive, suffers from instability and their incremental update that is crucial within
the considered application is a challenging task.

3 Also known as the Karhunen-Loeve expansion [32].
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Linear models are a good compromise between low complexity and a fairly good
approximation of the observed structure. Auto-regressivemodels of a certain order
k can be considered to approximate and predict the actual observation based on the
latestk feature vectors. In fact, it can be easily shown that due to the use of linear
filters, a system governed by an auto-regressive model at theimage level will lead
to an auto-regressive system at the state level. Using such prediction model, the
predicted state can be written as:

spred(t) = f(s(t − 1), (s(t − 2), . . . , (s(t − k))

=
k
∑

i=1

Ais(t − i)

whereA is ann × n prediction matrix. The prediction in the image space can then
be reconstructed using the basis vectors:

Ĩpred(t) = B · spred(t)

Thus, the unknown variables of our scene model consist of thebasis vectors and
the auto-regressive matrices.

Visual appearance of indoor and outdoor scenes evolves overtime. Global and local
illumination changes, position of the light sources and tidal changes are examples
of such dynamic behavior. One can account for such changes bycontinuously up-
dating both the basis vectors and the prediction model according to the changes in
the observed scene. In such an update, the discriminabilityof the model has to be
preserved in order to perform accurate detection.

3 Model Estimation

Model estimation consists of determining the appropriate filters for state transfor-
mation and the parameters of the prediction model. Ideally,these estimates are to
be recovered simultaneously. While asymptotically optimal solutions for the joint
optimization problem do exist in the system identification literature ([31,41]), such
estimation is computationally intensive both in terms of storage requirements and
running time and is thus not amenable to a real-time solutionfor the types of high-
dimensional problems that are to be dealt with in this paper.Therefore, we will
estimate the two models separately.

In order to determine the filter bank for constructing the state space, we consider
the use of principal basis vectors that are the linear operators that capture the
most amount of variation in the training data. The estimation of such basis vectors
from the observed data can be performed through the singularvalue decomposi-
tion. Within the proposed framework, one has to initiate theprocess using a certain
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number of frames, and then continuously update the model parameters in order to
capture the dynamic behavior of the scene. Therefore, two different learning mech-
anisms are used. The first, known as batch Principal Component Analysis (PCA)
aims to recover the initial basis vectors. Subsequently, the incremental Principal
Component Analysis (IPCA) mechanism continuously updatesthe basis vectors as
the scene changes gradually.

3.1 Estimation of Basis Vectors

3.1.1 Batch PCA

Let {I(t)}t=1...T be a column vector representation of the previousT observations.
We assume that the dimensionality of this vector isd. One can estimate the mean
vectorĪ and subtract it from the input to obtain zero mean vectors{Ĩ(t)}. Given the
set of training examples and the mean vector, one can define the d × d covariance
matrix as:

Σ
Ĩ
= E{Ĩ(t)ĨT (t)}

It is well known that the principal orthogonal directions ofmaximum variation for
Ĩ(t) are the eigenvectors ofΣ

Ĩ
[27]. Therefore, one can assume that the use of such

vectors is an appropriate selection for the filter bank. Approximating the covariance
matrix with the sample covariance matrixĨT Ĩ

T
T , whereĨT is the matrix formed by

concatenating the set of images{Ĩ(t)}t=1...T , one can compute such eigenvectors
using the SVD of̃IT : ĨT = UDV

T . The basis vectors and the corresponding vari-
ance in the direction of such basis vectors can be obtained from the matricesU and
D respectively.

The variance information can further be used to determine the numbern of basis
vectors required to retain a certain percentage of the variance in the data. Vary-
ing the number of vectors is important since the dynamic of the scene can change
over time (for instance, high tide vs. low tide) and different parts of the scene also
exhibit different characteristics. A high number of vectors for almost static scenes
would be wasteful of resources while highly dynamic parts need a high number of
vectors for proper modeling. Examples4 of retained eigenvectors are shown in Fig.
3. Information related to their magnitude and number are given in Fig. 4.

3.1.2 Incremental PCA

The batch method is computationally inefficient and cannot be performed at each
frame. A fast incremental method is an attractive alternative where the current es-
timate of the basis vectors is updated according to the new observation, while the
effect of the previous observations is exponentially reduced. Several methods for

4 The image is divided into equal size blocks to reduce complexity.
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(a)

(b)

(c)

Fig. 3. Basis Vectors: (a) mean, (b,c) mean + constant×(6 principal) basis vectors. In-
significant basis vectors are represented with dark color.

incremental PCA (IPCA) ([58,39,3]) can be considered. We adapt the method de-
veloped by Weng et. al.[58] to suit our application. The advantage of such method
is that it does not require the computation of the covariancematrix. This is critical
for applications where the sized of the input vectors is significant leading to a large
d× d covariance matrix. The method is based on the statistical concept of efficient
estimate and it was shown that it has better convergence properties than rest of the
covariance-free methods.

We recall that the objective of incremental update is to efficiently recover valid es-
timates for the mean of the data and the basis vectors over time. While update of
the mean is trivial, the case of basis vectors is more complex.

Amnesic Mean
Let I1, . . . It be the previoust observations. An amnesic mean can be computed
from them that exponentially reduces the effect of past observations:

Īt+1 =

(

t − l

t + 1

)

Īt +

(

1 + l

t + 1

)

It+1

wherel is called theamnesicparameter that determines the rate of decay of the pre-
vious samples. Ifl is a fixed multiple oft (l = λt), one obtains exponential decay.

Update of the Basis Vectors
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(a) (b)

Fig. 4. (a) Number of retained eigenvectors, (b) Magnitude of the largest eigenvalue.

Let {b1, . . . ,bn} be the current set of estimates of the basis vectors. For reasons
that become apparent later, these vectors are not normalized, although they are or-
thogonal5 . Now, suppose we observe a new imageI(t+1) and subtract the mean̄I
to obtaiñI(t+1). Then, we update the first basis vectorb1 by essentially “pulling”
it in the direction of̃I(t + 1) by an amount equal to the projection ofĨ(t + 1) onto
the unit vector alongb1:

b
′
1 =

(

t − l

t + 1

)

· b1 +

(

l + 1

t + 1

)(

b1 · Ĩ(t + 1)

‖Ĩ(t + 1)‖‖b1‖

)

· Ĩ(t + 1)

Here,b1 ·̃I(t+1)
‖b1‖

is the projection of̃I(t+1) in the direction ofb1, and Ĩ(t+1)

‖Ĩ(t+1)
‖ is the

unit vector in the direction of̃I(t + 1).

Next, we compute the residueR1 of Ĩ(t + 1) onb1:

R1 = Ĩ(t + 1) − Projb1
(Ĩ(t + 1))

= Ĩ(t + 1) −

(

b1 · Ĩ(t + 1)

‖b1‖2

)

· b1

This residue is perpendicular tob1 and is used to “pull”b2 in the direction ofR1

by an amount equal to the projection ofR1 onto the unit vector alongb2:

b
′
2 =

(

t − l

t + 1

)

· b2 +

(

l + 1

t + 1

)(

b2 · R1

‖R1‖‖b2‖

)

· R1

The residueR2 is calculated similarly:

R2 = R1 − Projb2
(R1)

= R1 −

(

b2 · R1

‖b2‖2

)

· b2

5 However, they can be normalized for use in the background model.
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This residue is perpendicular to thespanof < b1b2 >. This procedure is repeated
for each subsequent basis vector such that the basis vectorbj is pulled towards
Ĩ(t + 1) in a direction perpendicular to the span of< b1 . . . .bj−1 >.

Zhang and Weng [58,62] have proved that for the stationary case where the scene
characteristics don’t change over time,bi → ±λiei as t → ∞. Here,λi is the
i-th largest eigenvalue of the covariance matrixΣ

Ĩ
, andei is the corresponding

eigenvector. Note that the obtained vector has a scale ofλi and is not a unit vector.
Therefore, in our application we store these unnormalized vectors. The magnitude
yields the eigenvalue and the normalization yields the eigenvector at any given time.
Also important to note is that the estimated eigenvectors may not be perpendicular
to each other in the intermediate stages but do converge to perpendicular vectors
over time.

3.2 Estimation of the predictive model

3.2.1 Batch Update

As stated earlier, we will use a linear auto-regressive model to model the transfor-
mation of states:

spred(t) =
k
∑

i=1

Ais(t − i) + z(t)

for a k-th order auto-regressive model, wherez(t) ≈ WN(0, Σpred) is the predic-
tion error.

We assume that the noisez(t) has a normal distribution, is independently and iden-
tically distributed (i.i.d.), and has a diagonal covariance matrix. Under this assump-
tion, the maximum likelihood solution for the parametersA can be computed[4] by
minimizing the least squares error‖s(t) −

∑k
i=1 Ais(t − i)‖2

2. Such minimization
is readily obtained by the well-known method of normal equations. For instance,
for k = 1, if two matricesS2 andS1 are formed by concatenating the previously
observed state vectors:

S2 = [s(2), s(3), . . . , s(t)], S1 = [s(1), s(2), . . . , s(t − 1)]

then, the solution may be obtained simply as:

A1 = S2 · S1
T · (S1 · S1

T )−1 (3)

While one can claim certain limitations introduced by such asimple noise model,
we have found that such a simplification was possible within the considered ap-
plication without affecting the overall performance of thesystem. However, for
handling more complex noise processes, one may consider more advanced tech-
niques available in the multivariate time series literature [4]. Such techniques are
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(a) (b)

Fig. 5. (a) Input signal, (b) Prediction.

quite computation-intensive, however, and thus quite unsuitable for our real-time
application.

3.2.2 Incremental Update

Similar to the basis vector case, estimating the auto-regressive model at each time
step is a time-consuming process. Incremental methods to update theA matrices
could be considered to address this limitation[5]. To this end, we utilize the concept
of storing the sufficient statistics for the problem and use asimple exponential
forgetting scheme for the purpose. Consider the case ofk = 1 described in Equation
3. In this equation, there are essentially two terms:S2S1

T , andS1S1
T . Each of the

terms in these two matrices is formed as a sum of the product oftwo components
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of the state vector. For instance, thei, j-th term ofS2S1
T is given by:

s2s1i,j =
t−1
∑

k=1

si(k + 1)sj(k)

In order to obtain exponential forgetting of the prior observations, one can incre-
mentally update such components using an update parameterλ:

s2s1i,j(t + 1) = (1 − λ)s2s1i,j(t) + λsi(t + 1)sj(t)

Using such incremental updates for the two matrices, one canreadily compute the
new least-squares solution. One may note that although suchsolution was possible
for the incremental update of the basis vectors, the size of the original vectors pro-
hibits the maintenance and inversion of such matrices at each time step. However,
in the state space, the dimensionality of the problem is greatly reduced leading to
the feasibility of such solution. If computational time is limited, it is also possible to
stagger the updates to the model both in terms of time (i.e. skipping some frames)
and space (i.e. updating only some blocks in each frame).

4 Detection

The simplest mechanism to perform detection is through a comparison between the
prediction and the actual observation. Under the assumption that the auto-regressive
model was built using background samples, such technique will provide poor pre-
diction for new objects while being able to capture the background. Efficiency and
robustness, however, dictate that this comparison be performed in the state space
and that the statistics of the training data be taken into consideration in the compar-
ison.

Two types of changes in the signal may be considered for detection: (1) “structural”
change in the appearance of pixel intensities in a given region, and (2) change in
the motion characteristics of the signal. Measures are developed in order to detect
each of these changes.

4.1 Structural Change

In order to develop the approach for estimating structural change in the signal,
we begin by reviewing some concepts in Principal Component Analysis and its
relationship to density estimation in a multi-dimensionalspace. The principal com-
ponent analysis decomposes the vector spaceR

d into two mutually exclusive and
complementary subspaces: the principal subspaceF = {bi}

n
i=1 containing the first
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n principal components and its orthogonal complementF̄ = {bi}
d
i=n+1. Then, us-

ing the definitions = B
T · Ĩ, B being the matrix of basis vectors, the residual

reconstruction error for an input vectorĨ(t) is defined as [15]:

ǫ2(Ĩ) =
d
∑

i=n+1

s2
i = ‖Ĩ‖2 −

n
∑

i=1

s2
i

This is the component of theL2 norm of Ĩ(t) in the orthogonal subspacēF and
is referred to as the “distance-from-feature-space” (DFFS) ([36,37]). This is easily
computed from the firstn principal components and theL2-norm of Ĩ.

Let us assume a Gaussian model for the density in high-dimensional space. More
complicated models for the density, like mixture-of-Gaussians, or non-parametric
approaches can also be considered and easily integrated by explicitly building a
background model on the state space. However, for simplicity and ease of use,
we will restrict ourselves to Gaussian densities in this paper. If we assume that
the mean̄I and covarianceΣ of the distribution has been estimated robustly, the
likelihood of an inputI to belong to the background classΩ is given by:

p(I|Ω) =
1

(2π)d/2|Σ|1/2
exp

(

−
1

2
(I − Ī)T Σ−1(I − Ī)

)

The sufficient statistic for characterizing this likelihood is theMahalanobis dis-
tance:

d(I) = ĨT Σ−1Ĩ

whereĨ = I− Ī. Utilizing the eigenvalue decomposition ofΣ: Σ = BΛB
T , we can

rewrite:
d(I) = s

T Λ−1
s

sinceBT
Ĩ = s. SinceΛ is diagonal, one can rewrite this further as:

d(I) =
d
∑

i=1

s2
i

λi

whereλi is thei-th eigenvalue. If we seek to estimated̃(I) using only then principal
projections, one can formulate an optimum estimator ford̃(I) as follows:

d̃(I) =
n
∑

i=1

s2
i

λi

+
1

ρ





d
∑

i=n+1

s2
i





=
n
∑

i=1

s2
i

λi
+

1

ρ
ǫ2(Ĩ)

(4)

whereǫ2(Ĩ) is the DFFS defined above and can be computed using the firstn prin-
cipal components. Moghaddam et. al. [37] have shown that an optimal ρ in terms
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of a suitable error measure based on the Kullback-Leibler divergence [8] is:

ρ∗ =
1

d − n

d
∑

i=n+1

λi

We propose the use of̃d(I) as the first detection measurer1. Such measure can
be determined by utilizing only the firstn principal components. It is an optimum
measure for estimating the distance from the Gaussian density represented by the
principal component analysis such that the covariances of the data are properly
taken into account while estimating the difference. High values of such distance
measure have a simple interpretation: the original vector is not close to the train-
ing data, and thus corresponds to a new object in the scene. Inother words, this is
a measure of change of the structure of the block appearance.Such case can oc-
cur either because of changes in the appearance of the scene (color), or because
of structural changes. Therefore, such technique can better detect objects than the
pixel-based background subtraction techniques that consider each pixel individu-
ally without consideration of the relationships among them. On the other hand, the
drawback is that the boundary of the objects in not delineated exactly.

4.2 Change in Motion Characteristics

While the measurer1 can account for changes of appearance in the structural sense,
it would fail to capture changes in the temporal domain. Thiscan occur when tem-
poral information appears in a different order than the one for the background. To
this end, one can consider theSSD(Sum of squared differences) error between the
input and predicted image, which can be expressed as the square of theL2 norm
of the difference between the vectorized input and predicted images:‖I − Ipred‖

2
2.

Since any vectorI may be written in terms of its components along the basis vec-
tors,I =

∑d
i=1 siBi, we may write:

I − I
pred =

d
∑

i=1

siBi −
d
∑

i=1

s
pred
i Bi =

d
∑

i=1

(si − s
pred
i )Bi

Therefore, the norm of this vector may be computed thus:

‖I − Ipred‖
2
2 = ‖

d
∑

i=1

(si − s
pred
i )Bi‖

2
2

=
d
∑

i=1

(si − s
pred
i )2

=
n
∑

i=1

(si − s
pred
i )2 +

d
∑

i=n+1

(si)
2
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(a) (b)

Fig. 6. (a) Input frames, (b) Detection Components. In each block, green representsr1, pink
showsr2 and white represents detection by combiningr1 andr2. r1 andr2 are scaled with
respect to their threshold values, the “bar” occupying the whole width the measure equals
or exceeds this threshold. Thus, if either the red or green bar is “full”, it denotes detection.
In that case, we also make the third “white” bar full (the white bar can be only full or empty,
depending on whether there is a detection or not).

since the prediction is made from only the firstn components, and therefores
pred
i =

0, i = n + 1 . . . d. Recalling the definition ofǫ2(Ĩ), we obtain:

‖I− Ipred‖
2
2 =

n
∑

i=1

(si − s
pred
i )2 + ǫ2(Ĩ)

Again, this quantity may be computed from only the firstn components. Since the
effect of the second term has already been captured inr1, we define

r2(t) =
n
∑

i=1

(si − s
pred
i )2 = ‖s− s

pred‖2
2
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where the state vectors are considered only up to then principal components. Since
this is simply the least squares prediction error at the state level, one may further
normalize this error by the covariance of the observed prediction error at the state
level. Thus, the measurer2(t) may alternately be defined using the mahalanobis
distance as follows:

r2(t) = (s− s
pred)T Σ−1

pred(s− s
pred)

Such a measure captures the change in the motion characteristics at a structural
level. Objects following motion trajectories different than the learned ones will
trigger high values forr2. Thus, such a metric is an additional cue for detection
based on structural motion that has not been considered in traditional background
adaptation methods ([20,12]). Fusion of the two metrics is performed by triggering
a detection if either of them triggers a detection.

In the design ofr2, we have neglected the termǫ2. Due to this,r2 only performs
the extra function of detecting changes in the subspace of basis vectors. When
the current input does not project onto the subspace,r1 will trigger an alarm, but
it is quite possible thatr2 will not trigger since the projections onto the original
subspace may be low in magnitude. On the other hand, onlyr2 is flagged when the
structural appearance is similar, but the objects move differently. For many of the
examples shown in the paper, one may notice that the detection happens due to only
one of the two measures. This is not a drawback, however, since the two measures
should be taken in conjunction with each other and not separately.

An example of the detection mechanism is shown in Fig. 6. In order to represent the
two-dimensional feature space, a color representation wasconsidered where green
corresponds tor1 and pink tor2. In each block, the length of the color vectors cor-
responds to the magnitude of the detection measures while detection is represented
by white color.

5 Implementation and Experiments

5.1 Implementation Details

Real-time processing is a common requirement of video surveillance. In particular,
when dealing with techniques that address background adaptation, such require-
ment is strictly enforced. Furthermore, changes of the background structure should
lead to an updated model in order to preserve satisfactory detection rates.

Computing the basis components for large vectors is a time consuming operation.
Optimal algorithms for singular value decomposition of anm × n matrix take
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(a) (b) (c) (d)

Fig. 7. Detection using different block sizes: (a) 4x4 (b) 8x8 (c) 12x12 and (d) 16x16.
While one gets better detection using higher block sizes, there is a loss of precision/object
localization. Also, one may not get detection in a large block if the portion of the object in
the block is too small (this can be seen in some blocks in the results in the last column.

O(m2n + n3)) time[17]. A simple way to deal with such complexity is by con-
sidering the process at a block level. To this end, we divide the image into blocks
and run the algorithm independently on each block. For each of these blocks, the
number of components retained is determined dynamically bythe singular values
which refer to the standard deviation in the direction of basis vectors. A given per-
centage of the total variation is retained.

Too small a block size leads to loss of detection accuracy while a very large block
size leads to high computational cost and loss of precision/localization in the detec-
tion of the object. Furthermore, if the portion of the block covered by the object is
too small, the object may not be detected. The dependence of performance on the
block size is illustrated in Fig. 7. In all of the other experiments in this paper, we
have chosen 16x12 as the block size as a reasonable tradeoff point. Such a choice
leads to a quasi real-time (∼5fps) implementation for a340 × 240 3-band video
stream on a 2.2 GHz Pentium IV processor machine, where the input vectors were
formed by concatenating theR, G andB values for all the pixels in a block.
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5.2 Experimental Results

In order to validate the proposed technique, we conducted experiments on three dif-
ferent types of scenes. First, we show results on the challenging scene of the ocean
front. Such scene involves wave motion, blowing grass, long-term changes due to
tides, global illumination changes, shadows etc. An assessment on the performance
of the existing methods6 ([52,12]) is shown in Fig. 1. In order to detect an ob-
ject, the detections at the pixel level were grouped together using simple neighbor-
hood analysis to form larger clusters. While existing techniques were able to cope
to some extent with the appearance change of the scene, one can claim that their
performance exhibits certain limitations for video-basedsurveillance systems. The
detection of events was either associated with a non-acceptable false alarm rate or
the detection was compromised when focus was given to reducing the false alarm
rate. On the other hand, our algorithm was able to detect events of interest in the
land and simulated events on the ocean front as shown in Fig.s1 and 6.

The essence of the approach is depicted in Fig. 5 and 6. Observation as well as
prediction are presented for comparison. Visually, one canconclude that the pre-
diction is rather close to the actual observation for the background component. On
the other hand, prediction quality deteriorates when non-background structures ap-
pear in the scene. A more elaborate technique to validate prediction is through the
detection process as shown in Fig. 6.

A quantitative evaluation of the method can be considered through theROC(Receiver-
Operator Characteristics) curves, where the detection rate (number of correct de-
tected foreground objects/total number of foreground objects) is plotted against the
false alarm rate (number of wrong detections/number of frames). Fig. 10.(a) illus-
trates theROCcharacteristics of our method for the sequence of the ocean front
(Fig. 1). Also shown for comparison purposes are theROCcurves for the existing
techniques. As can be seen from the plots, there was a substantial improvement in
the results as compared to existing methods. Most of this improvement was ob-
served in the region of the ocean front and the blowing grass;the improvement
in the static parts of the scene, although significant, was not as marked and the
performance of all three methods can be considered satisfactory in these regions.

The second scene we consider is a typical traffic monitoring scene where the trees
were blowing due to the wind (Fig. 8). Results comparable to existing methods
were obtained for the static parts of the scene (e.g. road). At the same time, false
detections in the tree area were significantly reduced as compared to traditional
methods. This was achieved without any manual parameter adjustments and objects
even behind the trees but visible in spots through the holes in the structure were
detected in some cases. These objects would have been impossible to detect with

6 Using our implementation.
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Fig. 8. Some results from a sequence of a road with waving trees.Left: Input signal, with de-
tection denoted by red squares around the detected block,Middle: Predicted signal,Right:
Block-wise response of the detection measures. As before, green representsr1, pink repre-
sentsr2 and white represents detection in a block. Note that the algorithm is largely able to
handle waving trees (with the exception of very large movements, as in the fourth image)
automatically without any parameter adjustments for different blocks. This sequence has
been uploaded onto the submission website.

22



traditional methods that typically have to rely on pixel neighborhood analysis to
remove outliers and thus lack the ability to correlate far away pixels. TheROC
curve for this sequence is shown in Fig. 10.(b).

The third scene is again a traffic monitoring scene where the changes in the obser-
vation space occur due to rain and high sensor noise due to lowlight conditions
(Fig. 9). Again, the algorithm was able to adapt to such conditions and detect ob-
jects inspite of such variation. Local changes due to rain and sensor noise were
handled by the correct modeling of the variance of the data inthe subspace. The
ROCcurve for this sequence is shown in Fig. 10.(c). Sequences showing the results
for these three scenes have been uploaded to thePAMI website.

6 Discussion

In this paper we have proposed a prediction-based on-line method for the model-
ing of dynamic scenes. The core contribution of our approachis the integration of
a powerful set of filter operators with a linear prediction model towards the de-
tection of events in a dynamic scene. Furthermore, we have proposed the use of
on-line adaptation techniques to maintain the selection ofthe best filter operators
and the prediction model. Last but not least, appropriate detection measures have
been developed that are adaptive to the complexity of the scene.

The approach has been tested and validated using a challenging setting: detection
of events on the coast line and the ocean front (Fig. 11,12). Large scale experiments
were conducted on a recorded representative video of several hours that involved
real events (Fig.s 11,12) as well as simulated ones (Fig. 6).The proposed technique
was able to detect such events with a minimal false alarm rate. Detection perfor-
mance was a function of the complexity of the observed scene.High variation in
the observation space reflected to a mechanism with limited discrimination power.
The method was able to adapt with global and local illumination changes, weather
changes, changes of the natural scene, etc. Validation has been performed by com-
paring our technique with state-of-the-art methods in background adaptation (Fig.s
1,10). Our method could meet and overcome in some cases the performance of
these techniques for stationary scenes, while being able todeal with more complex
and evolving natural scenes.

The enhanced performance of the method may be attributed to two factors. First,
as opposed to the traditional method of pixel level detection, the consideration of
pixels at the block level helps in improving the detection rates since the inference is
based on more information and can now take into account the correlation between
neighboring pixels. Secondly, the use of a dynamical model helps in handling the
dynamic nature of the scenes considered. The drawback of using a block-based
approach, however, is that the boundary of the objects cannot be delineated exactly.
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Fig. 9. Detection of traffic in rain and low light conditions.Left: Input signal, with detected
blocks shown by a red squares around them,Middle: Predicted signal,Right: Block-wise
response of the detection measures. As before, green representsr1, pink representsr2 and
white represents detection in a block. A movie clip depicting results for this sequence has
been uploaded to the submission website.
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Fig. 10.ROCcurves for (a) the “Ocean” sequence (Fig. 6) (b) the “Waving trees” sequence
(Fig. 8), and (c) the “Rain” Sequence (Fig. 9) for: (i) Mixture-of-Gaussians model, (ii)
Non-parametric Kernels, and (iii) Our method. Note that theimprovement in performance
of our method compared to prior work is more significant for ocean waves and waving trees
than for rain since these scenes have persistent motion across space while it is possible to
approximate the effect of rain as sensor noise due to the largely local effects.

For future work, one can explore the use of non-linear operators that can better
capture the variation of the data leading to a better discriminability for the model.
More elaborated prediction mechanisms can also be investigated. More complex
detection mechanisms can also be considered by utilizationof more complex rep-
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resentation models for the multi-dimensional density. Last but not least, one can
consider the modeling of scenes that exhibit some other morecomplex patterns of
dynamical behavior. More sophisticated tools that take decisions at a higher level
and are able to represent more sophisticated patterns of dynamical behavior is an
interesting topic for further research.
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