HumanBody PoseEstimationUsing SilhouetteShapeAnalysis

Abstract

We describe a system for human body pose estimation
from multiple views that is fast and not dependent on a
rigid 3D model. We make use of recent work in decon+
position of a silhouette into 2D parts. These 2D part
primitives are matched across views to build assem-
bliesin 3D. In order to search for the best assembly,
we use a likelihood function that integrates informa-
tion available from multiple views about body part lo-
cations. Occlusionis modeled into the likelihood func-
tion so that the algorithmis able to work in a crowded
scene even when only part of the person is visible in
each view. The algorithm has potential applications
in surveillance and promising results have been ob-
tained.

1 Intr oduction

Determiningthe poseof humangs animportantprob-
lem in vision and hasmary applications. In this pa-
per, we target multi-camerasuneillance applications
whereonewantsto recognizethe actiities of people
in ascendn the presencef occlusionsandpartialoc-
clusions. One cannotassumehat a personis visible
in isolationor in full in eitheroneor all of the views.
Nor canoneassumehatwe have a modelof the per
son, or that the initial body poseis knovn. Sucha
systemshouldalsobereasonablfast. However, very
accuratebody posevaluesare typically not required,
andan answercloseto the actualbody posemight be
adequateWe describeanalgorithmthatcanform the
basisof sucha surwillancesystem.

Our systemestimateghe 3D poseof ahumanbody
from multiple views. We male useof recentwork in
decompositiorof a silhouetteinto 2D parts.These2D
partprimitivesarematchedacrossviewsto build prim-
itivesin 3D whicharethenassembletb formahuman

figure.In orderto searcHor thebestassemblywe use
alikelihoodfunctionthatintegratesinformationavail-

able from multiple views aboutbody part locations.
Greedysearclstratgiesareemplg/edsoasto find the
bestassemblyfast.

1.1 RelatedWork

HumanBody poseestimationhasreceved consider
able interestin the pastfew yearsand several ap-
proachesave beentried for differentapplications.

There are mary methodsfor incrementalmodel-
basedbody part trackingwherea model of an artic-
ulatedstructure(person)is specifiedupfront[5, 20, 1,
21, 6]. DelamarreandFaugera$5] try to alignthepro-
jection of an articulatedstructurewith the silhouettes
of a personobtainedin multiple views by calculating
forcesthatneedto beappliedto structure. Drummond
andCipolla[20] useLie algebrao incrementallytrack
articulatedstructuresBreglerandMalik [1] usetwists
andexponentialmapsto specifyrelationshipsetween
partsandto track an articulatedstructureincremen-
tally. Sidenbladh[1} and Choo [4] use montecarlo
particlefiltering to incrementallyupdatethe posterior
probabilitiesof poseparametersThesemethodseed
to have both a 3D model of the humanstructureand
agoodinitialization andhave potentialapplicationsn
motion-capturg6].

Another classof algorithms[12, 8, 18, 15] try to
detectbody partsin 2D usingtemplatematchingand
thentry to find the bestassemblyusingsomecriteria.
Someothermethoddearnsomemodelsof humanmo-
tion. Thesemodelscanbe basedon optical flow [7],
exemplars[14, 19, featurevectors[18], supportvec-
tor machineg15], or statisticalmappinggSMA) [16].
Thesemodelscanthenbe usedto detectandestimate
the poseof ahumanin anobseredimage.

Our work is most closely relatedto the work of
Kakadiarisand Metaxas[11] who try to acquire3D
body partinformationfrom silhouettesxtractedin or-



thogonalviews. They emplg/ a deformablehuman
modelsothatary sizeof thehumancanberecognized
Thedistinguishingfeatureof our work is thatit is able
to work in acrowdedscenesothatin all of theviews,
the personmight be fully or partially occluded. This
is accomplishedy explicitly modelingocclusionand
developing prior modelsfor personshapedrom the
scene.This helpsusto decouplethe problemsof pose
estimationfor multiple peopleso that the degreesof
freedomof the problemaredecreasedubstantially

The paperis organizedas follows. Section2 de-
scribesthe methodof extraction of silhouettesin a
crovdedscene.Section3 describeshapeanalysisof
silhoettesand matchingparts acrossviews to obtain
3D part primitives. Section4 describeghelikelihood
function usedfor assemblyevaluation. Section5 de-
scribesthe algorithm usedto find the bestassembly
We concludewith somepreliminaryresultsin section
6.

2 Extracting Multiple Silhouettesin
a Clutter ed Scene

We usethemethoddevelopedby Mittal andDavis [13]
in their systemM s Tracker for extractingsilhouettesof
peoplein aclutteredscene.The methodis ableto say-
mentregionsbelongingto differentpeopleevenwhen
they arenotvisually isolated.Here,we provide a brief
review of themethod.

Mo Tracker developstwo typesof modelsfor each
person.

2.1 AppearanceModels
2.1.1 Color Models

A probabilisticmodelfor the color distribution at dif-
ferent heights of the personis developedusing the
methodof non-parametri&Gaussiarkernelestimation.

2.1.2 “Presence”Probabilities

The otherattribute modeledis the “PresenceProba-
bility (denotedby L(h,w)), definedasthe probability
thatapersoris present(i.eoccupiespacegtheighth
anddistancew from the vertical line passingthrough
thepersons center

""
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Figurel: SamplePresenc®robabilitiesof people.

Thesemodelsaredevelopedautomaticallyfrom the
sceneandareusedto sgmentimagesin thefollowing
way.

2.2 Pixel Classification

BayesianClassificationis usedto classify eachpixel

asbelongingto a particularpersonpr thebackground.
Thea posteriori probabilitythatanobseration /() at

pixel x originatedfrom person; (or the background)
is

Pposterior(1/1(x)) < Bpior ()P (2)/5) (1)
Thepixel is thenclassifiedas

Mostlikely class= arg max(Pyosterior(j/1(z)) (2)
J

P(I(z)/j) is given by the color modelof the person
at heighth. For the backgrounda backgroundnodel
of thescenes used.

Thepriorsincludeocclusioninformationanddeter
minedusingthe following method. For eachpixel z,
aray is projectedin spacepassingthroughthe opti-
cal centerof the camera. Minimum distancesw; of
this ray are calculatedfrom the vertical lines passing
throughthe currently estimatedcentersof the people.
Also calculatedarethe heightsh; of the shortestine
sgmentsconnectinghesdines. Then,theprior prob-
ability that a pixel z is the imageof personj is set
as

grior (.7) = Lj(hjv wj) H
k occludesj

Pgrior (bCkngd) = H (1 o Lj(hjv wj)) 3)
allj

(1 — Ly(hg, w))



Figure2: Someresultsfrom My Tracker. Thefirst two
imagesshav detectiorandtrackingresultsandthelast
two shaw sggmentatiorresults.

where L;(hj,w;) is the “presence”probability de-
scribedearlier A persort‘k occludeg” if thedistance
of k to theopticalcenterof the cameras lessthanthe
distanceof j to the center The classificationproce-
durehelpsto incorporateboth the color profile of the
peopleandthe occlusioninformationavailable.

The segmentatioralgorithmassumeg&nowledgeof
approximatepersorniocations.Theselocationsareob-
tainedusingaregion-basedtereaalgorithm.

2.3 Obtaining Multiple Segmentations

Thereare several parametersn the sggmentational-
gorithm. Accurateextractionof differentpartsof the
personrequiresdifferent parameters.Therefore,it is
essentiato vary the parameterso asto obtainmulti-
ple sggmentationsThe parameterghatwe vary are
(1) therelative weightgivento thebackgroundnodel,
(2) the relative weight given to different foreground
objectssothatdifferentobjectsarehighlighted,and
(3) thethresholdfior deteminingwhethera pixel is un-
classifiedpixels.

The silhouetteghusobtainedaresegmentedusingthe
methoddescribedn the next section.

Figure3: Multiple Segmentation®©btainedor theim-
ageshawvn in thefirstimage

3 Computing Body-part Primiti ves

3.1 2D Silhouette ShapeAnalysis

In orderto recover the poseof a personwe breakthe
silhouetteof the personinto parts. Accordingto hu-
man intuition aboutparts, a sggmentationinto parts
occursat negative minima of curvature so that the
decomposegarts are corvex regions. Singh et al.
notedthatwhenboundarypointscanbejoinedin more
thanoneway to decompose silhouette humanvision
prefersthe partitioningschemevhichusegheshortest
cuts( A cutis theboundanbetweerapartandtherest
of thesilhouette).They furtherrestricta cutto crossa
symmetryaxisin orderto avoid shortbut undesirable
cuts. However, mostsymmetryaxesarevery sensitve
to noiseand are expensve to compute. In contrast,
we usethe constrainton the salienceof a partto avoid
shortbut undesirablecuts. Accordingto Hoffmanand
Singhs [10] study there are three factorsthat affect
thesalienceof apart: thesizeof thepartrelatve to the
whole object, the degreeto which the part protrudes,
andthe strengthof its boundariesAmongthesethree
factors,the computatiorof a part’s protrusion(the ra-
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Figure4: SilhouetteDecomposition

tio of the perimeterof the part (excluding the cut) to
the length of the cut) is more efficient and robust to
noiseandpartialocclusionof theobject. Thus,weem-
ploy theprotrusionof apartto evaluateits saliencethe
salienceof a partincreasessits protrusionincreases.

In summarywe combinethe short-cutrule andthe
saliencerequirementto constrainthe otherend of a
cut. For examplein Figure3.1,let S beasilhouette C
betheboundaryof S, P beapointon C with negative
minimaof cunature,and P, beapointonC sothatP
and P, divide theboundaryC' into two curnesCy, C..
of equalarclength. Thentwo cutsareformedpassing
throughpoint P: PP,, PP, suchthatpoints P, and P,
lieson C; andC.,., respectiely. TheendsP; and P, of
thetwo cutsarelocatedasfollows:

P =arg H})i,n|PP/|

st. = >T1,,PPeC,PPeS
PP

P. =arg n})i/n\PP’\

PP/ - (
S.t. % >T, P eC,PPeS

whereP P’ is thesmallerpartof boundaryC' between

P andP’, |PP'| isthearclengthof PP’, and PP s
g PP

the salienceof the partboundedby curve PP, andcut
PP,

Eq. (4) meansthat point P, is locatedso that the
cut PP, is the shortesbneamongall cutssharingthe

Figure5: Computingthe cutspassinghroughpoint P

sameend P, lying within the silhouettewith the other
endlying on contour(;, andresultingin a significant
partwhosesaliences above athresholdl;,. Theother
point P, is locatedin the sameway usingEqg. (5).

Since nggatve minima of cunature are obtained
by local computationtheir computationis not robust
in real digital images. We take several computation-
ally efficient stratgjiesto reducethe effects of noise.
First, a B-splineapproximations usedto moderately
smooththe boundaryof a silhouette,since B-spline
representatiors stableandeasyto manipulatdocally
without affecting the restpart of the silhouette. Sec-
ond,thenegative minimaof cunaturewith smallmag-
nitude of cunvatureareremoved to avoid partsdueto
noiseor small local deformations. However, curva-
tureis not scaleinvariant(e.g. its valuedoublesif the
silhouetteshrinksby half). Oneway to transformcur
vatureinto a scale-iwariantquantityis to first find the
chordjoining the two closestinflectionswhich bound
the point, thenmultiply the cunatureat the point by
thelengthof this chord. Theresultingnormalizedcur
vaturedoesnot changewith scale— if the silhouette
shrinksto half size, thecurvaturedoublesbut thechord
halves,sotheir productis constant.

This analysisyields 2D body partsfor a personin
asingleview. Thetorsois not found directly by this
methodasthe body part sgmentationsanonly find
protrudedpartsreliably. Sincetheseprotrudedparts
canoverlap, thereare a large numberof torsosthat
canbeformedfrom theremainingpartof thesilhoette.
Thereforewe do notattemptto find thetorsosdirectly
andsimply infer it from the otherbody parts.

Zhao [22] hasuseda similar methodto develop
a systemfor body part identification from a single
view. However, body partidentificationfrom a single
view is very difficult andlabelingsareoftenincorrect,



Figure6: Multiple Body partsobtainedusingthe seg-
mentationshowvn in Fig. 3

especiallyin the caseof partial-occlusionsand self-

occlusionsvheresomebody partsarenotvisible. The

problemis alsounderconstrainesincedepthinforma-

tion is not available. Another difficulty is that their

systemrequiresextraction of good silhouetteswhich

arenot easyto obtainin a densescene. As opposed
to Zhaos work, we usemultiple camerasandidentify

bodyposein 3D usingaglobalanalysis.

3.2 Computing Body-part Primiti vesin 3D

2D partprimitives obtainedusing SilhouetteAnalysis
areusedo obtainpartprimitivesin 3D. First, partsthat
are relatvely closeto eachotherare combinedwith
eachother Secondthedecomposegartsarematched
across/iews usingepipolargeometryto yield 3D body
parts. The two endpointsof a partin one view are
matchedto the correspondingendpointsin the other
view. The matchingis basedon simply lying on the
correspondingepipolarline. An additionalconstraint
thatcanbe usedis the color profile of the body parts.
Thedisadwantages thatif theviewpointsaresubstan-
tially different,thecolor profilescanvary significantly
Also, the color profilesfor differentbody partscanbe

verysimilar (for e.g.thetwo legscanhave very similar
colorprofiles.)

Oncematchingis done,a certainnumberof body
partsare selectedbasedon their matchingscoreand
theirendpointsareprojectedn spaceo yield 3D body
parts.

4 AssemblyEvaluation usingthe Ob-
servation Lik elihood

Labelingsare assignedo these3D partsby building
anassemblythathasthe maximumlik elihoodaccord-
ing to an appropriatelikelihood function. From the
setof 3D body parts,we form setsof possibleheads,
handsandlegs basedon size constraints. Additional
knowledge,if available,canbeused.Suchinformation
might consistof the knowledgethatthelegsareclose
to thefloor or thatthe personis standing(constrainobn
headandhandpositions). Then,the problemreduces
to findingaheadtwo handgor asingleor no handsjf
not found) andtwo legs (or 0 or 1 legs), suchthatthe
assemblyhasthe highestlikelihood. The likelihood
functionwe useis describedn the next section.

4.1 Obsewation Lik elihood

In orderto evaluatea particularassemblyA, we deter
mine the obseration likelihood Pr(Iy, I, ..., I,/ A),
which is the likelihood of observing images
I, I, ..., I, given the particular assembly A.
Assuming that assemblieshave equal priors, the
assemblyhaving the highestlikelihood is also the
assemblywith the highestposterior Sincewe do not
know the body poseof otherpeoplein the scenethe
obsenration likelihood cannotbe determinedunless
the problemsof body posedeterminatiorof different
people are coupled with one another This leads
to an exponentialincreasein the compleity of the
algorithm.

We can decouplethe problem, however, if malke
somesimplifying assumptions.Specifically we can
usethe methoddevelopedin My Tracker[13] to deter
mine priors using presenceprobabilities. Then, the
generalformula for the obsenration probability at a
particularpixel x canbewritten as:

p((z)) = Z Borior(3)Pr(I(z)/5)  (6)



Figure7: Determiningthe Projectionof an Assembly

wherethe summationis doneover all persons;j and
the backgroundand I(x) is the obsenation at pixel
x. If thelocationof the assemblyis given, the func-
tion L;(z) (PresenceProbability definedin section
2.1.2)for thepersorunderconsideratiorthangeg$rom
aprobabilisticto a fixedfunctionsothat:

Li(z) = 1 if assembly projects to pixel x
I =000 if it does not project to pixel x

Using this definition, one canredeterminghe pri-
orsfor all peopleusingequation(3) andcalculatethe
obsenrationprobabilityusingequation6). Thiswould
betheconditionalprobability Pr(1(x)/A). Assuming
that obserations at different pixels are independent,
the overall obseration probability is thensimply the
productof the obsenation probabilitiesat eachpixel
in eachview.

(7)

Pr(lL,..L, /A =] [ Pra@)/A)

i=1 all pixelsx
(8)

In orderto determinghe projectionof theassembly
onanimage we modelthehandsandlegsascylinders
with approximatevidthsandthe headasa sphereand
determindheirprojectionsontoaview (Figure7). The
torsois built by filling in the polygonformedby taking
the joint locationsof the (five) partsas the vertices.
More accurateprojectioncanbe formedby building a
3D structurebasedon the joint locationsandfinding
its projectionontothe views. Thatwill, however, add
to therunningtime of thealgorithm.

M, Tracler determineghe probability Pr(I(x)/j)
usedin equation(6) using color modelsat different

height slices. This puts only occupang constraints
onthelikelihood. However, apartfrom the hypothesis
that the given assemblyprojectsto a particularpixel,
we also have informationasto which part of the as-
semblyprojectsto the pixel. Using this information,
we canimprove resultsby includingin thelikelihood
function information available from the views about
possiblebody part locations. For e.g., we might be
ableto find the headusinga facedetector If we have
a skin detector we might want to exclude the torso
from the setof body partsthatcangive riseto it. In
the presentwork, we includeanadditionaltermin the
likelihood Pr(I(z)/j).

First, we determinethe probability thata particular
body parthasa particularaspectatio Pry,(ar). This
probabilityis modeledasa 1D Gaussianits meanand
standardieviation learntusingtrainingdata.Now, we
considerbody partsdetectedrom the silhouettesex-
tractedfor thepersorandfind theiraspectatios. Find-
ing thevalueof thefunction Pry,(ar), we assignthis
valueto all pixels belongingto the partin the silhou-
ette. Sincethetorsois not obsered directly, we can-
not determinethis probability for pixels belongingto
it andhencethey areassignedh constantvalue. Since
we have multiple silhouettesandhencemultiple prob-
ability estimatedor the aspectratio at a given pixel,
we averagethemto yield a singleresult. For pixelsly-
ing outsideary silhouette theprobabilityis zero. This
will yield thefunction Pr(ar /bp) for eachpixel z and
eachbody partbp. During evaluationof anassembly
we can computethe value of this function sincewe
know the projectionsof the body partsontotheimage.
This probabilityvaluecanbemultiplied with thecolor
likelihoodto yield thelikelihoodfunction Pr(I(z)/j)
usedin equation(6).

5 Searching for the Optimal Assem-
bly

We believe that the bestassemblycanonly be found
by an exhaustve searchin O(n’) time (wheren ~
0(10)) is the numberof possibleprimitivesfor each
part). However, in practve, we have found that the
sameresultcanbe obtainedin O(n) time if we have
agoodinitial estimateof the body partpositions, and
in O(n?) time duringtheinitialization phase We first
describgheincrementakcheme.



Building from scratch

Figure8: Schematidor theInitialization procedure

5.1 Incremental Algorithm

If we have a sufiiciently good estimateof the current
body part locations,we usea greedyapproach.The
ideais to first try to replaceeachpart with candidate
parts. If the assemblywith the original part hasa
higherlikelihood than the oneswith ary of the new
primitives,we keepthe original one. This is repeated
for differentparts.We have foundthat,apartfrom be-
ing very fast, this methodyields the bestresults(bet-
terthaninitialization method)sinceit is oftenthe case
thatsomebodypartshave no goodcandidatestapar
ticular time step,in which casewe cankeepthe old
estimate.

5.2 Initialization

In orderto find an initial solution, or reinitialize the
methodif the incrementalmethodfails, we usethe
following approach. First, we try to find good leg
pairs. We find K bestpairs (in O(K?) time) based
onthelikelihoodfunctionby building an assemblyof
just the two legs. Similarly, we find K bestpairs of
hands.Next, we find K bestassembliegonsistingof
two handsandtwo legs usingthe handandleg pairs
foundearlier(Figure8). For this step,we constructhe
torsousingthefour joint locations.Finally the headis
addedandthe bestassemblyis found. Although this
methoddoesnot find the optimal assemblywe have
foundthatit is extremelyeffective in practiceandwith
the right choiceof K, yields resultsvery closeto an

Figure9: Resultsof the algorithmfor a personat a partic-
ular time instantfrom multiple perspecties. Note how the
personsbody partsarecorrectlydetectedventhoughheis
partially occludedfrom someviews.

exhaustve search.

If computationakostis available, we canfind the
resultusingbothalgorithms takingthe assemblywith
the higherlikelihoodastheanswer

6 Results

We have obtainedpromisingresultsfor the algorithm.
We testedour algorithmon a 5-perspectie sequence
with two peoplepartially occludingeachotherin sev-
eralviews. We wereableto correctlyidentify thebody
partsof the peoplewhenthey wereextendedfrom the
body Whenthe partswerecloseto thebody, thealgo-
rithm labeledthe partasmissingandcorrectlyidenti-
fiedtheotherparts.Figure9 shavs theresultobtained
ataparticulartime instantfor thesequencekigure10
shaws theresultsover time from a particularview. No
initialization wasdone,nor ary exact3D modelof the
personspecified.The algorithmtook about10s/frame
onaDual 933MHz Pentiumlll processowheremost
of the time was spentin evaluating differentassem-
blies.

7 Summary and Conclusions

We have presentecdnalgorithmfor bodyposeestima-
tion thatdoesnot requireary initializationsor models
to bespecifiedupfrontandis ableto workin acrovded



Figure10: Resultsfor five framesof the sequence.

sceneso that occlusions- both full and partial - are
present. Thesefeaturesmalke it especiallyuseful for
mary suneillanceapplicationsin thefuture,we wish
to investigatemore cuesfor body partsin animage
(otherthanthe silhouettes)ik e edgemapsandtexture
regions,which might help usto reducethe numberof
cameragsequiredto obtaina certainquality of results.
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