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Abstract

We describe a system for human body pose estimation
from multiple views that is fast and not dependent on a
rigid 3D model. We make use of recent work in decom-
position of a silhouette into 2D parts. These 2D part
primitives are matched across views to build assem-
blies in 3D. In order to search for the best assembly,
we use a likelihood function that integrates informa-
tion available from multiple views about body part lo-
cations. Occlusion is modeled into the likelihood func-
tion so that the algorithm is able to work in a crowded
scene even when only part of the person is visible in
each view. The algorithm has potential applications
in surveillance and promising results have been ob-
tained.

1 Intr oduction

Determiningtheposeof humansis animportantprob-
lem in vision andhasmany applications. In this pa-
per, we target multi-camerasurveillanceapplications
whereonewantsto recognizetheactivities of people
in ascenein thepresenceof occlusionsandpartialoc-
clusions. Onecannotassumethat a personis visible
in isolationor in full in eitheroneor all of theviews.
Nor canoneassumethatwe have a modelof theper-
son, or that the initial body poseis known. Sucha
systemshouldalsobereasonablyfast. However, very
accuratebody posevaluesare typically not required,
andananswercloseto theactualbodyposemight be
adequate.We describeanalgorithmthatcanform the
basisof suchasurveillancesystem.

Oursystemestimatesthe3D poseof ahumanbody
from multiple views. We make useof recentwork in
decompositionof asilhouetteinto 2D parts.These2D
partprimitivesarematchedacrossviewsto build prim-
itivesin 3D whicharethenassembledto form ahuman

figure. In orderto searchfor thebestassembly, weuse
a likelihoodfunctionthatintegratesinformationavail-
able from multiple views aboutbody part locations.
Greedysearchstrategiesareemployedsoasto find the
bestassemblyfast.

1.1 RelatedWork

HumanBody poseestimationhasreceived consider-
able interest in the past few years and several ap-
proacheshave beentried for differentapplications.

There are many methodsfor incrementalmodel-
basedbody part tracking wherea modelof an artic-
ulatedstructure(person)is specifiedupfront[5, 20, 1,
21, 6]. DelamarreandFaugeras[5] try to alignthepro-
jectionof an articulatedstructurewith the silhouettes
of a personobtainedin multiple views by calculating
forcesthatneedto beappliedto structure.Drummond
andCipolla[20] useLie algebrato incrementallytrack
articulatedstructures.BreglerandMalik [1] usetwists
andexponentialmapsto specifyrelationshipsbetween
partsand to track an articulatedstructureincremen-
tally. Sidenbladh[17] and Choo [4] usemontecarlo
particlefiltering to incrementallyupdatetheposterior
probabilitiesof poseparameters.Thesemethodsneed
to have both a 3D modelof the humanstructureand
agoodinitialization andhave potentialapplicationsin
motion-capture[6].

Another classof algorithms[12, 8, 18, 15] try to
detectbody partsin 2D usingtemplatematchingand
thentry to find thebestassemblyusingsomecriteria.
Someothermethodslearnsomemodelsof humanmo-
tion. Thesemodelscanbe basedon optical flow [7],
exemplars[14, 19], featurevectors[18], supportvec-
tor machines[15], or statisticalmappings(SMA) [16].
Thesemodelscanthenbeusedto detectandestimate
theposeof ahumanin anobservedimage.

Our work is most closely relatedto the work of
Kakadiarisand Metaxas[11] who try to acquire3D
bodypartinformationfrom silhouettesextractedin or-
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thogonalviews. They employ a deformablehuman
modelsothatany sizeof thehumancanberecognized.
Thedistinguishingfeatureof ourwork is thatit is able
to work in a crowdedscenesothat in all of theviews,
the personmight be fully or partially occluded.This
is accomplishedby explicitly modelingocclusionand
developing prior modelsfor personshapesfrom the
scene.This helpsusto decoupletheproblemsof pose
estimationfor multiple peopleso that the degreesof
freedomof theproblemaredecreasedsubstantially.

The paperis organizedas follows. Section2 de-
scribesthe methodof extraction of silhouettesin a
crowdedscene.Section3 describesshapeanalysisof
silhoettesand matchingpartsacrossviews to obtain
3D partprimitives. Section4 describesthe likelihood
function usedfor assemblyevaluation. Section5 de-
scribesthe algorithmusedto find the bestassembly.
We concludewith somepreliminaryresultsin section
6.

2 Extracting Multiple Silhouettes in
a Clutter ed Scene

Weusethemethoddevelopedby Mittal andDavis [13]
in theirsystemM � Tracker for extractingsilhouettesof
peoplein aclutteredscene.Themethodis ableto seg-
mentregionsbelongingto differentpeopleevenwhen
they arenotvisually isolated.Here,weprovideabrief
review of themethod.

M � Tracker developstwo typesof modelsfor each
person.

2.1 AppearanceModels

2.1.1 Color Models

A probabilisticmodelfor thecolor distribution at dif-
ferent heightsof the personis developedusing the
methodof non-parametricGaussiankernelestimation.

2.1.2 “Presence”Probabilities

The otherattribute modeledis the “Presence”Proba-
bility (denotedby

�������	��

), definedastheprobability

thatapersonis present(i.e.occupiesspace)atheight
�

anddistance
�

from thevertical line passingthrough
theperson’s center.

Figure1: SamplePresenceProbabilitiesof people.

Thesemodelsaredevelopedautomaticallyfrom the
sceneandareusedto segmentimagesin thefollowing
way.

2.2 Pixel Classification

BayesianClassificationis usedto classifyeachpixel
asbelongingto aparticularperson,or thebackground.
Thea posteriori probabilitythatanobservation � ��
�
 at
pixel



originatedfrom person� (or the background)

is
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Thepixel is thenclassifiedas
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 is given by the color modelof the person
at height

�
. For thebackground,a backgroundmodel

of thesceneis used.
Thepriorsincludeocclusioninformationanddeter-

minedusingthe following method.For eachpixel



,
a ray is projectedin spacepassingthroughthe opti-
cal centerof the camera. Minimum distances

� 7 of
this ray arecalculatedfrom the vertical lines passing
throughthecurrentlyestimatedcentersof thepeople.
Also calculatedaretheheights

� 7 of theshortestline
segmentsconnectingtheselines.Then,theprior prob-
ability that a pixel



is the imageof person� is set

as
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Figure2: Someresultsfrom M � Tracker. Thefirst two
imagesshow detectionandtrackingresultsandthelast
two show segmentationresults.

where
� 7 ��� 7 �	� 7 
 is the “presence”probability de-

scribedearlier. A person“
D

occludes� ” if thedistance
of
D

to theopticalcenterof thecamerais lessthanthe
distanceof � to the center. The classificationproce-
durehelpsto incorporateboth thecolor profile of the
people,andtheocclusioninformationavailable.

Thesegmentationalgorithmassumesknowledgeof
approximatepersonlocations.Theselocationsareob-
tainedusinga region-basedstereoalgorithm.

2.3 Obtaining Multiple Segmentations

Thereareseveral parametersin the segmentational-
gorithm. Accurateextractionof differentpartsof the
personrequiresdifferentparameters.Therefore,it is
essentialto vary theparameterssoasto obtainmulti-
plesegmentations.Theparametersthatwevary are
(1) therelative weightgivento thebackgroundmodel,
(2) the relative weight given to different foreground
objectssothatdifferentobjectsarehighlighted,and
(3) thethresholdfor deteminingwhetherapixel is un-
classifiedpixels.
Thesilhouettesthusobtainedaresegmentedusingthe
methoddescribedin thenext section.

Figure3: Multiple SegmentationsObtainedfor theim-
ageshown in thefirst image

3 Computing Body-part Primiti ves

3.1 2D SilhouetteShapeAnalysis

In orderto recover theposeof a person,we breakthe
silhouetteof the personinto parts. According to hu-
man intuition aboutparts,a segmentationinto parts
occursat negative minima of curvature so that the
decomposedparts are convex regions. Singh et al.
notedthatwhenboundarypointscanbejoinedin more
thanonewayto decomposeasilhouette,humanvision
prefersthepartitioningschemewhichusestheshortest
cuts( A cut is theboundarybetweenapartandtherest
of thesilhouette).They furtherrestrictacut to crossa
symmetryaxis in orderto avoid shortbut undesirable
cuts.However, mostsymmetryaxesarevery sensitive
to noiseand are expensive to compute. In contrast,
we usetheconstrainton thesalienceof apartto avoid
shortbut undesirablecuts.Accordingto Hoffmanand
Singh’s [10] study thereare threefactorsthat affect
thesalienceof apart: thesizeof thepartrelative to the
whole object, the degreeto which the part protrudes,
andthestrengthof its boundaries.Amongthesethree
factors,thecomputationof a part’s protrusion(thera-
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Figure4: SilhouetteDecomposition

tio of the perimeterof the part (excluding the cut) to
the lengthof the cut) is more efficient and robust to
noiseandpartialocclusionof theobject.Thus,weem-
ploy theprotrusionof aparttoevaluateitssalience;the
salienceof a partincreasesasits protrusionincreases.

In summary, we combinetheshort-cutrule andthe
saliencerequirementto constrainthe other end of a
cut. For examplein Figure3.1,let J beasilhouette,K
betheboundaryof J ,

�
beapointon K with negative

minimaof curvature,and
�8L

beapointon K sothat
�

and
��L

divide theboundaryK into two curves KNM , K �
of equalarclength.Thentwo cutsareformedpassing
throughpoint

�
:
�*� M , �*�8� suchthatpoints

� M and
���

lieson KNM and K � , respectively. Theends
� M and

���
of

thetwo cutsarelocatedasfollows:

� M?,&-/.10325O PQSR*T �U�WV T
s.t. T
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where
X�*� V

is thesmallerpartof boundaryK between�
and

� V
, T

X�*� V T is thearclengthof
X�*� V

, and a
bQ^Q R aa Q^QSR a is

thesalienceof thepartboundedby curve
X�U� M andcut�*� M .

Eq. (4) meansthat point
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Figure5: Computingthecutspassingthroughpoint P

sameend
�

, lying within thesilhouettewith theother
endlying on contour KNM , andresultingin a significant
partwhosesalienceis above a thresholdZ � . Theother
point

�8�
is locatedin thesamewayusingEq. (5).

Since negative minima of curvature are obtained
by local computation,their computationis not robust
in real digital images. We take several computation-
ally efficient strategies to reducethe effectsof noise.
First, a B-splineapproximationis usedto moderately
smooththe boundaryof a silhouette,sinceB-spline
representationis stableandeasyto manipulatelocally
without affecting the restpart of the silhouette.Sec-
ond,thenegativeminimaof curvaturewith smallmag-
nitudeof curvatureareremoved to avoid partsdueto
noiseor small local deformations. However, curva-
tureis not scaleinvariant(e.g. its valuedoublesif the
silhouetteshrinksby half). Oneway to transformcur-
vatureinto ascale-invariantquantityis to first find the
chordjoining thetwo closestinflectionswhich bound
the point, thenmultiply the curvatureat the point by
thelengthof thischord.Theresultingnormalizedcur-
vaturedoesnot changewith scale— if thesilhouette
shrinksto half size,thecurvaturedoublesbut thechord
halves,sotheirproductis constant.

This analysisyields 2D body partsfor a personin
a singleview. The torsois not found directly by this
methodasthe body part segmentationscanonly find
protrudedpartsreliably. Sincetheseprotrudedparts
can overlap, thereare a large numberof torsosthat
canbeformedfrom theremainingpartof thesilhoette.
Therefore,wedonotattemptto find thetorsosdirectly
andsimply infer it from theotherbodyparts.

Zhao [22] has useda similar methodto develop
a systemfor body part identification from a single
view. However, bodypart identificationfrom a single
view is very difficult andlabelingsareoftenincorrect,
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Figure6: Multiple Body partsobtainedusingtheseg-
mentationsshown in Fig. 3

especiallyin the caseof partial-occlusionsand self-
occlusionswheresomebodypartsarenotvisible. The
problemis alsounderconstrainedsincedepthinforma-
tion is not available. Another difficulty is that their
systemrequiresextractionof goodsilhouetteswhich
arenot easyto obtain in a densescene.As opposed
to Zhao’s work, we usemultiple camerasandidentify
bodyposein 3D usingaglobalanalysis.

3.2 Computing Body-part Primiti vesin 3D

2D partprimitivesobtainedusingSilhouetteAnalysis
areusedtoobtainpartprimitivesin 3D.First,partsthat
are relatively closeto eachother are combinedwith
eachother. Second,thedecomposedpartsarematched
acrossviewsusingepipolargeometryto yield 3D body
parts. The two endpointsof a part in one view are
matchedto the correspondingendpointsin the other
view. The matchingis basedon simply lying on the
correspondingepipolarline. An additionalconstraint
thatcanbeusedis thecolor profile of thebodyparts.
Thedisadvantageis thatif theviewpointsaresubstan-
tially different,thecolorprofilescanvarysignificantly.
Also, thecolor profilesfor differentbodypartscanbe

verysimilar(for e.g.thetwo legscanhaveverysimilar
colorprofiles.)

Oncematchingis done,a certainnumberof body
partsareselectedbasedon their matchingscoreand
theirendpointsareprojectedin spaceto yield3D body
parts.

4 AssemblyEvaluation using the Ob-
servation Lik elihood

Labelingsareassignedto these3D partsby building
anassemblythathasthemaximumlikelihoodaccord-
ing to an appropriatelikelihood function. From the
setof 3D body parts,we form setsof possibleheads,
handsandlegs basedon sizeconstraints.Additional
knowledge,if available,canbeused.Suchinformation
might consistof theknowledgethat thelegsareclose
to thefloor or thatthepersonis standing(constrainton
headandhandpositions).Then,theproblemreduces
to findingahead,two hands(or asingleor nohands,if
not found)andtwo legs(or 0 or 1 legs),suchthat the
assemblyhasthe highestlikelihood. The likelihood
functionwe useis describedin thenext section.

4.1 Observation Lik elihood

In orderto evaluateaparticularassemblyc , wedeter-
mine the observation likelihood

� . � �`d � � � �\e�e�e�� ��fg `c 
 ,
which is the likelihood of observing images�`d � � � �\e�e�e�� ��f given the particular assembly c .
Assuming that assemblieshave equal priors, the
assemblyhaving the highest likelihood is also the
assemblywith thehighestposterior. Sincewe do not
know the body poseof otherpeoplein the scene,the
observation likelihood cannot be determinedunless
the problemsof body posedeterminationof different
people are coupled with one another. This leads
to an exponential increasein the complexity of the
algorithm.

We can decouplethe problem, however, if make
somesimplifying assumptions.Specifically, we can
usethemethoddevelopedin M � Tracker[13] to deter-
mine priors using presenceprobabilities. Then, the
generalformula for the observation probability at a
particularpixel



canbewrittenas:

h � � ��
#
�
 , 7
�������i���j� � 
�� . � � ��
#
  +� 
 (6)
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Figure7: DeterminingtheProjectionof anAssembly

wherethe summationis doneover all persons� and
the background,and � ��
#
 is the observation at pixel


. If the locationof the assemblyis given, the func-
tion

� 7 ��
#
 (PresenceProbability defined in section
2.1.2)for thepersonunderconsiderationchangesfrom
aprobabilisticto afixedfunctionsothat:

� 7 ��
#
 ,
:

if assembly projects to pixel xk
if it does not project to pixel x

(7)

Using this definition, onecanredeterminethe pri-
ors for all peopleusingequation(3) andcalculatethe
observationprobabilityusingequation(6). Thiswould
betheconditionalprobability

� . � � ��
#
  `c 
 . Assuming
that observationsat different pixels are independent,
the overall observation probability is thensimply the
productof the observation probabilitiesat eachpixel
in eachview.

� . � �`d � � � �\e�e�e�� ��f8 `c 
 ,
f
�ml d all pixelsx

� . � � ��
�
  `c 


(8)
In orderto determinetheprojectionof theassembly

onanimage,wemodelthehandsandlegsascylinders
with approximatewidthsandtheheadasa sphereand
determinetheirprojectionsontoaview (Figure7). The
torsois built by filling in thepolygonformedby taking
the joint locationsof the (five) partsas the vertices.
More accurateprojectioncanbeformedby building a
3D structurebasedon the joint locationsandfinding
its projectionontotheviews. Thatwill, however, add
to therunningtime of thealgorithm.

M � Tracker determinesthe probability
� . � � ��
#
  +� 


usedin equation(6) using color modelsat different

height slices. This puts only occupancy constraints
on thelikelihood.However, apartfrom thehypothesis
that the given assemblyprojectsto a particularpixel,
we alsohave informationas to which part of the as-
semblyprojectsto the pixel. Using this information,
we canimprove resultsby including in the likelihood
function information available from the views about
possiblebody part locations. For e.g., we might be
ableto find theheadusinga facedetector. If we have
a skin detector, we might want to exclude the torso
from the setof body partsthat cangive rise to it. In
thepresentwork, we includeanadditionaltermin the
likelihood

� . � � ��
�
  +� 
 .
First, we determinetheprobability thata particular

bodyparthasa particularaspectratio
� .�n � � -/. 
 . This

probabilityis modeledasa1D Gaussian,its meanand
standarddeviation learntusingtrainingdata.Now, we
considerbody partsdetectedfrom the silhouettesex-
tractedfor thepersonandfind theiraspectratios.Find-
ing thevalueof thefunction

� .�n � � -/. 
 , we assignthis
valueto all pixels belongingto thepart in thesilhou-
ette. Sincethe torsois not observed directly, we can-
not determinethis probability for pixels belongingto
it andhencethey areassigneda constantvalue.Since
wehave multiplesilhouettesandhencemultiple prob-
ability estimatesfor the aspectratio at a given pixel,
weaveragethemto yield asingleresult.For pixelsly-
ing outsideany silhouette,theprobabilityis zero.This
will yield thefunction

� . � -/.o B h 
 for eachpixel



and
eachbodypart

B h . During evaluationof anassembly,
we can computethe value of this function sincewe
know theprojectionsof thebodypartsontotheimage.
Thisprobabilityvaluecanbemultipliedwith thecolor
likelihoodto yield thelikelihoodfunction

� . � � ��
�
  +� 

usedin equation(6).

5 Searching for the Optimal Assem-
bly

We believe that the bestassemblycanonly be found
by an exhaustive searchin p � GSq 
 time (where Gsrp ��: k 
 ) is the numberof possibleprimitives for each
part). However, in practive, we have found that the
sameresultcanbe obtainedin p � G 
 time if we have
a goodinitial estimateof thebodypartpositions, and
in p � G � 
 time duringtheinitialization phase.We first
describetheincrementalscheme.
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Figure8: Schematicfor theInitializationprocedure

5.1 IncrementalAlgorithm

If we have a sufficiently goodestimateof the current
body part locations,we usea greedyapproach.The
ideais to first try to replaceeachpart with candidate
parts. If the assemblywith the original part has a
higher likelihood than the oneswith any of the new
primitives,we keeptheoriginal one. This is repeated
for differentparts.Wehave foundthat,apartfrom be-
ing very fast,this methodyields thebestresults(bet-
ter thaninitializationmethod)sinceit is oftenthecase
thatsomebodypartshavenogoodcandidatesatapar-
ticular time step,in which casewe cankeepthe old
estimate.

5.2 Initialization

In order to find an initial solution, or reinitialize the
methodif the incrementalmethodfails, we use the
following approach. First, we try to find good leg
pairs. We find K bestpairs (in p ��t � 
 time) based
on thelikelihoodfunctionby building anassemblyof
just the two legs. Similarly, we find K bestpairs of
hands.Next, we find K bestassembliesconsistingof
two handsandtwo legs usingthe handandleg pairs
foundearlier(Figure8). For thisstep,weconstructthe
torsousingthefour joint locations.Finally theheadis
addedandthe bestassemblyis found. Although this
methoddoesnot find the optimal assembly, we have
foundthatit is extremelyeffective in practiceandwith
the right choiceof

t
, yields resultsvery closeto an

Figure9: Resultsof thealgorithmfor a personat a partic-
ular time instantfrom multiple perspectives.Notehow the
person’sbodypartsarecorrectlydetectedeventhoughheis
partiallyoccludedfrom someviews.

exhaustive search.
If computationalcost is available,we canfind the

resultusingbothalgorithms,takingtheassemblywith
thehigherlikelihoodastheanswer.

6 Results

We have obtainedpromisingresultsfor thealgorithm.
We testedour algorithmon a 5-perspective sequence
with two peoplepartially occludingeachotherin sev-
eralviews. Wewereableto correctlyidentify thebody
partsof thepeoplewhenthey wereextendedfrom the
body. Whenthepartswerecloseto thebody, thealgo-
rithm labeledthepartasmissingandcorrectlyidenti-
fied theotherparts.Figure9 shows theresultobtained
ataparticulartime instantfor thesequence.Figure10
shows theresultsover time from aparticularview. No
initializationwasdone,norany exact3D modelof the
personspecified.Thealgorithmtook about10s/frame
on a Dual 933MHzPentiumIII processorwheremost
of the time was spentin evaluatingdifferent assem-
blies.

7 Summary and Conclusions

Wehavepresentedanalgorithmfor bodyposeestima-
tion thatdoesnot requireany initializationsor models
to bespecifiedupfrontandis ableto work in acrowded

7



Figure10: Resultsfor five framesof thesequence.

sceneso that occlusions- both full and partial - are
present.Thesefeaturesmake it especiallyuseful for
many surveillanceapplications.In thefuture,we wish
to investigatemore cuesfor body parts in an image
(otherthanthesilhouettes)like edgemapsandtexture
regions,which might helpus to reducethenumberof
camerasrequiredto obtainacertainquality of results.
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