
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CoMaL: Good Features to Match on Object Boundaries

Anonymous CVPR submission

Paper ID 2097

Abstract

Traditional Feature Detectors and Trackers use informa-
tion aggregation in 2D patches to detect and match discrim-
inative patches. However, this information does not remain
the same at object boundaries when there is object motion
against a significantly varying background. In this paper,
we propose a new approach for feature detection, tracking
and re-detection that gives significantly improved results at
the object boundaries. We utilize level lines or iso-intensity
curves that often remain stable and can be reliably detected
even at the object boundaries, which they often trace. Sta-
ble portions of long level lines are detected and points of
high curvature are detected on such curves for corner de-
tection. Further, this level line is used to separate the por-
tions belonging to the two objects, which is then used for
robust matching of such points. While such CoMaL (Cor-
ners on Maximally-stable Level Line Segments) points were
found to be much more reliable at the object boundary re-
gions, they perform comparably at the interior regions as
well. This is illustrated in exhaustive experiments on real-
world datasets.

1. Introduction
Feature points in an image are points that have a distinc-

tive image structure around them and have been used in sev-
eral applications such as point tracking [25, 15, 30], Visual
Odometry (for Automotive Applications, for instance) [31,
11, 42], Optical Flow [22, 2], Stereo [17, 13, 18, 40], Struc-
ture from Motion (SfM) from video [40, 47], and Simulta-
neous Localization and Mapping (SLAM) [21] among oth-
ers. Most of the popular feature detectors (Harris [16],
Shi and Tomasi [41] SURF [4] and Hessian [28]) utilize
the whole information in a patch surrounding the point to
find feature points. For instance, the Harris detects points
that have significant aggregated gradients in orthogonal di-
rections in a surrounding patch. Many recent detectors
(AGAST [26], FAST [37] and FAST-ER [38]) use intensity
comparisons in different directions and use machine learn-
ing techniques to significantly speed up the computation.

Figure 1. A car moving against a varying background. Nearly half
of the patch centered on a Harris corner at the object boundary is
part of the background.

These features have been matched using a variety of tech-
niques. The simple Sum-of-Squared-Distance(SSD), with
some local optimization [10, 23, 2, 25], is still typically
the method of choice when there are only small changes in
the illumination or viewpoint (for e.g. point tracking, flow
and stereo applications) while more complicated descriptors
such as SIFT [24] have been utilized where there are more
variations in lighting, viewpoint or scale. Many modern
variants output a binary descriptor for extremely efficient
matching (BRIEF [6], ORB [39], Daisy [44], FREAK [1]
and NSD [5]).

While the performance of these approaches for Feature
Detection and Matching is quite good in the interior of ob-
jects, their performance is fairly poor on the object bound-
aries [47]. This can be attributed to two reasons. First, the
detectors rely on fixed (scalable) image patches which may
straddle object boundaries and depth discontinuities and a
change in these can lead to a change in the detected object.
Second, even if a boundary point is detected at the same lo-
cation w.r.t. one of the objects, matching is very difficult as
the part in the patch belonging to the other object changes.
(Fig. 1).

In this paper, we try to address these problems by propos-
ing an approach for Feature Detection and Matching that is
able to detect points accurately even in the presence of a
changing background. At the same time, the support re-
gion is automatically segmented into two parts which of-
ten correspond to the regions belonging to the two ob-
jects. This enables independent matching of these two parts
and by considering only the matching part, the point can
be matched accurately even in the presence of a changing
background.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

We utilize level lines (curves connecting points with the
same intensity) for this purpose by noting that the bound-
aries of objects are typically traced by such level lines,
which often move with the object (Fig 2). By detect-
ing turns/corners on level lines that do not change much
with intensity variations (stability property), discriminative
points can be found. We refer to such points as Corners on
Maximally-stable Level Line Segments (CoMaL). Further-
more, this level line itself typically separates the two ob-
jects in the case of object boundaries and thus, we match the
portions on either side of this curve separately and take the
higher score of the two. This makes the matching method
robust even in the boundary regions.

Several detectors have used level lines in the past [7],
the most popular among them being the Maximally Sta-
ble Extremal Regions(MSER) detector [27]. MSERs are
stable, closed level lines that were shown to return high
Repeatability and Matching scores in image matching ex-
periments [29]. They have also been used in hand and
object tracking [9], where the object is typically homoge-
neous and has little interior texture, causing the other detec-
tors to underperform. However, since MSER considers only
small closed level lines and throws away the information in
longer level lines in order to preserve the locality of a fea-
ture, it typically returns very few points and is not a popular
choice for many other detection and matching applications
where one needs to obtain a sufficient number of points
(Fig. 2(a)). In this work, we detect corners along long level
lines (Fig. 2(b)), which in fact are more stable than small
level lines in many cases such as blur [33, 35]. Such long
level lines have been used in the past by some detectors such
as LAF [33] and SAF [35], who build affine-invariant detec-
tors using some key tangent points on the curve. However,
they rely on very few particular key points on the curves to
compute the features, which makes them quite noisy. Also,
their affine-invariant property makes them less suitable for
the basic task of feature detection, where such methods un-
derperform [29]. In this paper, we restrict ourselves to the
problem of basic feature detection (without any scale or
affine invariance) that also allows us to use much more ro-
bust measures for corner detection on such level lines.

Our detection and matching technique yielded superior
results compared to other state-of-the-art algorithms on the
KITTI Vehicle dataset [14] with real-world sequences, with
significantly improved results on the object boundaries. Al-
though our method is applicable in many scenarios, results
are illustrated for two applications from this dataset: Point
Tracking and Optical Flow.

1.1. Related Work on Handling Boundary Regions

Several algorithms have been tried to address varying
backgrounds in boundary regions. In object tracking, Seg-
Track [3], Chen et al. [8] and Oron et al. [34] iteratively

(a) (b)

Figure 2. (a) A long level line that forms the boundary of an ob-
ject. The information present along such level lines is discarded
by MSER. (b) A few corners (marked in red) detected by us on
locally stable portions of the level lines .

build probabilistic appearance models for the foreground
and background in order to separate them for superior object
tracking.In stereo, Kanade and Okutomi [20] and DAISY
(Tola et al.) [44] adaptively determine the window/mask to
use while matching each point. Almost all of the above
approaches for different problems utilize smoothness con-
straints in a large region in an iterative manner to disam-
biguate the possible matches at the object boundaries. Thus,
they have limitation when the object boundaries dominate
the object appearance (for e.g. thin objects). Furthermore,
they need a good initialization. Our algorithm can match
points without such smoothness restrictions and on objects
having very little internal texture and can also be used to
provide some good matches as initializers for these algo-
rithms.

2. Corners on Maximally Stable Level Lines

We define our corners on level lines, which are lines con-
necting points having the same intensity. If the intensity
variation across the image is smooth or has been sufficiently
smoothed by a smoothing operation, then such level lines
form smooth curves in an image with nearby level lines hav-
ing close intensities (Fig. 3). Thus, by varying the intensity
of the level line, one can move these curves in space. Por-
tions on these level lines that do not move much when the
intensity is varied are portions with good perpendicular gra-
dients on the level line and are called stable in this work.
When additionally, such level lines turn, then such corner
points can be discriminated from other points in the neigh-
borhood and detected as feature points. We first consider
the stability of a level line segment extending on either side
of a given candidate point p on a given level line, the ex-
tent of the segment being determined by the scale at which
points are to being detected.

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3. Stable and Unstable level lines in brown (top right) and
blue (bottom right) boxes respectively. The Green level line LL is
tested by considering LLN(LL, δ) and LLN(LL,−δ) level lines
in red and purple respectively. Note that the lines are very close in
the brown box due to which they mostly overlap in the illustration.

2.1. Stability of a Level Line Segment

The first condition we desire for a corner point is that it
should lie in a region of high gradients. A level line that
has a high gradient on it is thus desirable. Although we can
compute this directly, a more robust approach is to consider
neighboring level lines and compute the distance between
these. We define a level line that is a neighbor of LL(I) and
is detected at an intensity of I + δ as LLN(LL(I), δ). A
high value of the gradient on LL (which is always perpen-
dicular to it) is characterized by close LLN’s for small δ’s.
The stability of a level line ρ(LL(I)) can then be defined
by considering the distance between LLN(LL(I),+δ) and
LLN(LL(I),−δ) for some given small value δ. This is
illustrated in Figure 3.

The Distance Measure The distance between neighbor-
ing level lines may be calculated using a variety of mea-
sures. A straightforward measure is to establish explicit
correspondences between the two curves by considering the
nearest points and then summing the distances between the
corresponding points. While this can be speeded up using
the Distance Transform, the corresponding points may not
be unique and may not cover all the points, especially in the
case of concave and convex curves, leading to noisy results.

Stable Affine Frames (SAF) [35] uses the maximum of
the distances between three particular pairs of correspond-
ing points instead of all the corresponding points. These
are two adjacent bi-tangent points on a level line and a cen-
tral high-curvature point. However, the detection of these
points, especially the bi-tangent, is known to be noisy. Fur-
ther, relying on just 3 points is not very robust.

In this work, we use the area between the two level lines
LLN(LL(I),+δ) and LLN(LL(I),−δ), normalized by
the length of the level line, as the distance measure. This
measure, based on the number of points between the two
curves, is more robust to noise in the curves. It is inspired

(a) (b)
Figure 4. (a) The Gaussian weight centered on point p (yellow) on
a level line LL. (b) The vectors connecting the points (in green) on
the level line segment to their mean (x̄, ȳ) (in red). The distribution
of these vectors is used to determine the cornerness of this level
line segment.

by MSER [27], which has been shown to be a robust detec-
tor in many evaluations [29].

Weighting the Points in the Patch We make a modifica-
tion to this measure in order to make it more robust. Essen-
tially, the points closer to the candidate corner p are more
important than points far from p. To achieve this effect,
while computing the area between the curves and the seg-
ment length of the level line, the points in the image patch
centered at the point p are weighed using a 2D Gaussian
GI(p, σlow

I , σhigh
I , θ) centered at the candidate corner point

p. The Gaussian is aligned along the direction θ of the tan-
gent to the level line at the point p such that a high sigma
σhigh

I is used in the direction perpendicular to θ and a low
sigma σlow

I is used in the direction of the tangent (Fig 4(a)).
These σ’s are multiplied by the scale s at which the point
is to be detected. GI is truncated at 2 σI for efficiency pur-
poses.

Given such a weighting for the points in the surrounding
patch, the weighted length lenw is computed for the level
line segment LL(I, p, s) at intensity I centered along the
level line at the point p at scale s. Further, the weighted
area ∆Aw is calculated from the weighted points between
LLN(LL(I, p, s), δ) and LLN(LL(I, p, s),−δ). Then,
the stability ρ of the level line segment LL(I, p, s) using
the variation parameter δ is defined as:

1
ρ(LL(I, p, s), δ)

=
∆Aw(LL(I, p, s))
lenw(LL(I, p, s))

(1)

Essentially, 1/ρ measures the average weighted motion
of a point on LL(I, p, s) when the intensity I is varied. This
stability measure is computationally simple, symmetric and
more stable compared to many other alternatives since it
relies on the characteristics of the entire curve and not just
a few points on it which can be noisy.

Given the stability of the level line segments, a non-
maximal suppression is finally done by picking only

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

those segments LL(I, p, s) that have a higher ρ than
their immediate neighbors: LLN(LL(I, p, s), 1) and
LLN(LL(I, p, s),−1). Such maximally stable level line
segments are denoted as MLL(I, p, s) in this work.

Such MLL’s are distinctive in their neighborhoods from
neighboring level lines. However, points on such level lines
are distinctive from each other only where the curve turns.
Such turns or corners on such level lines are detected using
the following approach:

2.2. Corners on MLL’s

The turn points or corners on maximally stable level line
segments MLL are distinctive and can be differentiated
from other points in the neighborhood. Thus, such points
will be detected as corner points in this work.

A popular and straightforward approach to find corners
on curves is by using the curvature [35, 7] which measures
the rate of change in the curve direction at any given point
of the curve (second derivative). Local maxima of such cur-
vature along the curve can be used as corner points. How-
ever, this measure can be somewhat noisy due to the use of
the second derivative. To make it less sensitive to noise, one
must use a fairly high precision which increases the running
time of the algorithm. We use a more robust and computa-
tionally much more efficient approach as it does not require
a high precision while computation.

The distribution of points on the curve centered at the
candidate corner point p is determined (Fig. 4(b)). The Co-
variance matrix Σs of such points at scale s is:

Σs = G(p, σs)⊗[
(x− x̄)2 (x− x̄)(y − ȳ)

(x− x̄)(y − ȳ) (y − ȳ)2

]
(2)

where x̄ and ȳ are the x and y means of points and a 1D
Gaussian G(p, σs) is used to weigh the points on the level
line such that σs is proportional to the scale s.

The eigenvalues of Σs reflect the distribution of the
points along two principal orthogonal directions and high
values of both indicate a corner. Shi and Tomasi [41] and
Tsai et al. [45] use the minimum of the two eigenvalues as a
measure for cornerness, arguing that it better represents the
corner. However, computing the eigenvalues explicitly is
slow, due to which the original Harris Corner detector [16]
works on the second moment matrix of the image gradients
directly, defining cornerness as: det(Σs)− k · trace(Σs)2.
Forstner et al [12] and Lowe et al. [24] use:

κ(s) = det(Σs)/trace(Σs)2 =
(λ1 · λ2)

(λ1 + λ2)2
(3)

Due to the normalization, it is scale invariant and since
eigenvalues themselves are rotation invariant [16], this mea-
sure is also rotation invariant. This measure was found to be

suitable for our purposes and can also be computed fast and
is thus used in this work.

A threshold is applied on the cornerness κ(s) in order
to find points of high cornerness at scale s. Furthermore, a
non-maximal suppression is employed along the MLL’s to
yield corners that are well localized along the level line.

Finally, corner points are defined as:

Definition: A point p is a feature point at scale s if
LL(I(p), p, s) is maximally stable according to the sta-
bility measure ρ and the cornerness κ(s) of p is the local
maxima along LL(I(p)) at scale s.

The important point to note here is that all the tests above
have to be done by centering the curve and the patch at the
point p. Calculation of such stability for each and every
point on every level line is prohibitively slow. We next dis-
cuss an iterative approach to search for such corner points
efficiently.

3. Algorithm: Iterative Feature Detection
In order to perform this search efficiently, we note that

the maximally stable segments do not shift much when the
scale is varied. This allows us to run an initialization step
at a slightly higher scale (we use 2 times the scale of the
final detection) in overlapping blocks for an initial estimate
of the points. Furthermore, no weighting is used in this
step which allows it to be fast. Each of such initial cor-
ners is passed through an iterative refinement step where
the full constraints of patch centering at the detection point
and point weighting are applied for stability and cornerness
computations.

3.1. Initialization

The first step in the Initialization is to divide the image
into overlapping blocks of size 2Bs × 2Bs, where B is a
multiplying factor specifying the support region to be used
for corner detection and s is the scale at which we want to
detect the final corners. Maximally stable level line seg-
ments at scale 2s, MLL(2s), are detected in each image
block using a modified-MSER algorithm described next.
No weight scaling as described in the previous section is
applied. On such MLL′s, an initial set of corners Cinit

s

is determined using Eq 3. The cornerness threshold is also
lowered a bit compared to the final detection threshold in
order to not miss any final corners.

Efficient MLL Detection using a Modified MSER Algo-
rithm: We modify the MSER algorithm to efficiently de-
tect maximally stable level line segments since the MSER
detector efficiently maintains the set of level lines and the
area of the associated regions by the union-find algorithm.

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

We replace the MSER’s stability formulation with our for-
mulation in Eq. 1, which involves a division by the weighted
length of the level curve LL, which is an open curve, rather
than a division by the area of the closed level line, which
may not be the best thing to do in these blocks which often
truncate such level lines and extremal regions. This modi-
fied MSER algorithm is run on each image block to get an
initial set of stable level line segments MLL. Note that no
point weighting as proposed in Section 2.1 is applied here.

Approximations in Corner Computation Corner com-
putation is run on such detected MLL’s from each block.
The time consuming step is the convolution with a Gaussian
weight filter (Eq. 2) for the point contributions for each test
point. This step can be made efficient by applying the Cen-
tral Limit Theorem to replace the Gaussian with an average
filter that can be applied multiple times to yield approxi-
mately the effect as a Gaussian (The average filter is run
3 times for the results in this work). The averaging oper-
ation is extremely fast due to the applicability of Dynamic
Programming. The idea is similar in spirit to the approx-
imate 2D Gaussians implemented in SURF [4]. Such an
approximation is possible in our approach since our corner-
ness measure is quite robust to weight errors compared to
other measures such as the curvature which require more
precise computations. Note that there is no need to run this
step at scale 2s and we run this corner detection step at scale
s itself.

Running Time A maximum init window stride of 2Bs/2
ensures that each of the points is captured in at least one
of the init windows. Since the MSER is a linear-time algo-
rithm [32], the computation of the MLL’s takes around 4
times the amount of time the MSER algorithm would take
on the entire image. The computation of the corners on such
MLL’s is again linear in the number of pixels on the level
lines, which is actually much lower than the number of pix-
els in the image and is thus extremely fast.

3.2. Iterative Point Refinement

Given an initial set of approximate corner locations ob-
tained from the initialization stage, we run an iterative re-
finement algorithm for each point so that in the end, the
level line is locally maximally stable with the detected point
p as its center, and the stability measure is computed with
the appropriate point weighting as specified in Section 2.1.

The first step in the refinement is to recompute the max-
imal level line MLL when the patch is centered at the cur-
rent estimate of p. A block of size ofBs×Bs is used as the
support region for point detection. The modified-MSER al-
gorithm as described in the previous section is used. Among
the many maximal level lines that may be found in this
block, the one that is closest in terms of shape and distance

Figure 5. (a) An Image divided into overlapping blocks of size
2Bs. Different blocks are shown in different colors for clarity
purposes. (b) A sample MLL in one sample block (top) and a
corner found on it (bottom). (c) The set of initial corners detected.
(d & e) The iterative procedure for point refinement. The MLL

and the initial point (pink) detected in the initial stage with a block
window of size 2Bs are used to center a block (yellow) of sizeBs
in the first step of the iteration. This point moves to the red point.
When the window is now centered at this (red) point, it remains
the same and is thus detected as the final corner.

to the current one is taken as the new MLL. Appropriate
Gaussian weighting of the points is used, which also en-
sures that blocking causes minimal errors as the points near
the block boundaries will have very low weights. Corners
are re-detected on the new MLL at scale s and the one clos-
est to the previous one is taken as the updated corner point.

This process is repeated till the point stops moving. At
this stage, the point p satisfies both the conditions for our
feature point and is output as a corner point at scale s.

Typically, the initial level line remains fixed or moves to
only a nearby level line during the iterations and the max-
imum number of iterations was found to be only around 3
or 4 in our experiments. Each iteration is an order (Bs)2

operation where most of the time is taken by the linear-time
MSER algorithm running on the block of size Bs×Bs.

The whole iterative procedure is illustrated in Fig. 5
while Algorithm 1 describes the entire algorithm.

4. Point Matching
While one can use simple strategies, such as the SSD for

point tracking or descriptors such as SIFT to handle more
variations, they don’t work very well for the points on the
boundary of two objects as the surrounding patch may con-
tain regions from two relatively moving objects (an object
vs. its background). To handle such cases, we propose to
use the maximal level line on which the point was detected

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) (b)
Figure 6. (a) +ve region (side with higher intensities) and (b) -
ve region (side with lower intensities) separated by the level line
shown in yellow. They are matched separately for better matching.

as a separation boundary between two regions of the patch
and match the two regions separately (Fig. 6(b)). The basic
idea is that the boundary between two objects is typically
traced by a maximal level line which moves along with the
object and thus an MLL is a good separation boundary be-
tween two moving objects. By using such an approach, one
can correctly match boundary points on many objects, even
if the objects themselves are homogenous and textureless
and do not yield any corner points in the interior.

The SSD is used as the distance measure between the two
patches in our work, although more complicated descriptors
such as the SIFT can also be considered for many applica-
tions. A gradient descent is applied to the (half) patch be-
fore computing the SSD in order to deal with small shifts
and errors in point localization. The SSD values are com-
puted in the common(intersection) region of the masks of
the two patches being matched and are normalized by the
size of this region.

In case no external information is available, one can uti-
lize the above two-region matching approach for all the
points. However, if it is possible to classify the points as in-
terior and boundary points, perhaps in an iterative way, then
one can apply the two-region matching only to the boundary
points as considering only a part of the patch for matching
for the interior points does reduce the discriminability of the
matcher due to utilization of lesser information.

5. Experiments and Results
While scale and affine-invariant features have been de-

veloped in the literature for many applications, in this
work, we have developed a basic feature detector that does
not handle scale or affine variations. Hence, we com-
pare against basic feature detectors (Harris, Hessian, FAST)
which are useful in applications such as point detection and
tracking in videos. Thus, we evaluate for these applications
only.

Harris, Hessian and FAST have been found to be the

best basic detectors in many evaluations [38, 46]. More
recent ones such as FAST-ER and AGAST improve the
speed of detection but their performance is quite similar to
FAST [26, 38] and thus only FAST was compared against.
All the scale and affine-invariant detectors [28, 29] includ-
ing level line based methods such as SAF [35] and LAF [33]
performed significantly worse than the basic point detectors
for these applications and are not shown.We include results
for MSER since our method is closely related to theirs.

Dataset: The dataset that we choose for evaluation is the
publicly available KITTI dataset [14]. The dataset has re-
alistic, challenging outdoor sequences with a good ground-
truths. We evaluate our method on 11 video sequences for
Point Tracking and 194 image pairs for Optical Flow from
this dataset. Each vehicle in the tracking sequence moves
through roads against different backgrounds and the Opti-
cal Flow sequences consist of vehicles and other real-world
structures with significant depth discontinuities.

5.1. Vehicle tracking

We first consider a vehicle tracking application which
uses interest point tracking [11, 43, 42, 36, 40, 31, 19]. The
seminal KLT algorithm [25] is still quite popular for such
an application [42, 43, 31] along with its variants [11, 36].
In this application, interest points are detected and matched
in subsequent frames. While simple tracking might work
for a few frames, the tracks eventually get lost and have to
be re-detected and matched to the original ones for longer
term tracking.

11 challenging sequences from the KITTI dataset that
have significant variations in the background were selected
and we compare results for point matching at a gap of 1 and
5 frames to test the efficacy of the detectors and matchers
for shorter and longer range point matching respectively.
While matching, an appropriate neighborhood was set as
the search region in order to restrict the amount of motion
that each point can undergo.

Since the dataset contains only car tracking bounding
boxes, the ground truth for point matches was generated
from the annotated bounding boxes by assuming that the
relative location of a point w.r.t. to the bounding box re-
mains the same across frames. A small amount of error is
allowed, as the object is not rigid in 2D and there might be
some errors in the bounding box annotations. A 10-pixel
allowance was found to be sufficient for this dataset.

For a fair comparison, we equalize the average number
of detected features detected by a detector as far as possible.
Some detectors return very few points (e.g MSER) and for
these, the threshold is lowered as much as reasonably pos-
sible. For CoMaL, the threshold used to vary the number of
points is the threshold on the stability value ρ. We use a typ-
ical scale value of 8.4 for all the detectors and all the other

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Seq CoMaL+SSD SSD NSD SIFT
Harris Hessian MSER FAST Harris Hessian MSER FAST Harris Hessian MSER FAST

Gap of 1
carA 165.7/0.7 99.9/0.7 150.3/0.7 25.5/0.6 84.3/0.7 105.8/0.6 150.5/0.7 25.8/0.6 103.7/0.6 95.5/0.6 126.2/0.6 26.0/0.6 105.7/0.7
carB 159.4/0.7 53.9/0.7 126.9/0.7 20.4/0.5 108.1/0.7 57.9/0.6 130.3/0.7 19.8/0.6 140.0/0.7 55.1/0.7 125.5/0.7 20.3/0.6 115.4/0.7
carC 111.4/0.7 46.3/0.7 88.2/0.7 14.1/0.6 82.7/0.7 41.1/0.7 93.3/0.7 12.2/0.6 92.3/0.7 43.6/0.7 99.2/0.7 14.2/0.6 96.2/0.7
carD 162.8/0.7 39.7/0.7 125.0/0.7 16.5/0.6 95.0/0.7 50.9/0.7 141.0/0.7 17.8/0.7 140.5/0.7 52.0/0.7 142.8/0.6 19.2/0.6 137.2/0.7
carE 134.4/0.8 36.4/0.7 115.6/0.8 13.2/0.7 109.5/0.8 39.2/0.8 120.8/0.8 14.6/0.8 127.1/0.8 39.9/0.8 123.4/0.8 14.8/0.8 127.0/0.8
carF 95.1/0.8 45.7/0.7 79.1/0.7 14.0/0.6 51.5/0.7 37.3/0.8 83.1/0.8 11.5/0.8 52.4/0.8 43.0/0.7 74.3/0.7 13.2/0.7 61.8/0.7
carG 66.5/0.8 26.0/0.8 57.3/0.8 6.9/0.7 48.4/0.8 25.3/0.8 48.0/0.8 7.0/0.8 53.9/0.8 27.0/0.8 51.1/0.8 7.5/0.8 55.4/0.8
carH 98.4/0.8 42.3/0.7 58.8/0.8 9.3/0.6 43.9/0.8 31.6/0.8 79.6/0.8 7.5/0.8 56.1/0.9 33.5/0.8 74.6/0.8 8.9/0.8 60.4/0.8
carI 370.6/0.7 171.5/0.6 280.3/0.6 54.0/0.5 262.5/0.6 185.9/0.6 339.0/0.6 57.1/0.6 324.5/0.6 179.6/0.6 342.7/0.6 58.1/0.6 345.0/0.6
carJ 360.8/0.7 117.3/0.6 248.6/0.6 31.7/0.5 231.0/0.6 146.1/0.7 325.7/0.7 35.7/0.6 315.0/0.7 129.5/0.6 316.8/0.6 33.9/0.6 323.9/0.7
carK 364.1/0.7 195.8/0.5 296.8/0.5 54.5/0.5 289.3/0.5 202.9/0.6 329.5/0.6 55.5/0.6 320.3/0.6 189.9/0.5 333.5/0.5 56.5/0.5 342.1/0.6

Gap of 5
CarA 84.6/0.7 55.7/0.7 60.6/0.6 15.9/0.6 30.3/0.6 45.6/0.7 74.7/0.7 11.5/0.7 42.5/0.7 30.7/0.7 53.5/0.7 8.7/0.7 25.1/0.7
CarB 120.2/0.7 49.7/0.7 102.8/0.7 21.1/0.6 91.2/0.7 48.1/0.7 71.2/0.7 18.7/0.7 63.4/0.7 31.4/0.7 89.2/0.7 15.0/0.7 80.9/0.7
CarC 78.8/0.7 32.5/0.7 49.6/0.7 11.1/0.6 49.4/0.7 18.6/0.7 51.2/0.7 6.8/0.7 47.6/0.7 19.2/0.7 59.8/0.7 7.4/0.7 54.9/0.7
CarD 57.4/0.8 10.6/0.7 36.2/0.8 4.6/0.7 33.7/0.8 15.7/0.8 47.4/0.8 6.0/0.7 45.6/0.8 9.7/0.8 38.6/0.8 3.8/0.7 40.3/0.8
CarE 91.2/0.8 20.1/0.8 80.1/0.8 7.9/0.8 83.7/0.8 23.9/0.8 83.4/0.8 8.8/0.8 82.8/0.8 17.5/0.8 76.5/0.8 6.7/0.8 85.8/0.8
CarF 62.7/0.7 36.1/0.7 44.6/0.7 8.9/0.7 31.1/0.7 16.6/0.7 40.1/0.7 5.1/0.7 26.6/0.7 15.2/0.7 40.1/0.7 5.5/0.7 27.5/0.7
CarG 57.4/0.8 21.1/0.8 39.5/0.8 6.2/0.8 36.6/0.8 21.0/0.8 52.8/0.8 5.8/0.8 50.0/0.8 17.8/0.8 53.8/0.8 5.2/0.8 56.5/0.8
CarH 52.4/0.8 27.0/0.8 43.9/0.8 6.9/0.8 37.1/0.8 27.2/0.8 43.3/0.8 6.7/0.8 40.6/0.8 20.9/0.8 48.1/0.8 6.0/0.8 40.0/0.8
CarI 275.7/0.7 112.9/0.7 191.6/0.7 40.0/0.6 193.6/0.7 110.8/0.7 215.2/0.7 37.8/0.7 202.8/0.7 85.8/0.7 184.5/0.7 31.8/0.7 191.3/0.7
CarJ 232.5/0.7 94.2/0.6 212.1/0.6 26.1/0.5 214.5/0.6 106.8/0.7 183.5/0.7 30.6/0.7 194.3/0.7 82.7/0.7 198.5/0.6 22.8/0.7 201.3/0.7
CarK 237.2/0.7 95.1/0.7 154.7/0.7 31.2/0.6 162.8/0.7 127.4/0.7 163.2/0.7 35.2/0.7 184.0/0.7 112.4/0.7 200.9/0.7 25.5/0.7 170.8/0.7
Total 122.7 50.4 91.9 15.3 87.6 51.0 93.2 15.7 89.1 40.3 94.8 12.5 88.6

Table 1. Number of Correct Matches Mcor for 11 video sequences from the KITTI Vehicle Tracking dataset averaged over all the frames
in the sequence. The second number is the Matching accuracy Macc for the method. The top rows show the results at a gap of 1 frame
(consecutive frames) while the bottom rows show results at a gap of 5 frames. The best result is highlighted in bold while the second best
is underlined.

Region CoMaL+SSD SSD NSD SIFT
Haris Hessian MSER FAST Harris Hessian MSER FAST Harris Hessian MSER FAST

B 37.4/0.9 18.2/0.7 26.3/0.8 4.0/0.4 23.9/0.9 23.3/0.9 22.3/0.9 2.2/0.7 23.2/0.9 24.8/0.9 30.5/0.9 3.1/0.8 23.7/0.9
N-B 90.6/0.9 75.6/0.6 87.4/0.8 14.6/0.2 60.8/0.8 82.5/0.9 90.1/0.8 15.6/0.6 68.8/0.9 88.9/0.9 91.7/0.9 11.2/0.7 75.9/0.9

Table 2. Average number of correct matches Mcor for 194 pairs from the KITTI Flow dataset with the corresponding Matching accuracy
Macc in the B (Boundary), and N-B (Non-Boundary Regions). The best is in bold and the second best is underlined.

Figure 7. Frame numbers 88 and 93 in the sequence Car-B from
the KIITTI dataset showing CoMaL + SSD matches in the first row
followed by next performing combination: Hessian + SIFT and
FAST + NSD in the 2nd and 3rd rows respectively. CoMaL points
are matched more numerously and accurately at the object bound-
ary regions in spite of a significant change in the background.

parameters for the detectors and descriptors are kept at their
default values. While CoMaL is combined with only the
SSD matcher, the other detectors are combined with SSD,
NSD [5] and SIFT. CoMaL doesn’t work very well with
SIFT or NSD as the regions on either side of the level line

are often homogeneous and not suitable for these descrip-
tors.

We define the matching accuracy or precision Macc as
the ratio of the number of correct matches Mcor to the to-
tal number of matches M found: Macc = Mcor/M . By
equalizing this for the different algorithms by varying the
matching thresholds, one can then compare the number of
correct matches that the algorithm generates averaged over
all the frames.

Fig 7 and videos in the supplementary section show
some qualitative results of the approach, while Table 1
shows the quantitative results. It is clear from the re-
sults that CoMaL yields a much higher number of correctly
matched points compared to other approaches at a similar
or higher accuracy. Generally, Hessian performs second,
closely followed by FAST. The superior performance of our
approach can be attributed to a much better performance
and resilience in the boundary regions that are quite signif-
icant for these vehicle objects, while the interior points are
correctly matched by most methods.

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Type Seq CoMaL+SSD SSD NSD SIFT
Harris Hessian MSER FAST Harris Hessian MSER FAST Harris Hessian MSER FAST

Textured

Pens 27.6/0.9 12.6/0.8 8.5/0.9 0.2/0.2 3.2/0.8 14.8/0.9 17.0/0.9 0.3/0.3 15.1/0.9 12.1/0.8 20.8/0.9 0.5/0.4 12.3/0.9
Doll 39.0/0.9 14.8/0.8 11.7/0.8 0.6/0.3 9.0/0.8 21.4/0.9 29.4/0.9 0.4/0.5 31.1/0.9 16.2/0.8 22.3/0.9 0.7/0.6 24.7/0.9
Toy 31.2/0.8 9.0/0.7 13.6/0.8 0.7/0.4 12.3/0.8 13.1/0.8 11.9/0.8 0.3/0.3 11.7/0.8 10.4/0.7 12.8/0.8 0.4/0.4 13.6/0.8
Hero 47.4/0.9 16.4/0.9 17.8/0.9 1.2/0.5 16.7 /0.9 18.2/0.8 29.6/0.9 1.1/0.6 30.0/0.9 15.9/0.8 24.0/0.9 1.3/0.7 25.1/0.9

Race-car 52.5/0.9 17.0/0.8 18.6/0.8 0.7/0.5 12.4/0.9 20.7/0.9 30.6/0.9 0.4/0.4 27.9/0.9 16.5/0.8 31.0/0.9 0.6/0.5 28.3/0.9

Homogeneous
Box 37.5/0.9 14.5/0.9 21.8/0.9 0.5/0.2 19.3/0.9 19.4/0.9 19.2/0.9 0.3/0.4 18.8/0.8 16.3/0.9 25.3/0.9 0.5/0.4 24.5/0.9

Tape-Box 39.1/0.9 15.9/0.9 16.0/0.9 0.8/0.5 16.5/0.9 18.9/0.9 25.2/0.9 0.5/0.3 26.2/0.9 16.3/0.9 21.3/0.9 0.6/0.4 26.3/0.9
House 32.9/0.9 13.2/0.9 21.0/0.9 0.6/0.4 22.4/0.9 17.7/0.8 25.0/0.9 0.5/0.5 27.5/0.9 13.9/0.8 25.7/0.9 0.7/0.6 28.8/0.9

Average 38.4 14.2 16.1 0.7 14.0 18.0 23.5 0.5 23.6 14.7 22.9 0.7 23.0

Table 3. Number of Correct Matches Mcor on the boundary regions for sequences in the CoMaL dataset averaged over all the frames in
the sequence. The second number is the Matching accuracy Macc for the method. The best is in bold and the second best is underlined.

Figure 8. Top Row: Matches on a Homogenous object - Box. Bot-
tom Row: Matches on a Textured Object. CoMaL + SSD matches
are shown in the first two images while Hessian + SIFT matches
are shown in the last two.

5.2. Optical Flow

The optical flow problem is a dense point tracking prob-
lem and many optical flow techniques use point feature
tracking as an input to computation of the flow for the en-
tire scene [22, 2]. We evaluate our features for this appli-
cation by matching points across pairs of images and veri-
fying them using the ground-truth flow map provided with
the dataset.

Since in this dataset, the full flow is available, one can
determine the boundary regions by looking at motion dis-
continuities. This helps us evaluate the detectors separately
at the boundary and non-boundary regions. The evaluation
criteria is chosen to be same as the vehicle tracking appli-
cation and Table 2 shows the average number of correctly
matched points across the given flow pairs on the boundary
and internal/non-boundary points separately.

In this test, it becomes clear that CoMaL + SSD outper-
forms the other approaches in the boundary regions while
performing close to the best detector and matcher combi-
nations in the non-boundary regions. Slightly lower perfor-
mance for our method can be expected in the non-boundary
portions as others use information from the whole patch for
matching while we use only around half of it.

5.3. Our Own Dataset

Finally, to evaluate the performance of the detectors at
the boundary regions and under a varying background, since
no suitable dataset exists in the literature, we have devel-
oped our own dataset. The background and the camera are

kept static that allows the use of background subtraction to
separate out the foreground from the background. This also
enables detection of the boundary regions between the fore-
ground and background for evaluation purposes.

Ground-truthing is done by extracting foreground blobs
and assuming that the the relative location of a point with
respect to the blob center does not change drastically over
the frames. Matches obtained with CoMaL+SSD and Hes-
sian+SIFT (which performs second-best) are shown visu-
ally for a homogeneous and textured object in Fig. 8.

Table 3 presents quantitative results at the boundary re-
gions. As can be seen, CoMaL beats all the competing
methods by a large margin at the boundaries for both ho-
mogenous and textured objects, with an overall increase of
14.8 correctly matched points on an average over FAST +
NSD which performs next best, closely followed by Hessian
+ NSD. Results at non-boundary regions are comparable to
other detectors (shown in supplementary section).

Discussion For applications with significant boundary
portions, our method can be used on its own. For other
applications, one could use multiple methods, perhaps in an
iterative framework, where the boundary and non-boundary
portions are estimated iteratively in order to determine the
best algorithm to use for different regions.

6. Conclusion and Future Work
We have presented an algorithm for corner detection and

matching that was found to be much more robust in the
boundary regions compared to existing approaches. This
is accomplished by detecting corners on maximally stable
level lines that often trace the object boundaries and by
matching the two regions separated by such level lines sep-
arately. Results on point tracking on several datasets includ-
ing the challenging real-world KITTI dataset show that our
method is able to extract and correctly match much more
points compared to existing approaches in the boundary re-
gions. Future work includes application to other problems
where our approach might be useful, such as SfM in video
sequences and stereo.

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina

keypoint. In CVPR 2012, pages 510–517. Ieee, 2012. 1
[2] S. Ali. Measuring flow complexity in videos. In ICCV 2013,

pages 1097–1104. IEEE, 2013. 1, 8
[3] R. Almomani and M. Dong. Segtrack: A novel tracking sys-

tem with improved object segmentation. In ICIP 2013, pages
3939–3943. IEEE, 2013. 2

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. In ECCV, pages I: 404–417, 2006. 1, 5

[5] J. Byrne and J. Shi. Nested shape descriptors. In ICCV 2013,
pages 1201–1208. IEEE, 2013. 1, 7

[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Bi-
nary robust independent elementary features. In ECCV 2010,
pages 778–792. Springer, 2010. 1

[7] F. Cao, P. Mus, and F. Sur. Extracting meaningful curves
from images. Journal of Mathematical Imaging and Vision,
22(2-3):159–181, 2005. 2, 4

[8] D. Chen, Z. Yuan, Y. Wu, G. Zhang, and N. Zheng. Con-
structing adaptive complex cells for robust visual tracking.
In ICCV 2013, pages 1113–1120. IEEE, 2013. 2

[9] M. Donoser and H. Bischof. Efficient maximally stable ex-
tremal region (mser) tracking. In CVPR 2006, volume 1,
pages 553–560. IEEE, 2006. 2

[10] L. B. Dorini and S. K. Goldenstein. Unscented feature track-
ing. CVIU, 115(1):8–15, 2011. 1

[11] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-
direct monocular visual odometry. In Proc. IEEE Intl. Conf.
on Robotics and Automation, 2014. 1, 6

[12] W. Förstner. A framework for low level feature extraction.
In ECCV 1994, pages 383–394. Springer, 1994. 4

[13] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-
tiview stereopsis. PAMI, 32(8):1362–1376, 2010. 1

[14] A. Geiger, P. Lenz, et al. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In CVPR, 2012. 2,
6

[15] S. Hare, A. Saffari, and P. H. Torr. Efficient online structured
output learning for keypoint-based object tracking. In CVPR
2012, pages 1894–1901. IEEE, 2012. 1

[16] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey vision conference, page 50, 1988. 1, 4

[17] S. S. Intille and A. F. Bobick. Disparity-space images and
large occlusion stereo. Springer, 1994. 1

[18] R. Jensen, A. Dahl, Vogiatzis, et al. Large scale multi-view
stereopsis evaluation. In CVPR 2014. 1

[19] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier. Urban tracker:
Multiple object tracking in urban mixed traffic. In WACV,
pages 885–892. IEEE, 2014. 6

[20] T. Kanade and M. Okutomi. A stereo matching algorithm
with an adaptive window: Theory and experiment. PAMI,
16(9):920–932, 1994. 2

[21] G. Klein and D. Murray. Improving the agility of keyframe-
based slam. In ECCV 2008, pages 802–815. 1

[22] P. Lenz, J. Ziegler, A. Geiger, and M. Roser. Sparse scene
flow segmentation for moving object detection in urban en-
vironments. In Intelligent Vehicles Symposium (IV), 2011
IEEE, pages 926–932. IEEE, 2011. 1, 8

[23] M. Lourenço and J. P. Barreto. Tracking feature points in
uncalibrated images with radial distortion. In ECCV 2012,
pages 1–14. Springer, 2012. 1

[24] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60:91–110, 2004. 1, 4

[25] B. D. Lucas, T. Kanade, et al. An iterative image registra-
tion technique with an application to stereo vision. In IJCAI,
volume 81, pages 674–679, 1981. 1, 6

[26] E. Mair, G. D. Hager, D. Burschka, Suppa, et al. Adaptive
and generic corner detection based on the accelerated seg-
ment test. In ECCV 2010, pages 183–196. 2010. 1, 6

[27] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In
BMVC, pages 36.1–36.10. BMVA Press, 2002. 2, 3

[28] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-
terest point detectors. IJCV, 60:63–86, 2004. 1, 6

[29] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,
J. Matas, F. Schaffalitzky, et al. A comparison of affine re-
gion detectors. IJCV, 65:43–72, 2005. 2, 3, 6

[30] G. Nebehay and R. Pflugfelder. Consensus-based matching
and tracking of keypoints for object tracking. In WACV 2014,
pages 862–869. IEEE, 2014. 1

[31] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In
CVPR 2004, volume 1, pages I–652. IEEE, 2004. 1, 6

[32] D. Nister and H. Stewenius. Linear time maximally stable
extremal regions. In ECCV 2008, volume 5303, pages 183–
196. Springer, 2008. 5

[33] Š. Obdržálek and J. Matas. Object recognition using lo-
cal affine frames on maximally stable extremal regions. In
Toward Category-Level Object Recognition, pages 83–104.
Springer, 2006. 2, 6

[34] S. Oron, A. Bar-Hille, and S. Avidan. Extended lucas-kanade
tracking. In ECCV 2014, pages 142–156. Springer, 2014. 2

[35] M. Perdoch, J. Matas, and S. Obdrzalek. Stable affine frames
on isophotes. In ICCV 2007, pages 1–8, 2007. 2, 3, 4, 6

[36] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, Mor-
dohai, et al. Detailed real-time urban 3d reconstruction from
video. IJCV, 78(2-3):143–167, 2008. 6

[37] E. Rosten and T. Drummond. Fusing points and lines for
high performance tracking. In ICCV 2005. 1

[38] E. Rosten, R. Porter, and T. Drummond. Faster and better: A
machine learning approach to corner detection. IEEE PAMI,
32:105–119, 2010. 1, 6

[39] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an
efficient alternative to sift or surf. In ICCV 2011. 1

[40] K. Sakurada, T. Okatani, and K. Deguchi. Detecting changes
in 3d structure of a scene from multi-view images captured
by a vehicle-mounted camera. In CVPR 2013, pages 137–
144. IEEE, 2013. 1, 6

[41] J. Shi and C. Tomasi. Good features to track. In CVPR 1994,
pages 593–600, 1994. 1, 4

[42] H. Song, S. Lu, X. Ma, Y. Yang, X. Liu, and P. Zhang. Ve-
hicle behavior analysis using target motion trajectories. In
Vehicular Technology, IEEE Transactions on, 2013. 1, 6

[43] S. Tanathong and I. Lee. Translation-based klt tracker under
severe camera rotation using gps/ins data. Geoscience and
Remote Sensing Letters, IEEE, 11(1):64–68, 2014. 6

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#2097

CVPR
#2097

CVPR 2016 Submission #2097. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[44] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense
descriptor applied to wide-baseline stereo. PAMI, 32(5):815–
830, 2010. 1, 2

[45] D.-M. Tsai, H.-T. Hou, and H.-J. Su. Boundary-based corner
detection using eigenvalues of covariance matrices. Pattern
Recognition Letters, 20(1):31–40, Jan. 1999. 4

[46] T. Tuytelaars and K. Mikolajczyk. Local invariant feature
detectors: A survey. FnT Comp. Graphics and Vision, pages
177–280, 2008. 6

[47] G. Zhang, Z. Dong, J. Jia, T.-T. Wong, and H. Bao. Efficient
non-consecutive feature tracking for structure-from-motion.
In ECCV 2010, pages 422–435. Springer, 2010. 1

10


