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Abstract. Vision systems for various tasks are increasingly being deployed. Al-
though significant effort has gone into improving the algorithms for such tasks,
there has been relatively little work on determining optimal sensor configura-
tions. This paper addresses this need. We specifically address and enhance the
state-of-the-art in the analysis of scenarios where there are dynamically occuring
objects capable of occluding each other. The visibility constraints for such sce-
narios are analyzed in a multi-camera setting. Also analyzed are other static con-
straints such as image resolution and field-of-view, and algorithmic requirements
such as stereo reconstruction, face detection and background appearance. Theo-
retical analysis with the proper integration of such visibility and static constraints
leads to a generic framework for sensor planning, which can then be customized
for a particular task. Our analysis can be applied to a variety of applications, es-
pecially those involving randomly occuring objects, and include surveillance and
industrial automation. Several examples illustrate the wide applicability of the
approach.

1 Introduction

Systems utilizing possibly multiple visual sensors have become essential in many ap-
plications. Surveillance and Monitoring, industrial automation, transportation and auto-
motive, and medical systems are a few of the important application domains. Existing
research has mainly focused on improving the algorithms deployed in these systems,
while little focus has been given to the placement of sensorsfor optimal system per-
formance. Each system also has its own set of requirements. In security systems, for
instance, the captured video streams may be inspected either manually, or a more ad-
vanced computerized system may be utilized to detect spurious activity automatically.
Furthermore, automated people detection and tracking systems may have different ob-
jectives. Some systems utilize multiple closely-spaced cameras for the purpose of accu-
rate stereo matching. Others utilize widely separated cameras for maximizing the object
visibility in a dense situation [14, 11]. Still others [23, 1, 4, 19], use multiple cameras for
the main purpose of increasing the coverage area by utilizing non-overlapping field-of-
view cameras. In this paper, we develop a generic formulation that can be customized
to find good sensor configurations for any of these systems.

⋆⋆ This work was conducted while the author was with Siemens Corporate Research, Princeton,
NJ USA



Sensor planning has been researched quite extensively, andthere are several differ-
ent variations depending on the application. A popular set of methods, called next-view
planning, attempt to build a model of the scene incrementally by successively sensing
the unknown world from effective sensor configurations using the information acquired
about the world up to this point [17, 25, 5, 13, 12, 2, 8]. A related set of methods [10]
have focused on finding good sensor positions for capturing astatic scene from desir-
able viewpoints assuming that some geometric information about the scene is available.
Bordering on the field of graphics, the main contribution of such methods is to develop
efficient methods for determining the view of the scene from different viewpoints.

Methods that are directly related to ours are those that assume that complete ge-
ometric information is available and determine the location of static cameras so as to
obtain the best views of a scene. This problem was originallyposed in the computa-
tional geometry literature as the “art-gallery problem” [18]. The traditional formulation
of such problem assumes the simple assumption that two points are called visible if
the straight line segment between them lies entirely insidethe polygon. Even with such
simple definition of visibility, the problem is NP-complete.

Some of the recent work has concentrated on incorporating a few more constraints
like incidence angle and range into the problem and obtain anapproximate solution to
the resultant NP-complete problem via randomized algorithms [7]. Several researchers
[6, 20, 24, 13, 26, 22] have studied and incorporated more complex constraints based on
several factors not limited to (1) resolution, (2) focus, (3) field of view, (4) visibility,
(5) view angle, and (6) prohibited regions. However, the problem becomes much more
complex to be amenable to fast approximation solutions.

In addition to the “static” constraints considered so far, there are additional con-
straints that arise when dynamic obstacles are present. Such constraints are essential to
analyze since system performance is a function of object visibility. In [3], it was pro-
posed to combine visibility and static constraints via a weighted sum of the error due
to the two factors. On the other hand, our earlier paper [15] proposed maximization
of the visibility while static constraints were analyzed simply ashard constraints that
would either be satisfied or not at a given location. In this work, we provide a more gen-
eral approach towards integration of these two types of constraints. We utilize analysis
of visibility constraints and determination of multi-camera visibility rates from [15].
Integration of such analysis with a variety of static constraints and application require-
ments leads to a generic formulation for sensor planning. Customization of the method
for a given system allows the method to be utilized for a variety of different tasks and
applications.

The paper is organized as follows. Section 2 briefly reviews prior work on estimat-
ing the probability of visibility of an object at a given location in a scene for a certain
configuration of sensors. Section 3 describes the integration of static constraints with
probabilistic visibility constraints. Maximization of the thus obtained quality measure
over an entire region of interest will be considered in section 4. Section 5 concludes the
paper with planning experiments for some synthetic and realscenes.
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Fig. 1.Scene Geometry for (a) 3D case, (b) 2.5D case, where the sensors have finite heights.

2 Visibility Analysis

In this section, we briefly review and generalize some visibility analysis results from
[15] that are pertinent to this work.

Since the particular application domain might contain either two or three dimen-
sions, we consider the general case of anm dimensional space. Let us assume that we
have a regionR ⊂ R

m of content A observed byn sensors [Fig. 1]. Here, we use the
term “content” in a general sense, such that it is the area ofR if m = 2, and is the
volume ifm = 3. LetEi be the event that a target objectO at locationL ∈ R in angular
orientationθ is visible from sensori. The definition of such “visibility” can be defined
according to the application e.g visibility of only a part ofthe object might be sufficient.
Then, it is useful to compute the following probabilities:

{P (Ei), i = 1..n}, {P (Ei ∩ Ej), i, j = 1..n}, . . . , P (
⋂

i

Ei) (1)

In order to compute these probabilities, we first note that there exists a region of
occlusionR

o
i for each sensori such that the presence of another object inR

o
i would

causeO to not be visible fromi 1 [Fig. 1]. Now, let us assume that objects are located
randomly in the scene with object densityλ. Sinceλ is a function of the location and
may also be influenced by the presence of nearby objects, letλ(xc|xO) be the density
at locationxc given that visibility is being calculated at locationxO. Then, it can be
shown [16] that the probability that objectO is visible from all of the sensors in a
specified set(i1, i2 . . . im) is2:

P (
⋂

i∈(i1,...im)

Ei) ≈

(

1 −
b

a

)1/b

(2)

where

a =
1

∫

Ro
(i1,...im)

λ(xc|x0) dxc

, b =
Aob · λavg

∫

Ro
(i1,...im)

λ(xc|x0) dxc
(3)

1 Note that this region of occlusion is dependent on the application-specific definition of visibil-
ity. For instance, one may require that all of the object be visible, or one may require visibility
of only the object center.

2 Note that this is a better approximation than the one given inour earlier paper[15]



Here,λavg is the average object density in the region,Aob is the content of an occluding
object, andRo

(i1,...im) is the combined region of occlusion for the sensor set(i1, . . . im)
formed by the “geometric” union of the regions of occlusionR

o
ip

for the sensors in this
set, i.e.Ro

(i1,...im) =
⋃m

p=1 R
o
ip

.
It may be noted thata is the effect on the probability due to the presence of an

object, andb is acorrection to such effect due to the finite object size.

3 Static Constraints and the Capture Quality

Several stationary factors affect the quality of the data acquired by a camera. We first de-
scribe such factors briefly and then discuss how they can be incorporated into a generic
formulation that enables optimization of the sensor configuration with respect to a user-
defined criteria.

3.1 “Static” Constraints

Some of the static constraints affecting the view of the camera are described next. Many
of these constraints may be considered in either of two ways:hard constraints thatmust
be satisfied at the given location for visibility, orsoft constraints that may be measured
in terms of a measure for the quality of the acquired data.

1. FIELD OF VIEW: Cameras have a limited field of view, and a constraint can be
specified terms of a maximum angle from a central camera direction.

2. OBSTACLES: Fixedhigh obstacles like pillars block the view of a camera, and
such constraint can be verified for a given object location.

3. PROHIBITED AREAS: There might also exist prohibited areas like desks or coun-
terswhere people are not able to walk. These areas have a positive effect on the vis-
ibility in their vicinity since it is not possible for obstructing objects to be present
within such regions.

4. IMAGE RESOLUTION: The resolution of an object in an image reduces as the
object moves further away from the camera. Therefore, meaningful observations
are possible only up to a certain distance from the camera.

5. ALGORITHMIC CONSTRAINTS: There are several algorithmicconstraints that
may exist. Such constraints may also be more complex involving inter-relationships
between the views of several cameras. Stereo matching across two or more cameras
is an example of such a constraint and involves a complex integration of several
factors including image resolution, the maximum distortion of a view that can occur
from one view to the other and the triangulation error.

6. VIEWING ANGLE: An additional constraint exists for the maximum angleαmax

at which the observation of an object is meaningful. Such observation can be the
basis for performing some other tasks such as object recognition. When the vertical
viewing angle is considered, this constraint translates into a constraint on the mini-
mum distance from the sensor that an object must be. The horizontal viewing angle
can also be considered similarly by consideration of the angle between the object
orientation and the camera direction.



Fig. 2. The event space may be partitioned into disjoint event sets.Here,only Ei, for instance,
would only include event space that is not common with other events.

3.2 The Capture Quality

In order to determine the quality or goodness of any given sensor configuration, the
“static” constraints need to be integrated into a singlecapture quality functionql(θ) that
measures how well a particular object at locationl in angular orientationθ is captured by
the given sensor configuration. Due to occlusions, however,such quantity is a random
variable that depends on the occurrence of eventsEi. The event space may be partitioned
into the following disjoint sets [Fig. 2]:

NoEi occurs, with quality: 0

OnlyEi occurs, with quality: q(Ei)

OnlyEi ∩ Ejoccurs, with quality: q(Ei ∩ Ej) . . .
⋂

i

Ei occurs, with quality: q(
⋂

i

Ei)

Such separation allows one to specify the quality measure for each of such events
separately. More specifically, such quality function needsto be specified for all of such
events. In other words, one needs to specify for all possiblesets, the quality measure
ql(i1, . . . , im, θ) that refers to the capture quality obtained if an object at the location
l in angular orientationθ is visible fromall of the sensors in the given m-tuple i.e. the
event(

⋂

i∈(i1,...im) Ei) occurs.
To give some insight into such specification of the quality function, one can consider

the case of stereo matching. In such an application, since visibility from at least two sen-
sors would be required for matching, the capture quality{ql(i, θ)}, i = 1 . . . n would
be zero. For the terms involving two sensors, several competing requirements need to
be considered. Under some simplifying assumptions, the error in the recovered depth
due to image quantization may be approximated as being proportional toδz ≈ z2/bf ,
wherez is the distance from the cameras,b is the baseline distance between the cam-
eras, andf is the focal length. On the other hand, the angular distortion of the image
of an object from one camera to the other may be approximated as θd ≈ tan−1(b/z),
and is directly related to the accuracy with which stereo matching may be performed.



Furthermore, an increase in the distance from the cameras also decreases the size of
the object view, which might further decrease the accuracy of stereo matching. Thus,
in the perpendicular direction, the accuracy of stereo matching first increases with the
distances from the cameras, and then decreases, while the quantization error increases
with such distances. Thus, a quality function that peaks forsome given distance and
tapers off in either direction can be considered. Thus, for any given task requirement,
a trade-off between different constraints is typically involved and it is up to the user to
specify functions that define the desired behavior in such conditions.

Computation of probabilities of these disjoint events along with the specification of
the capture quality associated with such events yields a probability function for the cap-
ture quality at a particular location (Fig. 5 illustrates anexample where the function for
a typical scene is averaged over the entire region of interest.). Given such a probability
function, one can consider several integration measures ofwhich the mean will be con-
sidered in this paper for simplicity purposes. Themean capture quality at a particular
location for a particular object orientationθ may be written as:

q(θ) =
∑

∀i

q(Ei, θ)P (OnlyEi) +
∑

i<j

q(Ei ∩ Ej , θ)P (OnlyEi ∩ Ej) +

· · · + q(
⋂

i

Ei, θ)P (Only
⋂

i

Ei)

The probabilitiesP (Only
⋂

i Ei) may be rewritten using theP (
⋂

i Ei) terms that we
had calculated earlier.

3.3 Integration of Quality across Space

The analysis presented so far yields a functionqs(x, θ), that refers to the capture quality
of an object with orientationθ at locationx given that the sensors have the parameter
vectors. Such parameter vector may include, for instance, the location, viewing direc-
tion and zoom of each camera. Given such a function, one can define a suitablecost
function in order to evaluate a given set of sensor parameters w.r.t to the entire region to
be viewed. Such sensor parameters may be constrained further due to other factors. For
instance, there typically exists a physical limitation on the positioning of the cameras
(walls, ceilings etc.). The sensor planning problem can then be formulated as a prob-
lem of constrained optimization of the cost function. Such optimization will yield the
optimum sensor parameters according to the specified cost function.

Several cost functions may be considered. One may define a cost function that max-
imizes the minimum quality in the region. Another cost function, and perhaps the most
reasonable one in many situations, is to define the cost as thenegative of the average
capture quality in a given region of interest:

C(s) = −

∫

Ri

∫ 2π

0

λ(x, θ)qs(x, θ) dθ dx (4)

This cost function has been utilized for obtaining the results in this paper. Note that
we have added an additional parameterθ to the object density function in order to
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Fig. 3.The Cost Function for the scene in Figure [4 (b)] where, for illustration purposes, only the
x-coordinate and direction of the second camera have been varied.

incorporate information about the object orientations into the density function. Since
the orientation does not affect the occluding characteristics of an object, such parameter
was integrated (and eliminated) for the visibility analysis presented previously.

4 Minimization of the Cost Function

The cost function defined by Equation 4 (as also other suitable ones) is highly complex
and due to the variegated nature of the constraints, it is notpossible to obtain a single
method that optimizes such function in a very efficient manner. Furthermore, even for
simple scenarios, it can be shown that the problem is NP-complete and not amenable
to fast polynomial time solutions. Figure 3 illustrates thecost function for the scene
shown in Figure 4 (b) where, for illustration purposes, onlytwo of the nine parameters
have been varied. Even in this two dimensional space, there are two global minima and
several local minima. Furthermore, the gradient is zero in some regions.

Due to the generality and characteristics of the cost function, we propose to use
a general method that is able to find the global minima of complex cost functions.
Simulated Annealing and Genetic Algorithms are two classesof algorithms that may
be considered[21]. For our experiments, we utilized a highly sophisticated simulated
re-annealing softwareASA developed by L. Ingber [9].

Using this algorithm, we were able to obtain extremely good sensor configurations
in a reasonable amount of time (5min to a couple of hours on a Pentium IV 2.2GHz PC,
depending on the desired accuracy of the result, the number of dimensions of the search
space and complexity of the scene). For low dimensional spaces (< 4), where it was
feasible to verify the results using full search, it was found that the algorithm quickly
converged to a global minimum. For moderate dimensions of the search space (< 8),
the algorithm was again able to obtain the optimum solution,but only after some time.
Although the optimality of the solution could not be verifiedby full search, we assumed
such solution to be optimum since running the algorithm several times from different



starting points and different annealing parameters did notalter the final solution. For
very high dimensional spaces (> 8), although the algorithm provided “good” solutions
very quickly, it took several hours to converge to the best one. Some of the “optimal”
solutions thus obtained will be illustrated in the next section.

5 Experiments

We will now demonstrate how the generic method developed so far may be customized
for different task requirements. For simplicity, we will consider the specific2.5D case
of objects moving on a ground plane and sensors placed at someknown heightsHi

from this plane. The objects are also assumed to have the samehorizontal profile at
each height, such that the area of their profile onto the ground isAob. Examples of such
objects include cylinders, cubes, cuboids, and square prisms.

We will also assume that we require only visibility of the center line of the object
and only up to a lengthh from its top. Then, assuming that the average “radius” of the
object isr, the region of occlusion is a rectangle of width2r and a distancedi from the
object, that is proportional to the object’s distance from sensori:

di = (Di − di)µi = Di
µi

µi + 1
, where µi =

h

Hi
(5)

Then, one may approximate the area of the region of occlusionRo
i asAo

i ≈ di(2r).
These models enable one to reason about the particular application of people detection
and tracking for objects moving on a plane. Using these assumptions, we first consider
some synthetic examples.

5.1 Synthetic Examples

In the synthetic examples we consider, we use the following assumptions. The objects
occur randomly with object densityλ = 1m−2, object height = 150cm, object radius
r=15cm, minimum visibility height h=50cm and maximum visibility angle αmax =
45◦. The sensors are mounted H = 2.5m above the ground. The maps shown are capture
quality maps scaled such that [0,1] maps onto [0,255]. First, we consider a rectangular
room of size 10mX20m.

The first two examples [Fig. 4 a & b.] assume a simple quality function such that vis-
ibility from any direction is considered equally valid (i.e. the parameterθ is neglected)
and fixed thresholds are put on the visibility distance from the camera based on camera
resolution (maxdistres) and maximum viewing angleαmax (mindistview):

qx(Ei, θ) =

{

1 if mindistview < d(x, cam) < maxdistres

0 otherwise
(6)

Furthermore, for multiple sensor terms, the quality is defined simply as the quality of
the sensor having the best view:

q(
⋂

i∈(i1,...im)

Ei, θ) = max
i∈(i1,...im)

q(Ei, θ) (7)
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Fig. 4. Optimum configuration using: (a): a non-directional objectvisibility constraint and a uni-
form object density. [Eq. 4], (b): field of view restricted to90◦, (c): directional object visibility
[Eq. 8], (d): directional object visibility, and a soft constraint on resolution and viewing angle
[Eqs. 9 & 10], (e): non-directional object visibility, and using variable densities shown in Fig. (f),
(g): stereo requirement, non-directional object visibility and uniform densities, (h): algorithmic
constraint of no visibility with the top wall as background,(i): no visibility with the left wall
as background, (j): Sensor Planning in a large “Museum”, where several constraints are to be
satisfied simultaneously.
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Fig. 5. (a): Computation of the viewing angleθdiff , (b): The probability density function for
the capture quality for Fig. 4 [d]. Note the unusually high values for zero and one due to the
possibilities of complete object occlusion and perfect capture in certain conditions.



Using mindist = 5m andmaxdist = 25m, if the sensors have a field of view of
360◦ (omni-camera), configuration [a] was found optimum, while afield of view of90◦

resulted in configuration [b]. The omni-camera is used for the rest of the examples in
this scene.

Assuming that one requires visibility fromall directions, one may alter the quality
function as:

qx(Ei, θ) =







1 if θdiff < θmax

& dmin
view < d(x, cam) < dmax

res

0 otherwise
(8)

whereθmax is the maximum angular orientation at which the observationof the object
is still considered meaningful, andθdiff = abs(θ−dir(cam,x)) such thatdir(cam,x)
is the angular direction of the camera from the point of view of x [Fig. 5 (a)]. Assuming
thatθmax = 90◦, we obtain the sensor configuration shown in [c]. Note that the cameras
are now more spread out in order to capture the objects from many directions.

One may further expand the definition of the quality functionin order to incorporate
thecamera distance constraints as soft constraints rather than hard ones. Furthermore,
one may allow a soft constraint on the viewing orientation. Using one such possible
quality function:

qx(Ei, θ) = H(θdiff ) ∗











1 if dmin
view < d(x, cam) < dmax

res
d(x,cam)

dmin
view

if d(x, cam) < dmin
view

exp
(

−
d(x,cam)−dmax

res

dmax
res

)

if d(x, cam) > dmax
res

(9)

where

H(θdiff ) =







1 if θdiff < θmin

θdiff−θmin

θmax−θmin if θmin < θdiff < θmax

0 if θdiff > θmax

(10)

and usingθmin = π/2 andθmax = π, we obtained sensor configuration [d]. Note that
camera one moves inwards compared to configuration [c] sincethe directional visibility
requirement has been made a little less rigid. The probability distribution for the capture
quality for this case is shown in Fig. [5 (b)]. Using such information, one may be able
to utilize more complex capture requirements. For instance, one may be able to specify
that a certain percentile of the capture quality be maximized.

Relaxing the assumption of uniform density, if variable density is assumed such that
the density is highest near the door and decreases linearly with the distance from it[f],
configuration [e] was found to be the best. Note that, compared to [a], the cameras move
closer to the door in order to better capture the region with higher object density.

Next, we consider a stereo assumption such that matching across cameras and 3D
reconstruction becomes an additional constraint. One can show that the error in trian-
gulation for an omni-camera is proportional to:

etr ∝
√

d2
1 + d2

2 + d1d2 cos(α)/ sin(α) (11)



whered1 andd2 are the distances of the object from the two cameras, andα is the
angular separation between the two cameras as seen from the object. Although the error
in matching is algorithm-dependent, a reasonable assumption is that:

em ∝ d1/cos(α/2) + d2/cos(α/2) (12)

Considering a quality function that uses a weighted averageof the two errors:q =
−(w1etr + w2em), configuration [g] was found to the best. Note that all the three
cameras come closer to each other in order to be able to do stereo matching between
any two of them.

In the final example for this scene, we consider a case where, because of algorithmic
constraints, capture of an object with one of the walls as background is not useful.
For instance, the wall may be painted a certain color and the objects may have a high
probability of appearing in this color. Assuming that visibility with the top wall as
background is not useful, we obtain configuration [h]. The same constraint with the left
wall yields configuration [i]. Note that some cameras move close to the prohibited wall
in order to avoid it as the background.

Next, we consider a more complex scene where several constraints are to be satisfied
simultaneously. In Fig. 4 [j], the scene of a “museum” is shown where the entrance is on
the left upper corner and the exit is on the bottom right corner. One is required to view
the faces of people as they enter or exit the scene. Additionally, 3D object localization is
to be performed via stereo reconstruction for all parts of the scene. Note how the sensor
placement varies in the three sections due to different combination of tasks.

5.2 Real Scenes

In real scenes, we first consider sensor planning in a small controlled environment [Fig.
6]. In the first experiment, face detection is maximized, while in the second one, we try
to maximize person detection via background subtraction and grouping. We utilized an
off-the-shelf face detector from OpenCV and characterizedits performance over dif-
ferent camera distances and person orientations[Fig. 7 (a)]. This gives us the quality
function that we need for our sensor planner. Cameras were then placed in the opti-
mum sensor configuration thus obtained and face detection was performed on the video
data. We also asked a human to try to position the cameras manually and the experi-
ments were conducted with this configuration as well. Results of this experiment are
presented in Fig.s [6(a),(b),(c),(d) & 7]. In the next experiment, we maximize person
detection using background subtraction and grouping. An additional constraint we con-
sidered was that the appearance of one of the actors matched with one of the walls and
the middle pillar/obstruction, thus making detection in front of them difficult. This con-
dition was then integrated into the quality function. The results of this experiment are
shown in Fig.s [6 (e),(f),(g),(h) & 7].

Next, we consider camera placement in the lobby of a buildingwhere we estimated
the person densities over a period of time via a common background subtraction method
[23] and a subsequent “foot finding” algorithm. This information was then fed back into
the sensor planner to optimize for different objectives as shown in Fig. [8].
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Fig. 6. (a): Configuration of two cameras for optimum face detection. (b): Configuration selected
by a human operator. (c): An image from one of the cameras in (a). (d): An image from one of
the cameras in (b). Note that one of the faces is not detected because of a large viewing angle.
(e): Configuration of two cameras for person detection usingbackground subtraction, where the
top wall matches the color of people 33% of the time. (f): Configuration selected by a human
operator. (g): An image from one of the cameras in (e). (h): Animage from one of the cameras in
(f). Note how the top portion of one person is not detected dueto similarity with the background.

Distance 1.8m - 2.5m2.5m - 3.1m3.1m - 3.8m3.8m - 4.5m4.5m - 5.2m5.2m - 6m> 6m
Face Detection Rate 97.5% 94% 92.5% 85% 77% 40% 0 %

(a)
Face Detection Person Detection

w/ planningw/o planning w/ planningw/o planning

Predicted 53.6% 48% 85% 81%
Actual 51.33% 42% 82% 76%

(b)

Fig. 7. (a): Face Detection rates for different distances from the cameras. Additionally, detection
rates reduced by about 30% from frontal to the side view. Thisinformation was used by the sensor
planner in the quality function. (b): Detection rates predicted by the algorithm compared with the
actual rates obtained from experimental data.



(a1) (a2) (b) (c) (d)
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Fig. 8. Sensor placement in a lobby. (a): Two views from an original camera location at different
times of the day. (b): Density map obtained via background subtraction (darker represents higher
object density). (e): Mapping of the density map onto a plan view of the scene. (f): Optimal object
visibility using one camera (72% visibility predicted, 78%obtained). (g): Optimal sensor place-
ment using two cameras (91% visibility predicted, 93% obtained). (h): Optimal sensor placement
using two cameras and a stereo requirement. (i): Optimization of face detection for people enter-
ing the building (46 % detection predicted, 43% obtained). An example of face detection using
this sensor setting is shown in (c). (j): Optimization of face detection when the position of the
camera cannot be changed (but the direction and zoom can) (33% detection predicted, 35 %
obtained). An example of face detection using this setting is shown in (d).

6 Conclusion

We have considered analysis of scenes that may contain dynamic objects occluding
each other. Multi-view visibility analysis for such sceneswas integrated with user-
defined quality criteria based possibly on several static constraints such as image reso-
lution, stereo matching and field of view. Apart from obtaining important performance
characteristics of multi-sensor systems, such analysis was further utilized for obtaining
optimal sensor configurations. The algorithm can be customized for optimum sensor
placement for a variety of existing multi-sensor systems and has applications in sev-
eral fields, including surveillance where it can be utilizedin places such as museums,
shopping malls, subway stations and parking lots. Future work includes specification of
more complex cost functions, investigation of more efficient methods for optimization
of the cost function and better estimation of the visibilityprobability by considering the
effect of interaction between objects.
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[7] H. González-Banos and J.C. Latombe. A randomized art-gallery algorithm for sensor place-

ment. InSCG, Medford, MA, June 2001.
[8] G. Hager and M. Mintz. Computational methods for task-directed sensor data fusion and

sensor planning.IJRR, 10(4):285–313, August 1991.
[9] L. Ingber. Very fast simulated re-annealing.Mathematical Computer Modeling, 12:967–973,

1989.
[10] S.B. Kang, S.M. Seitz, and P.P. Sloan. Visual tunnel analysis for visibility prediction and

camera planning. InCVPR, pages II: 195–202, Hilton Head, SC, June 2000.
[11] S. Khan and M. Shah. Consistent labeling of tracked objects in multiple cameras with

overlapping fields of view.PAMI, 25(10):1355–1360, October 2003.
[12] K.N. Kutulakos and C.R. Dyer. Recovering shape by purposive viewpoint adjustment.

IJCV, 12(2-3):113–136, April 1994.
[13] J. Maver and R.K. Bajcsy. Occlusions as a guide for planning the next view. PAMI,

15(5):417–433, May 1993.
[14] A. Mittal and L.S. Davis. M2tracker: A multi-view approach to segmenting and tracking

people in a cluttered scene.IJCV, 51(3):189–203, February 2003.
[15] A. Mittal and L.S. Davis. Visibility analysis and sensor planning in dynamic environments.

In ECCV, page III: 543 ff., Prague, Czech Republic, May 2004.
[16] A. Mittal and L.S. Davis. A general method for sensor planning in multi-sensor systems:

Extension to random occlusion.Submitted to IJCV, 2005.
[17] J. Miura and K. Ikeuchi. Task-oriented generation of visual sensing strategies. InICCV,

pages 1106–1113, Boston, MA, 1995.
[18] Joseph O’Rourke.Art Gallery Theorems and Algorithms. Oxford University Press, August

1987.
[19] A. Rahimi, B. Dunagan, and T.J. Darrell. Simultaneous calibration and tracking with a

network of non-overlapping sensors. InCVPR, pages I: 187–194, 2004.
[20] M. K. Reed and P. K. Allen. Constraint-based sensor planning for scene modeling.PAMI,

22(12):1460–1467, December 2000.
[21] Yi Shang. Global Search Methods for Solving Nonlinear Optimization Problems. PhD

thesis, University of Illinois at Urbana-Champaign, 1997.
[22] J. Spletzer and C.J. Taylor. A framework for sensor planning and control with applications

to vision guided multi-robot systems. InCVPR, Kauai, Hawaii, 2001.
[23] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking.

PAMI, 22(8):747–757, August 2000.
[24] K. Tarabanis, R.Y. Tsai, and A. Kaul. Computing occlusion-free viewpoints. PAMI,

18(3):279–292, March 1996.
[25] Y. Ye and J.K. Tsotsos. Sensor planning for 3d object search. CVIU, 73(2):145–168,

February 1999.
[26] S.K. Yi, R.M. Haralick, and L.G. Shapiro. Optimal sensor and light-source positioning for

machine vision.CVIU, 61(1):122–137, January 1995.


