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Abstract

Background modeling and subtraction to detect new or
moving objects in a scene is an important component of
many intelligent video applications. Compared to a single
camera, the use of multiple cameras leads to better han-
dling of shadows, specularities and illumination changes
due to the utilization of geometric information. Although
the result of stereo matching can be used as the feature for
detection, it has been shown that the detection process can
be made much faster by a simple subtraction of the intensi-
ties observed at stereo-generated conjugate pairs in the two
views. The method, however, suffers from false and missed
detections due to some geometric considerations. In this
paper, we perform a detailed analysis of such errors. Then,
we propose a sensor configuration that eliminates false de-
tections. Algorithms are also proposed that effectively elim-
inate most detection errors due to missed detections, specu-
lar reflections and objects being geometrically close to the
background. Experiments on several scenes illustrate the
utility and enhanced performance of the proposed approach
compared to existing techniques.

1 Introduction

Foreground object detection using background subtraction
(e.g. [1, 2, 3]) has been used extensively in video surveil-
lance applications due to its underlying ease of implemen-
tation and effectiveness. Most previous work has focused
on using a single camera for background modeling, which
is highly effective for many common surveillance scenar-
ios. However, it is difficult to deal with sudden illumination
changes and shadows when only a single camera is used.

The use of two cameras for background modeling serves
to overcome these problems. In particular, dense stereo cor-
respondence between two views can be used to create a dis-
parity map, which is invariant to shadows and illumination
changes. Such a disparity map can be used as an input to
a disparity-based background model, in principle achieving
robustness against illumination changes.

Since it is necessary that accurate stereo correspon-
dences be used for the background model (e.g. [4]), sophis-
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ticated stereo algorithms such as those described in [5, 6]
can be used. However, without the aid of specialized hard-
ware, most of these algorithms perform too slowly for real
time background subtraction. Consequently, in many sys-
tems, the online stereo algorithm is implemented on hard-
ware and is based on simpler and less accurate stereo. Ex-
amples include the SVM system described in [7, 8] and
the video-rate stereo machine described in [9]. In [10];
disparity-based background modeling was similarly imple-
mented on a single PCI card. This is then combined with
color background subtraction so that foreground objects
close to the background can be reliably detected.

1.1 Fast Illumination-Invariant Background
Modeling using Multiple Views

Ivanov et. al. [11] described a clever method that does not
require any specialized hardware but yet performs at video-
rate. It employs accurate stereo to construct the background
model, but rather than performing online stereo and dispar-
ity differencing for detection, the color difference between
conjugate pixels is used to distinguish between background
and foreground. Assuming that the scene is Lambertian and
that the images have been color calibrated, the intensities
for both pixels of a conjugate pair will change in the same
way if they both view the background (which may become
shadowed or illuminated differently), but differently if only
one of them is the image of a foreground object. By utiliz-
ing disparity information implicitly, this method retains the
advantages of multiple-view detection (invariance to illumi-
nation changes and shadows) while being very fast (≈ 25
fps). Since stereo is performed offline for background mod-
eling, accurate stereo algorithms can be employed.

The algorithm inherently suffers from both missed and
false detections (occlusion shadows) generated by homoge-
neous foreground objects. [11] suggested using additional
cameras to mitigate the false alarms caused by occlusion
shadows, but did not discuss how to reduce missed detec-
tions. Sensor placement, which affects these online error
rates, was also not addressed.

In this paper, we analyze the problems of missed and
false detections in Sec. 2. We describe an approach to the
false detection problem from a sensor planning perspective
in Sec. 3. In particular, we apply the algorithm from [11]
using a two-camera configuration, in which the cameras are
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vertically aligned w.r.t. a dominant ground plane i.e. the
baseline is orthogonal to the plane on which foreground
objects will appear. This configuration provides an initial
foreground detection free of false detections. By sampling
a small number of pixels from this initial foreground detec-
tion and generating stereo matches for them, we show that
the missed detections can then be reduced in Sec. 4. Since
only a small number of online stereo matches is required,
system performance is not compromised. Sec. 5 concludes
the paper with experimental results.

2 A Geometric Analysis of Missed
and False Detections

2.1 False Detections (Occlusion Shadows)

Given a conjugate pair (p, p′), false detection of p occurs
when p′ is occluded by a foreground object but p is not.
Ivanov et. al. [11] suggest the use of multiple cameras for
this problem, detecting a change only when the difference
from all of the other cameras is above a threshold. This idea,
however, should be combined with proper sensor planning
so that neighboring occlusion shadows as well as neighbor-
ing correct and missed regions do not overlap.

Consider a foreground object. We define three tangent
points on the object as shown in Fig. 1(a): tref corresponds
to the leftmost tangent line from the reference view1, tsec1

and tsec2 correspond to both tangent lines from the sec-
ond view respectively. Also, let the background pixels cor-
responding to them be bref , bsec1 and bsec2 respectively.
Clearly, these points depend on the baseline, object size and
object position. The extent Ep of the region of false detec-
tion is:

Ep = min(||Pbsec1 − Pbsec2 ||, ||Pbref − Pbsec2 ||), (1)

where P is the projection matrix of the reference camera.

2.2 Missed Detections

Missed detections occur when a homogenous foreground
object occludes both pixels of a conjugate pair, since the
two pixels will then be very similar in intensity.

A simple geometrical analysis reveals that the extent En

of the region of missed detection is dependent on the base-
line, object size and object position. Referring to Fig. 1(a),
En can be expressed as:

En = max(||Pbsec1 − Pbsec2 || − ||Pbref − Pbsec2 ||, 0).
(2)

1The reference view is the image in which we identify foreground pix-
els;clearly either of the two images can serve as reference.

As the distance between a foreground object and the back-
ground decreases, En approaches the extent of the image of
the object. Thus, when the foreground object is sufficiently
close to the background, it is entirely missed. This is a com-
mon problem associated with disparity-based methods, as
mentioned earlier.

Eqns. 1 and 2 suggest that there is a tradeoff between the
extent of false and missed detections that depends on the
placement of the sensors. Thus, one can select the sensor
placement that yields the desired trade-off. This is consid-
ered in the next section. The algorithm from [11] was tested
on a real scene in Fig. 2. One can clearly see both missed
and false detections.

3 Sensor Placement to Eliminate
False Detections

In most surveillance applications, the objects (e.g. people
and cars) to be detected are standing and moving on a dom-
inant principle plane, which we refer to as the ground plane.
For such applications, we consider a two-camera configura-
tion that is well suited for dealing with false detections. The
two cameras are placed such that their baseline is orthogo-
nal to the ground plane and the lower camera is used as the
reference for detection [Fig. 1(c)]. In this camera configura-
tion, the epipolar planes are orthogonal to the ground plane.

From Fig. 1(c), one can observe that if the lower camera
is used as the reference, false detections can only be gen-
erated at the lower edge (edge closest to the ground plane)
of the object. This is as opposed to using the higher cam-
era as reference, shown in Fig. 1(b). Since objects are on
the ground plane, Ep in Eqn. 1 is close to zero, in effect
eliminating any false detection. Additionally, false detec-
tion does not occur at the left or right edge since the epipo-
lar planes are orthogonal to the ground plane. Such a sensor
configuration will be used throughout the rest of the paper.

On the other hand, missed detections remain at the lower
portion of the object [Eqn. 2]. However, for an upright ob-
ject that has negligible front-to-back depth, it may be shown
(see Proposition 1 below) that the proportion of an object
that is missed is invariant to its position. This result will
play an important role in eliminating missed detections.

We assume that foreground objects are homogeneous,
that the background pixels arise from the ground plane, and
that objects are upright w.r.t. the ground plane. Then it is
easy to show that:

Proposition 1 In 3D space, the missed proportion of an ho-
mogeneous object with negligible front-to-back depth is in-
dependent of object position. Equivalently, the proportion
that is correctly detected remains constant.

Proof Referring to Fig. 3(a), the height of the object is h
and that of the second camera is H . Let the length of the
baseline be `b. The extent of the region of missed detection
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Figure 1: Problem with the algorithm from [11]. (a) Missed and false detections shown from the top view. (b) Analysis for
the special case of cameras vertically aligned w.r.t. the ground plane (side view). Here the top camera is taken as reference,
which causes missed detection of the whole object and false detections as shown. (c) Switching the reference camera to the
lower one eliminates most of the false detections, but missed detections remain according to Eqn. 2.

is h − z2−z1

z2
`b, thus giving the proportion ρ of the object

that is missed as:

ρ =
h − h

H
∗ `b

h

= 1 −
`b

H
.

(3)

Consequently, ρ is a constant, independent of the location
of the object on the ground plane. �

Ideally, one would like to place the reference camera as
close to the ground plane as possible so that ρ becomes zero.
This is clear from Eqn. 3, where a baseline of length H
eliminates any missed detection. However, mounting limi-
tations, occlusion considerations and the imaging resolution
of the ground plane typically limit the maximum possible
length of the baseline, leaving some missed detections at
the bottom of the object. Moreover, for outdoor scenes, it is
clearly necessary that the reference camera be above the ob-
ject so that the corresponding background is well-defined.

The usefulness of such a sensor configuration is illus-
trated in Fig. 4. Sudden illumination changes caused by a
vehicle’s headlight are detected when single camera back-
ground subtraction is used. On the other hand, by sim-
ply using the algorithm from [11] with the proposed sen-
sor configuration, the detection results are invariant to the
illumination changes while false detections are effectively
prevented.

4 Reducing Missed Detections

Using the proposed sensor configuration, an initial detection
generally free of false detections can be obtained; missed
detections however remain at the lower portion of each ob-
ject. In this section, we describe an approach to reduce these
missed detections.

Let ω be a foreground blob from the initial detection, and
let It be a foreground pixel in ω with its corresponding 3D
point being t. Define the base point, b, of t as the point on
the ground plane below t. The image of b is denoted as Ib.

A stereo search, constrained to only foreground pixels in
the second view lying along the associated epipolar line, is
first used to find the conjugate pixel It′ of It. The location
of It and It′ , together with calibration information allows
us to determine Ib, as described in Sec. 4.1.

If ||It−Ib|| is sufficiently large, then It is an off-ground-
plane pixel and we begin a search along the epipolar line
through It to find the location where the ground plane is
first visible. We employ an iterative approach that works as
follows: we first increment It by ∆It along the associated
epipolar line, and then the base point, Ib, for the new It is
determined in the same fashion. When ||It−Ib|| is less than
some critical value, then we have found the lower boundary
of the foreground blob along the associated epipolar line.

∆It must lie in the interval [1, ||It − Ib||] pixels. Us-
ing the lower bound for ∆It generally gives a well-defined
foreground blob, while using the upper bound generates a
foreground bounding box. The trade-off is the number of
stereo searches, decreasing as ∆It increases. The algorithm
can also be easily extended to handle objects not moving on
the ground plane surface. In this case, the iteration is ter-
minated when the base points of the sampled pixel and the
corresponding background are sufficiently close.
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Figure 2: Detection results using the algorithm from [11]. Left to right: reference view, second view and foreground detec-
tions. Both missed and false detections are clearly evident.
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Figure 3: (a) The proportion of missed detections for a homogeneous object with negligible front-to-back depth is inde-
pendent of object position. (b) Image projection in camera-centered 3D coordinate system. (c) Image projection with 3D
coordinate system on the ground plane.

Figure 4: Left to right: reference view, second view, single camera detection and two-camera detection. The usefulness of
the proposed sensor configuration is illustrated here. The vehicle’s headlight is cast on the wall of the building.
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Figure 5: Along the epipolar line, the red dots are the sam-
pled pixels. The lowermost sampled pixel has ||It−Ib|| = 0
since it lies on the ground plane and is consequently used as
the lower boundary of the foreground blob along the epipo-
lar line.

4.1 Determining the Base Point

The algorithm requires that the base point of a pixel be
determined. This can be achieved with two different ap-
proaches. The first approach assumes weak perspective pro-
jection i.e. all points on an object have the same depth. This
is often a good approximation for outdoor scenes where ob-
jects are relatively far from the cameras. When this assump-
tion is not valid, a second approach can be considered that
utilizes the vertical vanishing point and the vanishing line
of the ground plane. The details of both approaches are dis-
cussed in Sec. 4.1.1 and Sec. 4.1.2 respectively.

4.1.1 Weak Perspective Model

We use a camera-centered 3D coordinate system as shown
in Fig. 3(b). t is the corresponding 3D point of It. Let
its 3D coordinate be [Xt, Yt, Zt, 1]. The point m with 3D
coordinate [Xm, Ym, Zm, 1] is defined as the point such that
its image Im has coordinate Π−1∗It′ , where Π is the ground
plane homography from the reference to second view and
It′ is the conjugate pixel of It in the second view. b is the
base point of t with 3D coordinate [Xb, Yb, Zb, 1]. Let its
image be Ib. We will first consider image projection in the
y−direction. From the property of similar triangles, it can
easily be verified from Fig. 3(b) that:

Yt − Ym

Yt − Yb

= α. (4)

Here, α = 1− ρ [Eqn. 3]. Consequently, Ym and Yb can be
expressed as:

Ym = Yt − αYt + αYb, (5)

Yb = Yt −
Yt

α
+

Ym

α
. (6)

The image positions yt, ym and yb of Yt, Ym and Yb respec-
tively can be expressed as:

yt = Yt

f

Zt

, (7)

ym = Yt

f

Zm

− αYt

f

Zm

+ αYb

f

Zm

, (8)

yb = Yt

f

Zb

− Yt

f

αZb

+ Ym

f

αZb

, (9)

f being the focal length. We are interested in the image
ratio ||yt−ym||

||yt−yb||
. In the weak perspective case, the depths of

points on the object are assumed to be a constant Zave. This
gives:

||yt − ym||

||yt − yb||
=

α f

Zave
(Yt − Yb)

f
αZave

(Yt − Ym)
,

= α.

(10)

This shows that the detection ratio is an invariant under
weak perspective assumption. The same principle applies
to the image projection in the x−direction. Thus, using L2

norm, ||It − Im|| =
√

α2(||yt − yb||2 + ||xt − xb||2) and
||It − Ib|| =

√

(||yt − yb||2 + ||xt − xb||2), giving the de-

tection ratio ||It−Im||
||It−Ib||

= α. Consequently, Ib is given as:

Ib = It +
||It − Im||

α
. (11)

Notice that Im can be determined independently using Π
and It′ . As a result, previous assumptions made in Eqn. 3
that the object is homogeneous and the background pixels
are lying on the ground plane are unnecessary.

4.1.2 Perspective Model

When the weak perspective assumption is violated, the base
point can be better estimated by using additional image-
based calibration information in the form of the vertical
vanishing point and the vanishing line of the ground plane.
This method is based on the work of Criminisi et. al. [12],
who described a method for computing distances between
parallel planes in a single view. In particular, we extend
their method to determine the image of the base point for a
conjugate pair. It may be noted that the calibration required
for this approach is simpler than full camera calibration re-
quired for Euclidean reconstruction.

Consider the projection matrix P of the reference cam-
era. Let [P1 P2 P3 P4] represents its matrix columns.
The 3D coordinate system is as shown in Fig.3(c). Conse-
quently, let the 3D coordinates of t and b be [X, Y, h, 1]T

and [X, Y, 0, 1]T respectively, where h is the height of the
object above the ground plane. The images of t and b can
thus be expressed as:
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Ib = βb(XP1 + Y P2 + P4),

It = βt(XP1 + Y P2 + hP3 + P4).

(12)

βb and βt are unknown scale factors. Let the normalized
vanishing line and vertical vanishing point of the ground
plane be ˆ̀

ref and vref respectively. Since P3 is actually the
vertical vanishing point scaled by an unknown factor βref ,
the following is true:

It = βt(
Ib

βb

+ hβrefvref ). (13)

If we take the vector product of both terms of Eqn. 13 with
Ib, followed by taking the norm on both sides, the following
expression results:

hβref = −
||Ib × It||

(ˆ̀ref .Ib)||vref × It||
. (14)

The above derivation was first presented in [12]. βref can
be computed if we know the height of a reference object in
the scene. Due to errors present in the computation of ˆ̀

ref

and vref , it is often required that more robust methods be
used for computing them. In [12], a Monte-Carlo approach
was used.

The same principle can also be applied to the second
camera. Let the parameters for the second camera be βsec,
ˆ̀
sec and vsec. Consequently, we can equate the height in

Eqn. 14 for both cameras to obtain the following equation:

||Ib × It||

βref (ˆ̀ref .Ib)||vref × It||
=

||(Π ∗ Ib) × It′ ||

βsec(ˆ̀sec.(Π ∗ Ib))||vsec × It′ ||
.

(15)
The image of the base point in the second view is clearly
Π∗Ib, where Π is the ground plane homography. It′ is again
the conjugate pixel of It. In addition, Ib is constrained to lie
on the line through It and the vertical vanishing point. Ib

can thus be computed using these two constraints.

5 Implementation and Results

Experiments were performed on a dual Pentium Xeon,
2GHz machine. We utilized the extra processor to perform
in parallel single camera background subtraction in the sec-
ond camera. The resulting performance of the system was
very fast, with frame rate in the range of ≈ 25 fps.

Correspondences of background pixels for the back-
ground model were mainly determined using homographies
of the principle planes present in the scene, computed on
the basis of a small set of manually selected matches per
plane. This typically leaves only a small set of background
pixels for general stereo matching. Background subtraction

is performed by computing the normalized color difference
for a background conjugate pair and averaging the compo-
nent differences over a n×n neighborhood (typically 3×3).
To deal with different levels of variability, each background
conjugate pair is modeled with a mixture of Gaussians ([2])
that are updated over time (typically two Gaussians are suf-
ficient). Foreground pixels are then detected if the asso-
ciated normalized color differences fall outside a decision
surface defined by a global false alarm rate.

While the two-camera algorithm will not detect shadows
as foreground, it will generally detect reflections of the fore-
ground objects from specular surfaces, such as wet pave-
ment, as foreground. We describe below a simple method
that removes most of these specular reflections.

First, after applying the basic two-camera algorithm
we employ simple morphology and connected component
analysis to find foreground objects. This is illustrated in
Fig. 6(a), 7(a), 8(a) and 9(a), where we show the bounding
boxes that surround these foreground pixel clusters detected
by this spatial clustering step.

Employing our base-finding algorithm, we first find the
intersection of the foreground object with the ground plane
as follows. The ”topmost” pixels of the foreground region
along each epipolar line passing through the bounding box
are identified, and for each of these topmost pixels we eval-
uate the image gradient to determine whether they are good
candidates for stereo matching. This will typically choose
those pixels on the boundary of the object detected. For
each of those pixels, we find the base using the algorithm
from Sec. 4.1.1. The line passing through the bases can
then be constructed using a robust line fitting algorithm.
The object is detected by ”filling in” the foreground region
above the base line along the epipolar lines. This is illus-
trated in Fig. 6(c), 7(c), 8(c) and 9(c). The first step in find-
ing the base is identifying the conjugates for these topmost
points; to make this efficient, we constrain the matches to
only those pixels in the second view along the epipolar line
that are additionally foreground pixels detected by a single
camera background subtraction algorithm (which will de-
tect a superset of the pixels detected by the two-camera al-
gorithm). The results of the single camera background sub-
traction applied to the second view are shown in Fig. 6(b),
7(b), 8(b) and 9(b).

As a side effect, we can eliminate from the initial de-
tection any pixel detected as a foreground pixel but lying
below the base of the object. This tends to eliminate specu-
lar reflections ”connected” to the foreground region by the
spatial clustering step. The reason is that the virtual image
of an object reflected from the ground plane lies below the
plane. However, it is possible that a component of reflected
pixels in the reference image is not connected by the spatial
clustering algorithm to the object that cast the reflection. In
this case, we find that, typically, the stereo reconstruction
algorithm fails to find good matches along the epipolar line
in the second view. This is not surprising since the observed
input results from a combination of Lambertian and specu-
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lar components at the point of reflection. The likelihood
of getting a match is low because a difference in either the
Lambertian components or the reflection properties would
cause the reflected points to appear differently. Even if they
are matched, the base point would lie above the reflected
point. Thus, we typically eliminate these specular compo-
nents also. This can be seen in Fig. 6(c) and 7(c) - notice the
bounding box below the vehicle in Fig. 7(b). It is a specular
reflection from the vehicle, and is eliminated due to failure
to find conjugates in the second view. Many more examples
of the elimination of specular reflections can be seen in the
accompanying videos.

A common problem associated with disparity-based
background subtraction occurs when the foreground object
is physically close to a surface such as a wall of a build-
ing. Gordon et. al. [10] proposed a solution to this problem
that combines disparity and color information. However,
since disparity information for the whole image is required,
performance can become a concern. Furthermore, although
the method utilizes adaptive thresholding, it is not fully in-
variant to shadows and illumination changes. On the other
hand, because our algorithm requires only initial partial de-
tection, its performance in detecting near-background ob-
jects compares favorably. In particular, when a foreground
object comes close to a background surface such as a wall,
the algorithm can typically still detect the top portion of the
object. This initial detection can subsequently be used to
initialize our base-finding algorithm. We demonstrate this
in Fig. 8. Besides some specularities (reflection in the long
glass windows) and shadows (on the wall), the person was
also walking near the background wall. In spite of that, the
person was fully detected without any false alarms.

The perspective model is important for indoor scenes,
where objects are closer to the camera. An example is
shown in Fig. 9, where in (e), the bases of three chosen
pixels are used to form the lower boundary of the object.
Comparison with the weak perspective model is also shown
in (d). With accurate calibration, the perspective model also
performs as well as the weak perspective model for outdoor
scenes. For example, the perspective model was used to
compute the base point in Fig. 8.

6 Concluding Remarks

This paper considers a fast background subtraction algo-
rithm using two cameras that has been previously consid-
ered in the literature [11]. This algorithm has the advantage
of being extremely fast and simple while being invariant to
shadows and illumination changes. However, the applica-
tion of the method results in both false and missed detec-
tions due to certain geometric considerations. In this pa-
per, we have analyzed these errors in terms of the camera
geometry. From the analysis, a sensor configuration was
proposed that effectively eliminates most false detections.
Additionally, algorithms were considered that fill-in missed

detections and eliminate false detections occurring as a re-
sult of specularities. The result is a surveillance system that
gives very accurate detection in an extremely efficient man-
ner without significant errors due to shadows, sudden illu-
mination changes and specularities. Due to these character-
istics, the system can be very useful in surveillance applica-
tions where high performance is critical.
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(c)(a) (b) (d)

Figure 6: (a) Two-camera initial detection. Red square marks a sampled pixel while white square marks its base, computed
using weak perspective model. (b) Single camera detection in the second view used to constrain stereo searches. Red square
marks the conjugate pixel and white line is the associated epipolar line. (c) Two-camera final detection; specular region is
removed since it lies below the base point in (a). (d) Single camera detection in the reference view for comparison.

(c)(a) (b) (d)

Figure 7: (a) Two-camera initial detection. Here, the specular region was clustered as a separate bounding box. (b) No valid
match could be found for the specular region. (c) The specular region successfully removed in the two-camera final detection.
(d) Single camera detection in the reference view.

(c) (d)(b)(a)

Figure 8: (a) Some detected pixels remained near the top portion in the two-camera initial detection. (b) Single camera
detection in the second view. The conjugate pixel was found at the top of the person. (c) Foreground filling gives a very good
detection of the person even though he is very near the background wall. (d) Single camera detection in the reference view.

Figure 9: Indoor scene. (a) Two-camera initial detection. Three sampled pixels are shown in red squares, while the blue
squares are the bases. Noise near the shadow was eliminated in the final detection since it was below the base. (b) Single
camera detection in the second view. Stereo matches are found for the three sampled pixels. (c) Two-camera final detection
using only one of the sampled pixels; the lower boundary is not well-defined. Perspective model used here. (d) Comparison
with the weak perspective model. The object was over-filled. (e) The three bases are used to form the lower boundary. A few
more sampled pixels should fully recover the lower boundary. (f) Single camera detection in the reference view.
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