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Abstract. Vision systems for various tasks are increasingly beindayeqgl. Al-
though significant effort has gone into improving the alghoris for such tasks,
there has been relatively little work on determining opfir@nsor configura-
tions. This paper addresses this need. We specifically ssldmed enhance the
state-of-the-art in the analysis of scenarios where thereynamically occuring
objects capable of occluding each other. The visibilitystoints for such sce-
narios are analyzed in a multi-camera setting. Also andlyze other static con-
straints such as image resolution and field-of-view, andrétymic requirements
such as stereo reconstruction, face detection and baakdjmppearance. Theo-
retical analysis with the proper integration of such visfipiand static constraints
leads to a generic framework for sensor planning, which ban be customized
for a particular task. Our analysis can be applied to a wadgéapplications, es-
pecially those involving randomly occuring objects, andule surveillance and
industrial automation. Several examples illustrate thdewapplicability of the
approach.

1 Introduction

Systems utilizing possibly multiple visual sensors havednge essential in many ap-
plications. Surveillance and Monitoring, industrial autation, transportation and auto-
motive, and medical systems are a few of the important agiadic domains. Existing
research has mainly focused on improving the algorithmsogted in these systems,
while little focus has been given to the placement of senfmrsptimal system per-
formance. Each system also has its own set of requiremengdurity systems, for
instance, the captured video streams may be inspected giteually, or a more ad-
vanced computerized system may be utilized to detect spaigotivity automatically.
Furthermore, automated people detection and trackingisgsimay have different ob-
jectives. Some systems utilize multiple closely-spacedaras for the purpose of accu-
rate stereo matching. Others utilize widely separated casrer maximizing the object
visibility in a dense situation [14, 11]. Still others [2341 19], use multiple cameras for
the main purpose of increasing the coverage area by uglizam-overlapping field-of-
view cameras. In this paper, we develop a generic formuldtiat can be customized
to find good sensor configurations for any of these systems.

** This work was conducted while the author was with Siemenp@ate Research, Princeton,
NJ USA



Sensor planning has been researched quite extensiveltharedare several differ-
ent variations depending on the application. A popular ggtethods, called next-view
planning, attempt to build a model of the scene incremanbgllsuccessively sensing
the unknown world from effective sensor configurations gsire information acquired
about the world up to this point [17, 25,5, 13,12, 2, 8]. A tethset of methods [10]
have focused on finding good sensor positions for capturistgtic scene from desir-
able viewpoints assuming that some geometric informatimugthe scene is available.
Bordering on the field of graphics, the main contributionwdls methods is to develop
efficient methods for determining the view of the scene fréffeient viewpoints.

Methods that are directly related to ours are those thanasghat complete ge-
ometric information is available and determine the loaatid static cameras so as to
obtain the best views of a scene. This problem was origin@ilsed in the computa-
tional geometry literature as the “art-gallery problem8]1The traditional formulation
of such problem assumes the simple assumption that twospaiet called visible if
the straight line segment between them lies entirely ingidgolygon. Even with such
simple definition of visibility, the problem is NP-complete

Some of the recent work has concentrated on incorporatiewarfore constraints
like incidence angle and range into the problem and obtagypgmoximate solution to
the resultant NP-complete problem via randomized algwstfir]. Several researchers
[6,20,24,13, 26, 22] have studied and incorporated morepé®atonstraints based on
several factors not limited to (1) resolution, (2) focus) f{gld of view, (4) visibility,
(5) view angle, and (6) prohibited regions. However, thebfgm becomes much more
complex to be amenable to fast approximation solutions.

In addition to the “static” constraints considered so fhere are additional con-
straints that arise when dynamic obstacles are presertt.c@unstraints are essential to
analyze since system performance is a function of objedtilifg. In [3], it was pro-
posed to combine visibility and static constraints via aghted sum of the error due
to the two factors. On the other hand, our earlier paper [I6ppsed maximization
of the visibility while static constraints were analyzethply ashard constraints that
would either be satisfied or not at a given location. In thiskyae provide a more gen-
eral approach towards integration of these two types oftcainss. We utilize analysis
of visibility constraints and determination of multi-caraevisibility rates from [15].
Integration of such analysis with a variety of static coaisits and application require-
ments leads to a generic formulation for sensor planningt@uization of the method
for a given system allows the method to be utilized for a \grié different tasks and
applications.

The paper is organized as follows. Section 2 briefly revietia pvork on estimat-
ing the probability of visibility of an object at a given la@an in a scene for a certain
configuration of sensors. Section 3 describes the integrati static constraints with
probabilistic visibility constraints. Maximization of ¢hthus obtained quality measure
over an entire region of interest will be considered in gec4. Section 5 concludes the
paper with planning experiments for some synthetic andsestes.
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Fig. 1. Scene Geometry for (a) 3D case, (b) 2.5D case, where thersdmmee finite heights.

2 Visibility Analysis

In this section, we briefly review and generalize some Migjbanalysis results from
[15] that are pertinent to this work.

Since the particular application domain might containeittwo or three dimen-
sions, we consider the general case ofradimensional space. Let us assume that we
have a regiol®R C R™ of content A observed by, sensors [Fig. 1]. Here, we use the
term “content” in a general sense, such that it is the arel dfm = 2, and is the
volume ifm = 3. Let&; be the event that a target objétht locationl € R in angular
orientationd is visible from sensof. The definition of such “visibility” can be defined
according to the application e.qg visibility of only a partbé object might be sufficient.
Then, it is useful to compute the following probabilities:

{P(&),i=1.n}, {P(&NE)),i,j=1.n}, ..., P(m &) (1)

In order to compute these probabilities, we first note thatetexists a region of
occlusionR{ for each sensot such that the presence of another objeckfhwould
cause9 to not be visible from ! [Fig. 1]. Now, let us assume that objects are located
randomly in the scene with object denskySince is a function of the location and
may also be influenced by the presence of nearby objects(stetxo) be the density
at locationx,. given that visibility is being calculated at locatise . Then, it can be
shown [16] that the probability that obje€t is visible from all of the sensors in a
specified setiy, i . . . iy, iS%

PC N 8i>%(1—§)1/b )

where
_ 1 h— Aob . )\avg
“= Jre AMxelxo)dxe” [ A(Xc|%0) dxc (3)

(i1, im) (i1, im)

! Note that this region of occlusion is dependent on the agiidin-specific definition of visibil-
ity. For instance, one may require that all of the object Iséhle, or one may require visibility
of only the object center.

2 Note that this is a better approximation than the one givesuirearlier paper[15]



Here,\..q is the average object density in the regidy;, is the content of an occluding
object, anng’L i) is the combined region of occlusion for the sensor(set . . ,,)

formed by the “geometnc” union of the regions of occlusjbgn for the sensors in this
set,i.eRy, , y=U R

Im

It may ‘be noted thadz |s the effect on the probability due to the presence of an
object, and is acorrection to such effect due to the finite object size.

3 Static Constraints and the Capture Quality

Several stationary factors affect the quality of the datped by a camera. We first de-
scribe such factors briefly and then discuss how they candmeporated into a generic
formulation that enables optimization of the sensor coméian with respect to a user-
defined criteria.

3.1 “Static” Constraints

Some of the static constraints affecting the view of the camee described next. Many
of these constraints may be considered in either of two warst constraints thatnust

be satisfied at the given location for visibility, soft constraints that may be measured
in terms of a measure for the quality of the acquired data.

1. FIELD OF VIEW: Cameras have a limited field of view, and a stoaint can be
specified terms of a maximum angle from a central cameratéirec

2. OBSTACLES: Fixedhigh obstacles like pillars block the view of a camera, and
such constraint can be verified for a given object location.

3. PROHIBITED AREAS: There might also exist prohibited aréle desks or coun-
terswhere people are not able to walk. These areas havetageffiect on the vis-
ibility in their vicinity since it is not possible for obsteting objects to be present
within such regions.

4. IMAGE RESOLUTION: The resolution of an object in an imageluces as the
object moves further away from the camera. Therefore, meg#mi observations
are possible only up to a certain distance from the camera.

5. ALGORITHMIC CONSTRAINTS: There are several algorithnaignstraints that
may exist. Such constraints may also be more complex invgiviter-relationships
between the views of several cameras. Stereo matchingsdero®r more cameras
is an example of such a constraint and involves a complegiat®n of several
factors including image resolution, the maximum distartdd a view that can occur
from one view to the other and the triangulation error.

6. VIEWING ANGLE: An additional constraint exists for the mimum anglec,,, 4.
at which the observation of an object is meaningful. Suclenlaion can be the
basis for performing some other tasks such as object retogniVhen the vertical
viewing angle is considered, this constraint translat&sarconstraint on the mini-
mum distance from the sensor that an object must be. Thedmailzviewing angle
can also be considered similarly by consideration of thdeabgtween the object
orientation and the camera direction.



Event Space

Fig. 2. The event space may be partitioned into disjoint event stdse,only &;, for instance,
would only include event space that is not common with otkents.

3.2 The Capture Quality

In order to determine the quality or goodness of any givers@enonfiguration, the
“static” constraints need to be integrated into a simglgture quality functiong; () that
measures how well a particular object at locafionangular orientatiofl is captured by
the given sensor configuration. Due to occlusions, howesweh quantity is a random
variable that depends on the occurrence of evénfEhe event space may be partitioned
into the following disjoint sets [Fig. 2]:

No¢&; occurs, with quality: 0
Onlyé€; occurs, with quality: q(&;)
Only€; N E;occurs, with quality: ¢(&; N E;)
ﬂ &; occurs, with quality: q(ﬂ &)

K2 (2

Such separation allows one to specify the quality measuredoh of such events
separately. More specifically, such quality function netedse specified for all of such
events. In other words, one needs to specify for all possiets, the quality measure
ai(i1,-..,im,0) that refers to the capture quality obtained if an object atltitation
[ in angular orientatiod is visible fromall of the sensors in the given m-tuple i.e. the
event((,c;,,...i,.) €i) Occurs.

To give some insight into such specification of the qualitydiion, one can consider
the case of stereo matching. In such an application, sirsilgiity from at least two sen-
sors would be required for matching, the capture qudlity:,9)},7 = 1...n would
be zero. For the terms involving two sensors, several cangetquirements need to
be considered. Under some simplifying assumptions, ther @rrthe recovered depth
due to image quantization may be approximated as being piopal toJz ~ 22/bf,
wherez is the distance from the camerasds the baseline distance between the cam-
eras, andf is the focal length. On the other hand, the angular distortibthe image
of an object from one camera to the other may be approximatég & tan—*(b/z),
and is directly related to the accuracy with which stereoctmag may be performed.



Furthermore, an increase in the distance from the camesasdakreases the size of
the object view, which might further decrease the accurdstareo matching. Thus,
in the perpendicular direction, the accuracy of stereo hiaggfirst increases with the
distances from the cameras, and then decreases, while dinéization error increases
with such distances. Thus, a quality function that peaksfone given distance and
tapers off in either direction can be considered. Thus, fiyrgven task requirement,
a trade-off between different constraints is typicallydlwed and it is up to the user to
specify functions that define the desired behavior in suciditions.

Computation of probabilities of these disjoint events glaiith the specification of
the capture quality associated with such events yieldslzgfibty function for the cap-
ture quality at a particular location (Fig. 5 illustratesestample where the function for
atypical scene is averaged over the entire region of int¢r€ven such a probability
function, one can consider several integration measurefich the mean will be con-
sidered in this paper for simplicity purposes. Thean capture quality at a particular
location for a particular object orientatidrmay be written as:

q(0) = ZQ(&u 0)P(Only¢&;) + Z a(€;NE;,0)P(Only&;NE;) +

Vi i<j

o +q(() & 0)POnly (&)

The probabilitiesP(Only N, €;) may be rewritten using th&((, £;) terms that we
had calculated earlier.

3.3 Integration of Quality across Space

The analysis presented so far yields a functigix, 9), that refers to the capture quality
of an object with orientatiod at locationx given that the sensors have the parameter
vectors. Such parameter vector may include, for instance, theitmtatiewing direc-
tion and zoom of each camera. Given such a function, one damede suitablecost
function in order to evaluate a given set of sensor parametet to the entire region to
be viewed. Such sensor parameters may be constrainedrfdutb¢o other factors. For
instance, there typically exists a physical limitation be positioning of the cameras
(walls, ceilings etc.). The sensor planning problem cam the formulated as a prob-
lem of constrained optimization of the cost function. Supkiraization will yield the
optimum sensor parameters according to the specified costidn.

Several cost functions may be considered. One may defing &uoation that max-
imizes the minimum quality in the region. Another cost fuoet and perhaps the most
reasonable one in many situations, is to define the cost asetigtive of the average
capture quality in a given region of interest:

2m
C(s) = /RA A(x,0)qs(x,6)df dx (4)

This cost function has been utilized for obtaining the rssin this paper. Note that
we have added an additional parameten the object density function in order to
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Fig. 3. The Cost Function for the scene in Figure [4 (b)] where, flostration purposes, only the
x-coordinate and direction of the second camera have be@dva

incorporate information about the object orientations itite density function. Since
the orientation does not affect the occluding charactesisff an object, such parameter
was integrated (and eliminated) for the visibility anadygresented previously.

4 Minimization of the Cost Function

The cost function defined by Equation 4 (as also other s@tahés) is highly complex
and due to the variegated nature of the constraints, it ipossible to obtain a single
method that optimizes such function in a very efficient maniRerthermore, even for
simple scenarios, it can be shown that the problem is NP-tmimpnd not amenable
to fast polynomial time solutions. Figure 3 illustrates thast function for the scene
shown in Figure 4 (b) where, for illustration purposes, dmlg of the nine parameters
have been varied. Even in this two dimensional space, thiersva global minima and

several local minima. Furthermore, the gradient is zer@imesregions.

Due to the generality and characteristics of the cost fong¢tive propose to use
a general method that is able to find the global minima of cempglst functions.
Simulated Annealing and Genetic Algorithms are two clasgesigorithms that may
be considered[21]. For our experiments, we utilized a lyigiophisticated simulated
re-annealing softwar@SA developed by L. Ingber [9].

Using this algorithm, we were able to obtain extremely gosaksr configurations
in a reasonable amount of time (5min to a couple of hours oméiure IV 2.2GHz PC,
depending on the desired accuracy of the result, the nunfildénensions of the search
space and complexity of the scene). For low dimensionalesp&c 4), where it was
feasible to verify the results using full search, it was fduinat the algorithm quickly
converged to a global minimum. For moderate dimensionsef&#arch space(8),
the algorithm was again able to obtain the optimum solutiom only after some time.
Although the optimality of the solution could not be verifiegfull search, we assumed
such solution to be optimum since running the algorithm svéemes from different



starting points and different annealing parameters didaitet the final solution. For
very high dimensional spaces @), although the algorithm provided “good” solutions
very quickly, it took several hours to converge to the bes&t. @ome of the “optimal”
solutions thus obtained will be illustrated in the next gett

5 Experiments

We will now demonstrate how the generic method developedrsméy be customized
for different task requirements. For simplicity, we willresider the specifie.5 D case
of objects moving on a ground plane and sensors placed at knaven heightsH;
from this plane. The objects are also assumed to have the lsarizontal profile at
each height, such that the area of their profile onto the gtisiA,;,. Examples of such
objects include cylinders, cubes, cuboids, and squarmpris

We will also assume that we require only visibility of the tamline of the object
and only up to a length from its top. Then, assuming that the average “radius” of the
object isr, the region of occlusion is a rectangle of widthand a distancé; from the
object, that is proportional to the object’s distance fransor::

i h
d; = (D; — d; i:Di—a where u; = — 5
( )z P = g (5)
Then, one may approximate the area of the region of occluBibas A? =~ d;(2r).
These models enable one to reason about the particulacafpti of people detection
and tracking for objects moving on a plane. Using these aggans, we first consider
some synthetic examples.

5.1 Synthetic Examples

In the synthetic examples we consider, we use the followgsgiaptions. The objects
occur randomly with object density = 1m 2, object height = 150cm, object radius
r=15cm, minimum visibility height h=50cm and maximum vi$itly angle a0 =
45°. The sensors are mounted H = 2.5m above the ground. The maps ahe capture
quality maps scaled such that [0,1] maps onto [0,255]. Rivetconsider a rectangular
room of size 10mx20m.

The first two examples [Fig. 4 a & b.] assume a simple qualibefion such that vis-
ibility from any direction is considered equally valid (i.e. the paramétisrneglected)
and fixed thresholds are put on the visibility distance framt¢amera based on camera
resolution tnaxdist,.s) and maximum viewing angle, ... (mindistiew):

(6)

(€,0) = 1if mindistyiew < d(x,cam) < mazdist,.s
B\ 7= 0 otherwise

Furthermore, for multiple sensor terms, the quality is defisimply as the quality of
the sensor having the best view:

q( ﬂ &,0)= max ¢(&;,0) @)

ie(ilv---im)
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Fig. 4. Optimum configuration using: (a): a non-directional objéstbility constraint and a uni-
form object density. [Eq. 4], (b): field of view restricted %6°, (c): directional object visibility
[Eq. 8], (d): directional object visibility, and a soft cdr&nt on resolution and viewing angle
[Egs. 9 & 10], (e): non-directional object visibility, anding variable densities shown in Fig. (f),
(9): stereo requirement, non-directional object visipiind uniform densities, (h): algorithmic
constraint of no visibility with the top wall as backgroun@, no visibility with the left wall
as background, (j): Sensor Planning in a large “Museum”, reteeveral constraints are to be
satisfied simultaneously.
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Fig. 5. (a): Computation of the viewing angky;;¢, (b): The probability density function for
the capture quality for Fig. 4 [d]. Note the unusually highues for zero and one due to the
possibilities of complete object occlusion and perfectaapin certain conditions.



Using mindist = 5m andmaxdist = 25m, if the sensors have a field of view of
360° (omni-camera), configuration [a] was found optimum, whifee&d of view of90°
resulted in configuration [b]. The omni-camera is used ferrést of the examples in
this scene.
Assuming that one requires visibility froail directions, one may alter the quality
function as:
1if Qdiff < gmax
qx(&:,0) = & dmin < d(x,cam) < d7e® (8)

0 otherwise

whered™** is the maximum angular orientation at which the observatitthe object
is still considered meaningful, alg; s y = abs(8—dir(cam, x)) such thatlir (cam, x)
is the angular direction of the camera from the point of viéw §Fig. 5 (a)]. Assuming
thatd™** = 90°, we obtain the sensor configuration shown in [c]. Note thatéimeras
are now more spread out in order to capture the objects frony miaections.

One may further expand the definition of the quality funciioarder to incorporate
the camera distance constraints as soft constraints rather than hard oneshémnbre,
one may allow a soft constraint on the viewing orientatiosing one such possible
quality function:

1 if djyn < d(x,cam) < d7L®
d(x,cam)

0x(€i,0) = H(Oaigg) * § ~an, if d(x, cam) < dmin
exp (fid(x’wm)_d;";?) if d(x,cam) > d7e*

max res
d7‘es

9

where
1 if ediff < 9'min
H(Ogig) = { Sastt=07 i g™ < Ggipp < 6707 (10)
0 if odiff > gmar

and usingd™™" = /2 and¢™** = 7, we obtained sensor configuration [d]. Note that
camera one moves inwards compared to configuration [c] secdirectional visibility
requirement has been made a little less rigid. The prolaHdistribution for the capture
quality for this case is shown in Fig. [5 (b)]. Using such imf@mtion, one may be able
to utilize more complex capture requirements. For instaoee may be able to specify
that a certain percentile of the capture quality be maxichize

Relaxing the assumption of uniform density, if variable signis assumed such that
the density is highest near the door and decreases linedhytive distance from it[f],
configuration [e] was found to be the best. Note that, contptarga], the cameras move
closer to the door in order to better capture the region wighdr object density.

Next, we consider a stereo assumption such that matchimgsacameras and 3D
reconstruction becomes an additional constraint. One lcaw ¢hat the error in trian-
gulation for an omni-camera is proportional to:

etr X \/d% + d3 + dydy cos(a) / sin(a) (11)



whered; andd, are the distances of the object from the two cameras,caigdthe
angular separation between the two cameras as seen frorjdot. d\lthough the error
in matching is algorithm-dependent, a reasonable assamigtihat:

em x di/cos(a/2) + da/cos(a/2) (12)

Considering a quality function that uses a weighted averdgee two errorsy =
—(wi e + woey,), configuration [g] was found to the best. Note that all thee¢hr
cameras come closer to each other in order to be able to destemtching between
any two of them.

In the final example for this scene, we consider a case whecause of algorithmic
constraints, capture of an object with one of the walls akdpaind is not useful.
For instance, the wall may be painted a certain color and ljects may have a high
probability of appearing in this color. Assuming that vii with the top wall as
background is not useful, we obtain configuration [h]. Thesa&onstraint with the left
wall yields configuration [i]. Note that some cameras mowselto the prohibited wall
in order to avoid it as the background.

Next, we consider a more complex scene where several conistage to be satisfied
simultaneously. In Fig. 4 [j], the scene of a “museum” is shavihere the entrance is on
the left upper corner and the exit is on the bottom right cor@ee is required to view
the faces of people as they enter or exit the scene. AddiljpB® object localization is
to be performed via stereo reconstruction for all parts efstene. Note how the sensor
placement varies in the three sections due to different dmatibn of tasks.

5.2 Real Scenes

In real scenes, we first consider sensor planning in a smatta@ted environment [Fig.
6]. In the first experiment, face detection is maximized,le/hi the second one, we try
to maximize person detection via background subtractiehgrauping. We utilized an
off-the-shelf face detector from OpenCV and characterireg@erformance over dif-
ferent camera distances and person orientations[Fig.]7Tlis gives us the quality
function that we need for our sensor planner. Cameras were fifaced in the opti-
mum sensor configuration thus obtained and face detectisperformed on the video
data. We also asked a human to try to position the camerasatiyaand the experi-
ments were conducted with this configuration as well. Resuiflthis experiment are
presented in Fig.s [6(a),(b),(c),(d) & 7]. In the next expamt, we maximize person
detection using background subtraction and grouping. Alitiadal constraint we con-
sidered was that the appearance of one of the actors matéthedne of the walls and
the middle pillar/obstruction, thus making detection iorft of them difficult. This con-
dition was then integrated into the quality function. Theulés of this experiment are
shown in Fig.s [6 (e),(f),(9),(h) & 7].

Next, we consider camera placement in the lobby of a buildihgre we estimated
the person densities over a period of time via a common bacikgtsubtraction method
[23] and a subsequent “foot finding” algorithm. This inforiina was then fed back into
the sensor planner to optimize for different objectivestama in Fig. [8].
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Fig. 6. (a): Configuration of two cameras for optimum face detect{bjt Configuration selected
by a human operator. (c): An image from one of the cameras)ir{da An image from one of
the cameras in (b). Note that one of the faces is not dete@ealise of a large viewing angle.
(e): Configuration of two cameras for person detection ubexkground subtraction, where the
top wall matches the color of people 33% of the time. (f): Cgunfation selected by a human
operator. (g): An image from one of the cameras in (e). (h)ilAage from one of the cameras in
(f). Note how the top portion of one person is not detectedtdsémilarity with the background.

Distance 1.8m - 2.5n2.5m - 3.1n}3.1m - 3.8n3.8m - 4.5n4.5m - 5.2n5.2m - 6nj> 6m

Face Detection Rate 97.5% | 94% 92.5% 85% | 77% | 40% [0%
G
Face Detection Person Detection
w/ plannindw/o plannind|w/ plannindw/o plannin
Predicteq] 53.6% 48% 85% 81%
Actual | 51.33% 42% 82% 76%
(b)

Fig. 7. (a): Face Detection rates for different distances from Hraeras. Additionally, detection
rates reduced by about 30% from frontal to the side view. iffiildmation was used by the sensor
planner in the quality function. (b): Detection rates pogelil by the algorithm compared with the
actual rates obtained from experimental data.
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Fig. 8. Sensor placement in a lobby. (a): Two views from an origirehera location at different
times of the day. (b): Density map obtained via backgrourdraation (darker represents higher
object density). (e): Mapping of the density map onto a plamof the scene. (f): Optimal object
visibility using one camera (72% visibility predicted, 78%tained). (g): Optimal sensor place-
ment using two cameras (91% visibility predicted, 93% at#d). (h): Optimal sensor placement
using two cameras and a stereo requirement. (i): Optinoizatf face detection for people enter-
ing the building (46 % detection predicted, 43% obtained).example of face detection using
this sensor setting is shown in (c). (j): Optimization ofdadetection when the position of the
camera cannot be changed (but the direction and zoom carf)o(88tection predicted, 35 %
obtained). An example of face detection using this setrghown in (d).

6 Conclusion

We have considered analysis of scenes that may contain dgradojects occluding
each other. Multi-view visibility analysis for such scengas integrated with user-
defined quality criteria based possibly on several statistraints such as image reso-
lution, stereo matching and field of view. Apart from obtamimportant performance
characteristics of multi-sensor systems, such analysisuéher utilized for obtaining
optimal sensor configurations. The algorithm can be custednfor optimum sensor
placement for a variety of existing multi-sensor systems laais applications in sev-
eral fields, including surveillance where it can be utilizeghlaces such as museums,
shopping malls, subway stations and parking lots. Futur&imeludes specification of
more complex cost functions, investigation of more effitimethods for optimization
of the cost function and better estimation of the visibiptpbability by considering the
effect of interaction between objects.
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