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Abstract

Background modeling and subtraction are core componemnisi@ém processing. To this
end, one aims to recover and continuously update a repedgenof the scene that is com-
pared with the current input to perform subtraction. Moghefexisting methods treat each
pixel independently and attempt to model the backgrountugmation through statistical
modeling such as a mixture of Gaussians. While such methads $atisfactory perfor-
mance in many scenarios, they do not model the relationsimpiscorrelation amongst
nearby pixels. Such correlation between pixels exists otspace and across time es-
pecially when the scene consists of image structures madngss space. Waving trees,
beach, escalators and natural scenes with rain or snow aneptas of such scenes. In this
paper, we propose a method for differentiating between énvsigictures and motion that
are persistent and repeated from those that are “new”. Tisa@apturing the appearance
characteristics of such scenes, we propose the use of appaiape subspace created from
image structures. Furthermore, the dynamical charatitariare captured by the use of a
prediction mechanism in such subspace. Since the modeladapt to long-term changes
in the background, an incremental method for fast onling&den of the model parame-
ters is proposed. Given such adaptive models, robust andingfial measures for detection
that consider both structural and motion changes are cemregld Promising experimental
results that include qualitative and quantitative congmars with existing background mod-
eling/subtraction techniques demonstrate the very ptiomiserformance of the proposed
framework when dealing with complex backgrounds.

Key words: Scene Analysis, Background Subtraction, Time SeriesciahComponent
Analysis.
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1 Introduction

The proliferation of cheap sensors and increased compuotdtpower has made
the acquisition and processing of video information moesiigle. Real-time video
analysis tasks such as object detection and tracking canbeoefficiently per-

formed on standard PC'’s for a variety of applications suchHrakistrial automa-

tion, transportation, automotive, security & safety, anthmunications. The use
of stationary cameras is rather common in such applications

Background subtraction is a core component in many of suplicapions where
the objective is to separate the new objects from the repeparts of the scene.
The information provided by such a module can be considesexd\aluable low-
level visual cue to perform high-level tasks of object asaylike object detection,
tracking, classification and event analysis ([45,33,26,2453,7,42]).

The task of background modeling and subtraction consisteaafvering and con-
tinuously updating a representation of the scene that igpaoed with the current
input to perform detection. Methods for such modeling of tiaekground may
be classified into two categoriegredictiveand non-predictive Predictivemeth-
ods attempt to model the scene as a time series and develo@mmiyal model to
determine the current input based on past observationanagaitude of the devi-
ation between the predicted and actual observation carbhased as a measure of
change. The second class of methods (which wenaitpredictive density-based
methods) neglect the particular order of the input obsematand attempt to build
a probabilistic representation (i.epal.f) of the data at a given point in the scéne
A new observation can then be classified as background agyrfawad based on the
probability that this observation belongs to the backgcbun

1.1 Non-Predictive Density-Based Methods

Various methods have been proposed in the literature fogldping a pixel-level
statistical representation of the scene. The simplest hiabps a single back-
ground image that refers to the "empty” scene. Several asitticcuss methods
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to perform illumination-invariant change detection ussugh background repre-
sentation ([23,38,18]). Along this direction, a more adwehtechnique consists
of a running average of the intensity, which would be a coraponally efficient
approach towards providing a rough description of thesttene in the absence
of any moving objects. Variations of this method include king the median of
the observed values, calculating spatially weighted \sin@rder to reduce the ef-
fect of outliers and keeping the maximum, minimum and largessecutive values
[21]. Such methods do not explicitly model the backgroungws foreground, and
are therefore not very effective for scenes where many ngoobjects are present
and acquisition of a background image "free” of foregroubgeots is not easy.

A static scene may be reasonably modeled with a single Natistibution if the
noise is modeled as being zero mean Normally distributdd[B8s can be used
to classify a pixel as belonging to the foreground or backgtb Such decisions
can also then be used to update the mgaand the covariance matriX of the
background Gaussian incrementally.

Friedman et. al.[14] use a mixture of three Gaussians to htbdevisual proper-

ties of the background and foreground in traffic surveilapplications. Three
hypotheses are considered - road, shadow and vehicles. Mhalgorithm is a

near-optimal method for simultaneously recovering bothpgarameters of the in-
dividual models and the classification of the data into d#ife groups (since this is
a chicken-and-egg problem). However, due to the compunalticomplexity of the

algorithm and real-time update requirements of the traffreaillance problem, an
incremental EM algorithm was considered to learn and uptiegenodel param-
eters efficiently. The background (i.e. road), howevertilsraodeled by a single
Gaussian in this case.

Stauffer and Grimson ([20,52]) extended this idea by usindfiple Gaussians to
model the scene. Such an approach is capable of dealing witipha hypothe-
ses for the background and can be useful in scenes such asgvieses, beaches,
escalators, rain and snow. In order to improve the efficieafappe method com-
pared to the EM algorithm, they propose a simple exponenfidate scheme for
the mixture model. Mittal and Huttenlocher [34] introducenadification of this
scheme by proposing the use of constant weighting alongexplonential weight-
ing and specify methods for selection of the scheme to be atsegarticular time.
The mixture-of-Gaussians method is quite popular and wdsetthe basis for a
large number of related techniques ([19,34,57,26,22]p €aal. [16] present a
statistical characterization of the error associated thithalgorithm.

Parametric methods are a reasonable compromise betweerofoplexity and a
reasonable approximation of the visual properties of temsavhen the statistics
of such a scene obeys the general assumptions imposed bgl#doted model.
When these assumptions fail, non-parametric approackesane suitable. A pop-
ular non-parametric approach is to use kernels ([48,56])his method, a kernel



is created around each of the previous samples and the yleneitimated using
an average over the kernels. While different kernels carohsidered, the Normal
kernel was proposed by Elgammal et. al. ([12,11]). The atdggnof such approach
is its ability to handle arbitrary shapes of the density fiorc However, it is com-

putationally expensive, both in terms of memory requiretsand running time.

Treating background subtraction as a state identificatroblpm, some authors
have utilized Hidden Markov Models (HMM) in order to reasdioat state changes
either at the pixel level[47], global level [54], or some damation of the two[57].
In ([61,25]), edge features have been utilized in order tecdhe objects at their
boundaries. Furthermore, Eveland et. al. [13] propose &dvaand model for
stereo images.

Last but not least, Oliver et. al. [40] model the backgrouhdha image level.
Treating images as vectors, the means and variances aeetedllandPrincipal
Component Analysis (PCAlver the difference from the mean is performed. De-
tection is recovered by projection of the input images oht subspace of basis
vectors and thresholding the Euclidean distance betweemput image and the
projected image (DFFS).

Although a number of non-predictive methods include sommmfof gradual for-
getting for the past observations, most of the temporalrmé&tion in the data is
lost. Such an outcome does not affect the detection reshiés the scene is static
or almost static and the changes in the appearance of thgioacid are rather
gradual. In scenes where there is a more drastic change batkground and the
observed input is periodic and/or persistent, howeveth semporal information

is critical. For instance, sinusoidal data cannot be mabieiell by such methods.
For such scenes, more complesedictivemethods that are able to capture such
short-term temporal relationships are required.

1.2 Predictive Methods

The central idea behingredictivemethods is to model the scene as a time series
and to develop a dynamical model to recover the current inpaséd on past obser-
vations. Methods of varying complexity have been consid@nghe past towards
such an objective.

A Kalman-filter at the pixel level is the most popular dynaatimodel that has
been considered in the literature ([46,28-30]). Withintsaa approach, the ob-
jective is to determine the current state of a system godeyea linear process.
The estimation process is recursive: the prevpesterioriestimates are used to
predict the neva priori estimates, while the current measurement is used to correct
the estimates to obtain curresposterioriestimates.
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Fig. 1. (a) Original Images. Detection result using (b) atome of Gaussians model [53],
(c) a non-parametric model [12], and (d) the non-parametriciel with low detection
threshold. (e) Our method, where the presence of white iekkdlenotes detection (for
full explanation of the color code used, kindly refer to F8y.

Koller et. al. [30] use a simple state model that refers tolthevalue of the back-
ground intensity. The state is updated differently depegain whether it is hy-
pothesized to be part of the background or not. Toyama ef5%].use a simpler
version of the Kalman filter calle@einer filterthat operates directly on the data
rather than recursively capturing the essence of past vdigans in a state vector.
Such a filter was able to capture simple repetitive behaylikes flickering of the
screen). In their system, integration of such a pixel-lemethod with region and
frame-level information led to a promising solution.

Kalman filters that use more complex state vectors ofterudehigher order mo-
tion characteristics such as velocity and accelerationaardobe able to capture
more complex dynamic behavior. However, even such extaasibthe linear-filter
driven methods suffer from various limitations: (i) restion of these filters to lin-
ear models, and (ii) lack of the ability to capture completatienships between
neighboring pixels.

Fig. 1. demonstrates the strengths and the limitationseottate-of-the-art meth-
ods for a complex scene that is dynamic and exhibits nomstaty properties in
time. Examples of scenes with such complex and dynamic bhehiazlude ocean
waves, waving trees, rain and moving clouds. Modeling sgeheas is a topic that



Fig. 2. Comparison of our method with an optical flow-basedho@ of [35] on frames
where the color matches the background and the object isrsag. Top Row: Detection
using our method, shown by red squares around the detectekkbBottom Row: Results
using [35].

has drawn attention recently. In [50,49], an approach thdtased on modeling
the co-occurrence of neighboring image patterns was peahasghile in [63], a
Kalman filter is considered in a subspace [63]. FurthernmtbieeV/ANDAL project
at the Washington University at St. Louis ([60,44,43]) hassidered raw spatial
and temporal derivatives and developed methods to dealswith scenes by clus-
tering the data in such space. The main idea in this work isplisistent motion
in a certain direction will create cylinders in this spacatibass through the origin,
and different directions will create cylinders in diffetesrientations. In another
related work by us [35], we have looked at the use of optical #is an additional
feature at each point in order to model the dynamics of thaescé/hile such a
method can be effective modeling the dynamics of indivighaahts, it cannot han-
dle changes in the structure of the scene (spatial reldtipss Hence, the current
method, that handles both the structure as well as the teahdationships can be
considered as a more powerful and generic approach, akhilwégmodeling ap-
proximations needed to make the method real-time can have sdlverse effect
on the performance. In Fig. 2, we show how our method outpa$dhe method
in [35] when color of the foreground matches with the backgand the object
is stationary. The performance of the two methods on theesitehig. 1 was quite
similar.

In this paper, we extend the scope of predictive methodstélobjective of han-
dling scenes that exhibit more complex spatio-temporakepatof change of the
observation space. To this end, we present a predictiveaddthsed on a subspace
analysis of the signal. The method is able to capture:

¢ long term dynamical characteristics of the scene, and
e temporal and structural relationships between differecglp

where detection is based on measures that are adaptive variagon present in



the scene.

The main contribution of our approach is the use of the caneépynamic se-
ries to model repetitive scenes. Towards addressing theimeademand as well
as the ill-posedeness of the problem, we consider a subgpgreach. This has
been initially proposed in a very different context to modetl generate dynamic
textures[10]. Our approach first assumes an evolving baxh, ib terms of the
number as well as the base of retained eigen vectors. Thiznis through an in-
cremental approach which to the best in our knowledge has heeer considered
before in the contest of background modeling. Then, a dyoalmiodel in such a
subspace is utilized to perform prediction. This dynaminalel is also updated
using an incremental approach for efficiency purposeshEurtore, we introduce
two novel measures to determine the appropriateness ofréagichon mode with
respect to the observation. One measure mostly encodegaham appearance
while the second encodes changes in the dynamics of the.Qeiaéitative and
Quantitative comparisons with existing methods validageadvantages of the pro-
posed approach when dealing with dynamic backgrounds.

The reminder of this paper is organized as follows. The negtien describes the
feature space and the prediction model that is utilized py@pmate the dynamic
behavior of the scene. Initial and incremental constractibthe utilized models
is considered in Section 3. Detection measures are inteatuncsection 4. Finally,

we conclude the paper with implementation details and éxy@etal evaluation in

section 5.

2 Scene Modeling

Let {I(¢) };=1.r be a given set of images. The central idea behind our approach
is to generate a prediction mechanism that can determineutinent frame using

the latest: observed images. Such an objective can be defined mathetyatis
follows:

Lealt) = (Lt = 1) X(t = 2),..., I(t — k) (1)

wheref, ak-th order function is to be determined. One possibility istdel such
prediction mechanism via a multi-variate time series ingpace of input images.
However, it can be claimed that the modeling in such highetigional space is
rather complex, contains redundancies and is not in a foatrcin be used directly
for efficient prediction. This limitation can be addresskwugh the reduction of
the dimensionality of the feature space according to soitee 6perators.



2.1 Feature space

Let {¢;},, be a filter bank and;(t) = ¢;(1(t)), the output of the convolution
between the operater; and the imagd(¢). The outcome of such a convolution
process can be combined into a vector that represents trentstates(¢) of the
system.

sT(t) = [s1(t), ..., sn(t)]
Examples of such filter operators include wavelet, gaboingadropic non-linear
filters. Within the proposed framework, we adopt linear fitdue to computation-
ally efficient techniques for their implementation and thew complexity. More-
over, such filters are able to capture a significant amourdidhtrons in real scenes.

Principal component analysis ([27,1,9]) refers to a linear transformation of vari-
ables that retains - for a given numbeof operators - the largest amount of varia-
tion within the training data. In a prediction mechanisnghsa module can retain
and recover in an incremental manner the core variationssodbserved data.

The estimation of such operators will be addressed in thé sestion. In order

to facilitate the introduction of the method, one can coasitiem known{¢, =
b}, whereb, are the set of basis vectors. These can be considered togerodu
the state vectos(t):

s(t) = [bY - I(t), bl -1(t),...,bL - 1(t)|"
=B7.1(t)

where]B = [by, b, bs, .. y b, | denotes the matrix of basis vectors, air@ﬂ) =
I(¢) — I denotes the mead)(subtracted input.

2.2 Prediction mechanism

Based on the predictive model that was earlier introducepidion 1), one can
define a similar concept in the state space:

Sprealt) = f(s(t — 1), s(t = 2),...,s(t — k)) )

One can consider various forms (linear or non-linear) fergrediction functiory.
Non-linear mechanisms involve higher sophistication aardaapture more compli-
cated structures. However, the estimation of such funstiscomputationally ex-
pensive, suffers from instability and their incrementatiaie that is crucial within
the considered application is a challenging task.

3 Also known as the Karhunen-Loeve expansion [32].



Linear models are a good compromise between low complerityaafairly good
approximation of the observed structure. Auto-regressivdels of a certain order
k can be considered to approximate and predict the actuahatise based on the
latestk feature vectors. In fact, it can be easily shown that duedaise of linear
filters, a system governed by an auto-regressive model atniqge level will lead
to an auto-regressive system at the state level. Using suechction model, the
predicted state can be written as:

Sprealt) = F((t = 1), (s(t = 2. (s(t — k)

= ;Ais(t — 1)

whereA is ann x n prediction matrix. The prediction in the image space can the
be reconstructed using the basis vectors:

Lyrea(t) = B - sprea(t)

Thus, the unknown variables of our scene model consist ob#sés vectors and
the auto-regressive matrices.

Visual appearance of indoor and outdoor scenes evolvesimerGlobal and local
illumination changes, position of the light sources andltthanges are examples
of such dynamic behavior. One can account for such changesriinuously up-
dating both the basis vectors and the prediction model doupto the changes in
the observed scene. In such an update, the discriminabilitye model has to be
preserved in order to perform accurate detection.

3 Modd Estimation

Model estimation consists of determining the appropridter§ for state transfor-
mation and the parameters of the prediction model. Idedlfse estimates are to
be recovered simultaneously. While asymptotically optistdutions for the joint
optimization problem do exist in the system identificatibvarhture ([31,41]), such
estimation is computationally intensive both in terms aofrae requirements and
running time and is thus not amenable to a real-time soldtothe types of high-
dimensional problems that are to be dealt with in this papeerefore, we will
estimate the two models separately.

In order to determine the filter bank for constructing theestpace, we consider
the use of principal basis vectors that are the linear operahat capture the
most amount of variation in the training data. The estimmatibsuch basis vectors
from the observed data can be performed through the singalae decomposi-
tion. Within the proposed framework, one has to initiatefihecess using a certain



number of frames, and then continuously update the modehpeters in order to
capture the dynamic behavior of the scene. Therefore, tff@rent learning mech-
anisms are used. The first, known as batch Principal Compdxrelysis (PCA)
aims to recover the initial basis vectors. Subsequentyyirtiremental Principal
Component Analysis (IPCA) mechanism continuously updidte$asis vectors as
the scene changes gradually.

3.1 Estimation of Basis Vectors

3.1.1 Batch PCA

Let {I(¢)},=1..7 be a column vector representation of the previdusbservations.
We assume that the dimensionality of this vectad.i©ne can estimate the mean
vectorI and subtract it from the input to obtain zero mean vecfd(s) }. Given the
set of training examples and the mean vector, one can deenésthl covariance

matrix as:

% = E{IT (1)}
It is well known that the principal orthogonal directionsroéximum variation for
I(t) are the eigenvectors of; ;[27]. Therefore, one can assume that the use of such
vectors is an appropriate selectlon for the filter bank. Agpnating the covariance
matrix with the sample covariance matﬂ};dT, whereIT is the matrix formed by
concatenating the set of imag€Kt)},—;.., one can compute such eigenvectors
using the SVD ofi: I = UDVT. The basis vectors and the corresponding vari-
ance in the direction of such basis vectors can be obtaioedtine matrice$’ and
D respectively.

The variance information can further be used to determiaenttimbem of basis
vectors required to retain a certain percentage of the veian the data. Vary-
ing the number of vectors is important since the dynamic efdgtene can change
over time (for instance, high tide vs. low tide) and differparts of the scene also
exhibit different characteristics. A high number of vestéor almost static scenes
would be wasteful of resources while highly dynamic partscha high number of
vectors for proper modeling. Examplesf retained eigenvectors are shown in Fig.
3. Information related to their magnitude and number arergin Fig. 4.

3.1.2 Incremental PCA

The batch method is computationally inefficient and canmopérformed at each
frame. A fast incremental method is an attractive altemeatthere the current es-
timate of the basis vectors is updated according to the negreation, while the

effect of the previous observations is exponentially redu&everal methods for

4 The image is divided into equal size blocks to reduce conitylex
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Fig. 3. Basis Vectors: (a) mean, (b,c) mean + constaf@t principal) basis vectors. In-
significant basis vectors are represented with dark color.

incremental PCA (IPCA) ([58,39,3]) can be considered. Wapathe method de-
veloped by Weng et. al.[58] to suit our application. The adage of such method
is that it does not require the computation of the covariana&ix. This is critical
for applications where the sizkof the input vectors is significant leading to a large
d x d covariance matrix. The method is based on the statisticadeqat of efficient
estimate and it was shown that it has better convergenceprepthan rest of the
covariance-free methods.

We recall that the objective of incremental update is to ieffity recover valid es-
timates for the mean of the data and the basis vectors over While update of
the mean is trivial, the case of basis vectors is more complex

Amnesic Mean

LetI;,...I, be the previous observations. An amnesic mean can be computed
from them that exponentially reduces the effect of past clasens:

- t—1) = 1+1
La.=—|1 — I
t+1 <t+1> t+<t+1> t4+1
wherel is called theamnesigarameter that determines the rate of decay of the pre-
vious samples. If is a fixed multiple oft (I = At), one obtains exponential decay.

Update of the Basis Vectors

11
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Fig. 4. (a) Number of retained eigenvectors, (b) Magnituiéne largest eigenvalue.

Let {by,...,b,} be the current set of estimates of the basis vectors. Foomeas
that become apparent later, these vectors are not normaditbough they are or-
thogonal® . Now, suppose we observe a new imaffer 1) and subtract the medn
to obtainI(¢ + 1). Then, we update the first basis vedtgrby essentially “pulling”

it in the direction off(¢ + 1) by an amount equal to the projectionIgf + 1) onto
the unit vector alondp, :

t—1 [+1 b, - I(t+1 =
m=<__>h“<%_><f (+>>”W+”
t+1 t+ 1) \[[I(t + 1)[/[[ba]]
by I(t+1)
b1l

unit vector in the direction of(t + 1).

is the projection of (¢ + 1) in the direction ob,, and {2 || is the

Here, D)

Next, we compute the residi, of i(t +1)onby:

R, = I(t + 1) — Projy, (I(t + 1))

IM+”_<mﬁ$;D>bl

This residue is perpendicular tg and is used to “pull’b, in the direction ofR,
by an amount equal to the projectionRf onto the unit vector alonbs,:

t—1 [+1 b, - Ry
b,=——1 b, + ‘R
? @+J ’ @+J<WM%ﬂ> '

The residueR, is calculated similarly:

Rg = Rl — P’f’Ojbz(Rl)
b2~R1>
' ( b2 |2 ’

> However, they can be normalized for use in the backgroundeiod

12



This residue is perpendicular to tepanof < b;b, >. This procedure is repeated
for each subsequent basis vector such that the basis Jecterpulled towards

I(t + 1) in a direction perpendicular to the span<ob; ....b;_; >.

Zhang and Weng [58,62] have proved that for the stationasg eéhere the scene
characteristics don’'t change over tintg, — +\;e; ast — oo. Here, ); is the
i-th largest eigenvalue of the covariance mattix ande; is the corresponding
eigenvector. Note that the obtained vector has a scaleafd is not a unit vector.
Therefore, in our application we store these unnormalizedors. The magnitude
yields the eigenvalue and the normalization yields thersigetor at any given time.
Also important to note is that the estimated eigenvectons maébe perpendicular
to each other in the intermediate stages but do convergerpempaicular vectors
over time.

3.2 Estimation of the predictive model

3.2.1 Batch Update

As stated earlier, we will use a linear auto-regressive rmimdaodel the transfor-
mation of states: .
Sprea(t) = > Ays(t — i) + z(t)
i=1
for a k-th order auto-regressive model, whef¢) ~ W N (0, £,,.q) is the predic-
tion error.

We assume that the noigé&) has a normal distribution, is independently and iden-
tically distributed (i.i.d.), and has a diagonal covarntatrix. Under this assump-
tion, the maximum likelihood solution for the parametArsan be computed[4] by
minimizing the least squares erris(t) — >F | A;s(t — i)||2. Such minimization

is readily obtained by the well-known method of normal etpreg. For instance,
for £ = 1, if two matricesS2 andS1 are formed by concatenating the previously
observed state vectors:

S2 = [s(2),s(3),...,s(t)], S1 = [s(1),s(2),...,s(t — 1)]
then, the solution may be obtained simply as:
A;=82-S17.(S1-817)! (3)

While one can claim certain limitations introduced by sudiraple noise model,
we have found that such a simplification was possible withadonsidered ap-
plication without affecting the overall performance of thgstem. However, for
handling more complex noise processes, one may consider atwvanced tech-
niques available in the multivariate time series literatj4]. Such techniques are

13
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Fig. 5. (a) Input signal, (b) Prediction.

quite computation-intensive, however, and thus quite iaisle for our real-time
application.

3.2.2 Incremental Update

Similar to the basis vector case, estimating the auto-ssgre model at each time
step is a time-consuming process. Incremental methodsdategheA matrices
could be considered to address this limitation[5]. To tinid,&ve utilize the concept
of storing the sufficient statistics for the problem and ussnaple exponential
forgetting scheme for the purpose. Consider the case-of described in Equation
3. In this equation, there are essentially two terf2817, andS1S1”. Each of the
terms in these two matrices is formed as a sum of the produetatomponents

14



of the state vector. For instance, thg-th term ofS2S17 is given by:

t—1
82812'73' = Z Sl(l{? + 1)83(]{?)
k=1

In order to obtain exponential forgetting of the prior ohsions, one can incre-
mentally update such components using an update parameter

Using such incremental updates for the two matrices, oneezmtily compute the
new least-squares solution. One may note that althoughsalation was possible
for the incremental update of the basis vectors, the sizkeobtiginal vectors pro-
hibits the maintenance and inversion of such matrices dt #ae step. However,
in the state space, the dimensionality of the problem istlyreaduced leading to
the feasibility of such solution. If computational timeiimlited, it is also possible to
stagger the updates to the model both in terms of time (iippslg some frames)
and space (i.e. updating only some blocks in each frame).

4 Detection

The simplest mechanism to perform detection is through geoison between the
prediction and the actual observation. Under the assumitad the auto-regressive
model was built using background samples, such techniglh@nevide poor pre-
diction for new objects while being able to capture the baokgd. Efficiency and
robustness, however, dictate that this comparison be npeef in the state space
and that the statistics of the training data be taken intsiclemation in the compar-
ison.

Two types of changes in the signal may be considered for ti@te¢l) “structural”
change in the appearance of pixel intensities in a giveroregind (2) change in
the motion characteristics of the signal. Measures arelojged in order to detect
each of these changes.

4.1 Structural Change

In order to develop the approach for estimating structunange in the signal,
we begin by reviewing some concepts in Principal Componerdlysis and its
relationship to density estimation in a multi-dimensicsédce. The principal com-
ponent analysis decomposes the vector sffcimto two mutually exclusive and
complementary subspaces: the principal subspaee{b;}"_, containing the first

15



n principal components and its orthogonal complemént {b;}¢_.,. Then, us-
ing the definitions = B” - I, B being the matrix of basis vectors, the residual
reconstruction error for an input vectht) is defined as [15]:

d 5 n
= > si=1*=>_s
i=1

i=n+1

This is the component of thé; norm ofi(t) in the orthogonal subspade and
is referred to as the “distance-from-feature-space” (DRE®,37]). This is easily
computed from the first principal components and thg-norm ofI.

Let us assume a Gaussian model for the density in high-dimesisspace. More
complicated models for the density, like mixture-of-Gaass, or non-parametric
approaches can also be considered and easily integratexpbyitéy building a
background model on the state space. However, for simplaid ease of use,
we will restrict ourselves to Gaussian densities in thisgpalf we assume that
the meanl and covarianc& of the distribution has been estimated robustly, the
likelihood of an inpufl to belong to the background claQss given by:

p(1]Q) = Wexp <—%(1 ~D'sa-D)

The sulfficient statistic for characterizing this likeliltbes the Mahalanobis dis-
tance
dI) =I1"s1T
wherel = I —1I. Utilizing the eigenvalue decompositionbf & = BAB7, we can
rewrite:
d(I) =s"A's
sinceB”T = s. SinceA is diagonal, one can rewrite this further as:
d .2

i=1 "

»

where), is thei-th eigenvalue. If we seek to estimd](d) using only the: principal
projections, one can formulate an optimum estimatorifdy as follows:

n

>3

i=1

Z ’“ 4)

>/|&l\3 >/|@l\3

n

Z

wheree?(1) is the DFFS defined above and can be computed using the. firsn-
cipal components. Moghaddam et. al. [37] have shown thapé@mal p in terms
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of a suitable error measure based on the Kullback-Leiblardence [8] is:

We propose the use afI) as the first detection measure Such measure can
be determined by utilizing only the first principal components. It is an optimum
measure for estimating the distance from the Gaussiantgearpresented by the
principal component analysis such that the covariancebefdata are properly
taken into account while estimating the difference. Highuga of such distance
measure have a simple interpretation: the original vestoiot close to the train-
ing data, and thus corresponds to a new object in the scen¢hén words, this is

a measure of change of the structure of the block appear&uch. case can oc-
cur either because of changes in the appearance of the sadog,(or because

of structural changes. Therefore, such technique canrlzittect objects than the
pixel-based background subtraction techniques that dengiach pixel individu-

ally without consideration of the relationships among thén the other hand, the
drawback is that the boundary of the objects in not delirteaxactly.

4.2 Change in Motion Characteristics

While the measure; can account for changes of appearance in the structurad,sens
it would fail to capture changes in the temporal domain. Tlis occur when tem-
poral information appears in a different order than the amdtfe background. To
this end, one can consider tB&D(Sum of squared differences) error between the
input and predicted image, which can be expressed as theesglthe L, horm

of the difference between the vectorized input and predicteages]|I — I,..4/|3-
Since any vectol may be written in terms of its components along the basis vec-
tors,I = Z?:l s;B;, we may write:

I;m"ed Z SZB Z S;m"edB Z pred

Therefore, the norm of this vector may be computed thus:

= Tpreallz = HZ — s/ B3
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2002:07.02 16:20:25

(@) (b)

Fig. 6. (a) Input frames, (b) Detection Components. In edatk) green represents, pink
showsry and white represents detection by combining@ndr,. v andry are scaled with
respect to their threshold values, the “bar” occupying thele width the measure equals
or exceeds this threshold. Thus, if either the red or greeisti&ull”, it denotes detection.
In that case, we also make the third “white” bar full (the wetbar can be only full or empty,
depending on whether there is a detection or not).

since the prediction is made from only the firstomponents, and therefos*ﬁed =
0,7 =mn+ 1...d. Recalling the definition of?(I), we obtain:

n

1T = Loreally = > (si — s7)? + (I)

i=1

Again, this quantity may be computed from only the fiistomponents. Since the
effect of the second term has already been captured ine define

n

ra(t) = (si = 517 = [ls — s 5
i=1
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where the state vectors are considered only up ta frncipal components. Since
this is simply the least squares prediction error at theeseatel, one may further
normalize this error by the covariance of the observed ptiedi error at the state
level. Thus, the measure(t) may alternately be defined using the mahalanobis
distance as follows:

ro(t) = (s — sPreh) Tyl

pred (S - Spr’ed)

Such a measure captures the change in the motion charicteata structural
level. Objects following motion trajectories differentatin the learned ones will
trigger high values for,. Thus, such a metric is an additional cue for detection
based on structural motion that has not been considereddititmal background
adaptation methods ([20,12]). Fusion of the two metricei$gyrmed by triggering

a detection if either of them triggers a detection.

In the design of,, we have neglected the tersh Due to this,r, only performs
the extra function of detecting changes in the subspace %6 b&ctors. When
the current input does not project onto the subspacwiill trigger an alarm, but
it is quite possible that, will not trigger since the projections onto the original
subspace may be low in magnitude. On the other hand,gn$/flagged when the
structural appearance is similar, but the objects moverdifftly. For many of the
examples shown in the paper, one may notice that the datdwigpens due to only
one of the two measures. This is not a drawback, howevee sivectwo measures
should be taken in conjunction with each other and not séglgra

An example of the detection mechanism is shown in Fig. 6. dieoto represent the
two-dimensional feature space, a color representatiorcaasidered where green
corresponds to; and pink tor,. In each block, the length of the color vectors cor-
responds to the magnitude of the detection measures whéettm is represented
by white color.

5 Implementation and Experiments

5.1 Implementation Details

Real-time processing is a common requirement of video dlawnee. In particular,
when dealing with techniques that address background aiiapt such require-
ment is strictly enforced. Furthermore, changes of the ¢paeknd structure should
lead to an updated model in order to preserve satisfactdegctien rates.

Computing the basis components for large vectors is a timswuing operation.
Optimal algorithms for singular value decomposition of :anx n matrix take
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(a) (b) () (d)

Fig. 7. Detection using different block sizes: (a) 4x4 (bB8x) 12x12 and (d) 16x16.
While one gets better detection using higher block sizesetis a loss of precision/object
localization. Also, one may not get detection in a large bliéthe portion of the object in

the block is too small (this can be seen in some blocks in thatein the last column.

O(m?n + n?)) time[17]. A simple way to deal with such complexity is by eon
sidering the process at a block level. To this end, we divigeimage into blocks

and run the algorithm independently on each block. For edthese blocks, the

number of components retained is determined dynamicallthbysingular values

which refer to the standard deviation in the direction ofiasctors. A given per-

centage of the total variation is retained.

Too small a block size leads to loss of detection accuracyevehwery large block

size leads to high computational cost and loss of precisicalization in the detec-
tion of the object. Furthermore, if the portion of the blocdvered by the object is
too small, the object may not be detected. The dependencerfoirmance on the
block size is illustrated in Fig. 7. In all of the other expeents in this paper, we
have chosen 16x12 as the block size as a reasonable tradeuffpuch a choice
leads to a quasi real-time-pfps) implementation for 840 x 240 3-band video

stream on a 2.2 GHz Pentium IV processor machine, where flug wectors were
formed by concatenating thie, G and B values for all the pixels in a block.
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5.2 Experimental Results

In order to validate the proposed technique, we conductedrements on three dif-
ferent types of scenes. First, we show results on the clgafigrscene of the ocean
front. Such scene involves wave motion, blowing grass, f@nmn changes due to
tides, global illumination changes, shadows etc. An asseston the performance
of the existing methods ([52,12]) is shown in Fig. 1. In order to detect an ob-
ject, the detections at the pixel level were grouped togetsimg simple neighbor-
hood analysis to form larger clusters. While existing teghas were able to cope
to some extent with the appearance change of the scene, ordaga that their
performance exhibits certain limitations for video-basadveillance systems. The
detection of events was either associated with a non-aaiolepialse alarm rate or
the detection was compromised when focus was given to nedube false alarm
rate. On the other hand, our algorithm was able to detectiewd#nnterest in the
land and simulated events on the ocean front as shown in Fans 6.

The essence of the approach is depicted in Fig. 5 and 6. Gitsemnas well as
prediction are presented for comparison. Visually, oneaarclude that the pre-
diction is rather close to the actual observation for thekgemund component. On
the other hand, prediction quality deteriorates when nackground structures ap-
pear in the scene. A more elaborate technique to validatBgien is through the
detection process as shown in Fig. 6.

A quantitative evaluation of the method can be consideneditih theROC(Receiver-
Operator Characteristics) curves, where the detectien(ratmber of correct de-
tected foreground objects/total number of foregroundaibjeas plotted against the
false alarm rate (number of wrong detections/number of égmFig. 10.(a) illus-
trates theROC characteristics of our method for the sequence of the oaean f
(Fig. 1). Also shown for comparison purposes areR@Ccurves for the existing
techniques. As can be seen from the plots, there was a stibktaiprovement in
the results as compared to existing methods. Most of thisamgment was ob-
served in the region of the ocean front and the blowing grédesjmprovement
in the static parts of the scene, although significant, wasasanarked and the
performance of all three methods can be considered sadtsfdn these regions.

The second scene we consider is a typical traffic monitorcege where the trees
were blowing due to the wind (Fig. 8). Results comparablexisteng methods
were obtained for the static parts of the scene (e.g. roadheédsame time, false
detections in the tree area were significantly reduced agared to traditional
methods. This was achieved without any manual parametestadgnts and objects
even behind the trees but visible in spots through the holéke structure were
detected in some cases. These objects would have been ibipdssietect with

6 Using our implementation.
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Fig. 8. Some results from a sequence of a road with waving.ire€ Input signal, with de-
tection denoted by red squares around the detected bltidkle: Predicted signaRight:
Block-wise response of the detection measures. As befogengepresents , pink repre-
sentsry and white represents detection in a block. Note that theighgo is largely able to
handle waving trees (with the exception of very large movas)eas in the fourth image)
automatically without any parameter adjustments for diffié blocks. This sequence has
been uploaded onto the submission webzsi'te.



traditional methods that typically have to rely on pixelgi@orhood analysis to
remove outliers and thus lack the ability to correlate fampwixels. TheROC
curve for this sequence is shown in Fig. 10.(b).

The third scene is again a traffic monitoring scene wherehheges in the obser-
vation space occur due to rain and high sensor noise due ttightvconditions
(Fig. 9). Again, the algorithm was able to adapt to such domaé and detect ob-
jects inspite of such variation. Local changes due to raih sensor noise were
handled by the correct modeling of the variance of the dathensubspace. The
ROCcurve for this sequence is shown in Fig. 10.(c). Sequencasisf the results
for these three scenes have been uploaded tBAMY website.

6 Discussion

In this paper we have proposed a prediction-based on-lirteaddor the model-

ing of dynamic scenes. The core contribution of our apprasithe integration of

a powerful set of filter operators with a linear predictiondabtowards the de-

tection of events in a dynamic scene. Furthermore, we hawgoged the use of
on-line adaptation techniques to maintain the selectiah®test filter operators
and the prediction model. Last but not least, appropriateatien measures have
been developed that are adaptive to the complexity of theesce

The approach has been tested and validated using a chalesefiting: detection
of events on the coast line and the ocean front (Fig. 11, 6t}yd scale experiments
were conducted on a recorded representative video of ddvaues that involved
real events (Fig.s 11,12) as well as simulated ones (Fi§.h&) proposed technique
was able to detect such events with a minimal false alarm Es&ection perfor-
mance was a function of the complexity of the observed sddigh variation in
the observation space reflected to a mechanism with limisdichination power.
The method was able to adapt with global and local illumorathanges, weather
changes, changes of the natural scene, etc. Validationdsasgerformed by com-
paring our technique with state-of-the-art methods in gemknd adaptation (Fig.s
1,10). Our method could meet and overcome in some cases tferpance of
these techniques for stationary scenes, while being alleabwith more complex
and evolving natural scenes.

The enhanced performance of the method may be attributedatdeictors. First,
as opposed to the traditional method of pixel level detegtibe consideration of
pixels at the block level helps in improving the detectiaiesasince the inference is
based on more information and can now take into account ttrelation between
neighboring pixels. Secondly, the use of a dynamical modgishin handling the
dynamic nature of the scenes considered. The drawback f asblock-based
approach, however, is that the boundary of the objects ¢drendelineated exactly.
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Fig. 9. Detection of traffic in rain and low light conditiorseft Input signal, with detected
blocks shown by a red squares around thbfiddle: Predicted signalRight: Block-wise
response of the detection measures. As before, green eapses pink represents, and
white represents detection in a block. A movie clip depigtiasults for this sequence has
been uploaded to the submission website.
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Fig. 10.ROCcurves for (a) the “Ocean” sequence (Fig. 6) (b) the “Waviegs” sequence
(Fig. 8), and (c) the “Rain” Sequence (Fig. 9) for: (i) Mixédof-Gaussians model, (ii)
Non-parametric Kernels, and (iii) Our method. Note thatithprovement in performance
of our method compared to prior work is more significant faeat waves and waving trees
than for rain since these scenes have persistent motiossaspace while it is possible to
approximate the effect of rain as sensor noise due to thelialgcal effects.

For future work, one can explore the use of non-linear opesahat can better
capture the variation of the data leading to a better disoability for the model.

More elaborated prediction mechanisms can also be inetetigMore complex
detection mechanisms can also be considered by utilizatiomre complex rep-
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resentation models for the multi-dimensional density.tlbag not least, one can
consider the modeling of scenes that exhibit some other cwrplex patterns of
dynamical behavior. More sophisticated tools that takesitets at a higher level
and are able to represent more sophisticated patterns ahdgal behavior is an
interesting topic for further research.
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