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Abstract

We describe an algorithm for detecting and tracking multi-
ple people in a cluttered scene using multiple synchronized
cameras located far away from each other. This camera
arrangement results in multiple wide-baseline camera sys-
tems. We segment each image, and then, for each pair we
compare regions across the views along epipolar lines. The
centers of the matching segments are then back-projected to
identify 3D points in the scene potentially corresponding to
people. These 3D points are then projected onto the ground
plane. The results from these wide-baseline camera systems
are then combined using a scheme that rejects outliers and
gives very robust estimates of the 2D locations of the peo-
ple. These estimates are then used to track people across
time. We have found that the algorithm works quite well
in practice in scenes containing multiple people even when
they occlude each other in every camera view.

1. Introduction
In this paper we address the problem of detecting and track-
ing multiple people using a multi-perspective video ap-
proach. In particular, we are concerned with the situation
when the scene being viewed is sufficiently “crowded” that
one cannot assume that any or all of the people in the scene
would be visually isolated from any vantage point. Figure
1 shows eight images from a 16-perspective sequence that
will be used to illustrate our algorithm. Notice that in all
eight images, no single person in viewed in isolation- i.e.
neither occludes another person nor is occluded by another
person. We assume that our cameras are calibrated, and that
people are moving on a calibrated ground plane.

We present an algorithm that takes a unified approach to
detection and tracking using multiple cameras. We neither
detect nor track objects from a single camera; rather infor-
mation is matched across many camera pairs and hypothe-
sized object locations and tracks are combined in a robust
manner in 3D. Although we use background subtraction, we
do not assume that a connected component of foreground
pixels corresponds to a single object. Rather, we employ
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a segmentation algorithm to separate out regions and then
match them across the views. This helps us to handle the
case of partial occlusion and allows us to track people and
objects in a cluttered scene where we cannot see any single
person separated out from the others in any view.

2. Related Work
There are numerous single-camera detection and tracking
algorithms, all of which face the same difficulties of track-
ing 3D objects using only 2D information. These algo-
rithms are challenged by occluding and partially-occluding
objects, as well as appearance changes. Some researchers
have developed multi-camera detection and tracking algo-
rithms in order to overcome these limitations.

Haritaoglu et. al. [2] have developed a system which em-
ploys a combination of shape analysis and tracking to locate
people and their parts (head, hands, feet, torso etc.) and
tracks them using appearance models. In [3], they incor-
porate stereo information into their system. Kettnaker and
Zabih [4] have developed a system for counting the number
of people in a multi-camera environment where the cam-
eras have a non-overlapping field of view. By combining
visual appearance matching with mutual content constraints
between cameras, their system tries to identify which obser-
vations from different cameras show the same person.

Cai and Aggarwal [5] extend a single-camera tracking
system by switching between cameras, trying to always
track any given person from the best possible camera - e.g. a
camera in which the person is unoccluded. Orwell et. al. [7]
present a tracking algorithm to track multiple objects using
multiple cameras using ”color” tracking. They model the
connected blobs obtained from background subtraction us-
ing color histogram techniques and use them to match and
track objects. In [8], Orwell et. al. present a multi-agent
framework for determining whether different agents are as-
signed to the same object seen from different cameras. The
DARPA VSAM project at CMU has developed a system
for video surveillance using multiple pan/tilt/zoom cameras
which classifies and tracks multiple objects in outdoor envi-
ronment [9]. All these systems use background subtraction
techniques in order to separate out the foreground and iden-
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tify objects, and would fail for cluttered scenes with more
densely located objects and significant occlusion.

Darrell et. al. [6] developed a tracking algorithm which
integrates stereo, color segmentation and face pattern de-
tection. Currently, their system is limited to only one stereo
rig, and is unable to track occluded objects.

Krumm et. al. [1] present an algorithm which has goals
that are very similar to ours. They use stereo cameras and
combine information from multiple stereo cameras (cur-
rently only 2) in 3D space. They perform background sub-
traction and then detect human-shaped blobs in 3D space.
Color and other information is used to identify and track
people over time.

Our method can be considered to be between wide-
baseline stereo algorithms, which try to match exact 3D
points across the views, and volume intersection algorithms
which try to find the 3D shape of an object by intersection
in 3D space without regard to the intensity values observed
(except for background subtraction). Wide-baseline stereo
algorithms have the problem of incorrect matches due to a
substantial change in the viewpoint, thus rendering tradi-
tional methods like correlation and sum of squared differ-
ence inappropriate. Although some work has been done to
improve upon these methods, they are still not very robust
due to the fundamental difficulty of matching points seen
from very different viewpoints.

On the other hand, volume intersection is very sensitive
to background subtraction errors, so that errors in segment-
ing even one of the views can seriously degrade the recov-
ered volume. Although there has been some work recently
(for e.g. [14]) addressing some of these issues, these meth-
ods also have problems, especially in the case where the
objects are occluded in some views by other objects. Back-
projection in 3D space without regard to color also yields
very poor results in cluttered scenes, where almost all of the
camera view is occupied by the foreground.

In contrast, we do not try to match points exactly across
views; neither do we perform volume intersection without
regard to the objects seen. Rather, regions in different views
are compared with each other and back-projection in 3D
space is done in a manner that yields 3D points guaranteed
to lie inside the objects.

3 General Overview of the Algorithm

We first run a background subtraction algorithm on each
of the camera views, and then, apply an image segmenta-
tion algorithm to the foreground regions. The segmenta-
tion algorithm differentiates between different objects even
though they might occur in the same connected component
as found by the background subtraction algorithm, but, of
course oversegments the component into many pieces. We
next match regions along epipolar lines in pairs of cameras

Figure 1: Eight images from a 16-perspective sequence at a
particular time instant.

views. The mid-points of the matched segments along the
epipolar lines of each stereo pair are back-projected to yield
3D points, which are then projected onto the ground plane.
These ground points are then used to form an object loca-
tion probability distribution map using gaussian kernels for
a single image pair. The probability distribution maps are
then combined using outlier-rejection techniques to yield a
robust estimate of the 2D position of the objects, which is
then used to track them. The following sections describe
these steps in detail.

4 Background Subtraction and Seg-
mentation in a Single View

We first separate out the foreground from the background.
This is done using a robust technique which is capable of
removing shadows. The method that we use is described in
[13].
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Figure 2: The images from Figure 1, background-subtracted
and segmented. The segments are colored randomly and the
background is black.

After obtaining the foreground, we apply a segmentation
algorithm to it to separate out different regions. Currently,
we have implemented a simple color segmentation algo-
rithm, which, after smoothing the image, groups together
pixels having similar color characteristics. We neglect the
intensity of the pixels so that lighting and orientation of the
surface have limited effect, creating regions having ”con-
stant” color. A more general segmentation algorithm should
use texture segmentation. However, all of the more com-
plex algorithms that we tried did not yield stable results
across time and across the cameras. We are currently work-
ing on this aspect to make our program work on more gen-
eral types of objects. The detection and tracking, however,
remains the same and a suitable texture segmentation algo-
rithm could be easily integrated into the system. Figure 2
shows the result of background-subtracting and segmenting
the images from Figure 1.
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Figure 3: The mid-points of the matched segments are back-
projected to obtain 3D points lying inside the objects. The
matching segments are 1 and 1’, and 2 and 2’ respectively.

5 Matching Regions Across Views

After segmentation, we analyze epipolar lines across pairs
of views. Along each epipolar line, we match all of the seg-
ments from one camera view to the segments in the other
view based on color characteristics. Even if one segment
matches to more than one segment in the other view, we
do not select among these matches and consider all of the
matched pairs as positive matches, hoping to reject the false
one in later stages. Matching color across the views requires
color calibration of the cameras with respect to each other,
so that similar colors have similar values as seen from dif-
ferent views. We use the color ratio rather than the color
values themselves to eliminate intensity variation across the
views caused by different view angles and camera parame-
ters. These ratios remain the same across the views so that
matching yields good results.

For each matched pair of segments, we take themid-
points of the segments along the epipolar line and back-
project them to obtain a 3D point. This 3D point is then
projected onto the ground plane to obtain the 2D position of
the point on the ground plane (see Figure 3). These points
are then processed as described in the next section.

The motivation of taking the mid-point of the matched
segments to obtain the 3D point is as follows: We prove (in
Appendix A) that in the case of orthographic projection and
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a convex object, the point of intersection of the rays through
the mid-points of corresponding segments is the only point
that can be guaranteed to lie inside the object. If we take
any other pair of points on the segments, it is possible to
construct a case in which the point of intersection of these
rays will not lie inside the object. Although these results do
not hold in the general case of a pin-hole camera projection
(see Appendix B for a counterexample), in the case of ob-
jects being far from the cameras, we obtain a point which is
inside or close to the the object in most cases.

An interesting observation here is that these segment
midpoints do not generally correspond to a conjugate pair.
Nevertheless, the back-projection of the mid-points of the
segments does produce a 3D point that is guaranteed to lie
inside the object even though the two mid-points typically
are the images of two different 3D points.

Also interesting to note is that by matching along epipo-
lar lines, we guarantee the two back-projected rays meet at
a point on a plane passing though the optic centers of the
cameras. An alternative scheme of trying to match the re-
gions directly (without epipolar lines) and then employing
some scheme to identify common points from the regions
would be riddled with many problems and would probably
yield matching points such that the back-projected rays do
not intersect in 3D space at all.

6 Producing Probability Estimates
from a Single Pair of Cameras

Once the matching is completed for a given pair of cameras,
we calculate probability estimates for the presence of an ob-
ject at ground plane points using a kernel estimation tech-
nique. For each of the 2D ground points obtained using seg-
ment matching, we add a gaussian kernel to the probability
distribution in the 2D space of the ground plane. The stan-
dard deviation of the kernel is based on the minimum width
of the segments that matched to give rise to that point, and
the camera instantaneous fields of view (IFOV). The prob-
ability from all these gaussian kernels is then integrated to
obtain a probability distribution map in the 2D space of the
ground plane. This is done for each pair of cameras for
which the segmentation and matching is performed. Thus,
the probability associated with any pointx on the 2D plane
is given by

Prob(x) = Σi
1√

2πσi
exp (

−(xi − x)2

2σ2
i

)

wherexi = (xi, yi) andσi are the 2D position and stan-
dard deviation of the i-th gaussian kernel.
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Figure 4: If segment matching fails to distinguish between
two objects, the matches would reinforce each other only at
the true location of the objects, and the false matches would
get eliminated by the weighting scheme.

7 Combining Results from Many
Camera Pairs

Given the probability distributions from matching across
pairs of cameras, we describe a method for combining the
results that rejects outliers and peaks detection results. The
simplest method just adds all the probability values, and this
method does yield good results because the probability val-
ues at the true locations of the objects reinforces each other,
whereas the values at false locations are scattered about and
occur at different 2D locations for different pairs of cam-
eras. This can be seen in the example illustrated in Figure 4
where two objects of similar color cannot be distinguished
while matching from any single pair of cameras. During the
combination of results from multiple image pairs, the cor-
rect matches reinforce each other, but the false matches do
not. Thus, combination of results results in concentration of
probabilities only at the true locations. The probability map
using simple addition for the image set in Figure 1 is shown
in Figure 5.

Although simple addition of probability values yields
good results, we can improve things significantly by elimi-
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Figure 5: The probability map obtained for the image set
shown in Figure 1 by simply adding the probability values
from all camera pairs.

nation of false matches. This is motivated by the observa-
tion made above that there will be a large number of camera
pairs predicting an object at the correct location, but only
a few of them will predict an object at an incorrect one.
Therefore, we apply the following weighting method to the
probability values at each of the 2D positions to obtain a
single probability distribution over the 2D space.

First, the probability values at each 2D location are
sorted. Then, we apply a gaussian weighting function to
calculate weights for each of the sorted values. Values at
the extremes (i.e. the smallest and the largest) are least
weighted and the values in the middle are weighted the
most. This is a generalization of the method of taking the
median to reject outliers. Instead of taking one value, how-
ever, we apply a gaussian weighting function centered at
the median value. This method will subdue the effect due
to matches that are found by only a few pairs of cameras.
In practice, we have found this approach to work very well
and we present results in section 9. The results of applying
this method to Figure 5 is shown in Figure 6.

8 Tracking in the Ground Plane

After obtaining the probability distribution using all pairs,
we identify objects by thresholding the probabilities and
running a connected components algorithm on the thresh-

Figure 6: The probability map obtained for the image
set shown in Figure 1 by applying the gaussian weighting
scheme.

olded values. Then, the centroids of the connected compo-
nents are found. The centroids for the previous time steps
matched to the object are fit to a curve assuming constant
acceleration. This curve is simply a second-order polyno-
mial:

x(t) = a + b.t + c.t2

The curve is then used to predict the position of the ob-
ject at the next time interval and a search is made in a
neighborhood around this predicted point. The process is
repeated for each time step to track objects over time. Even
if an object is not found, the predicted position is retained
for some time and the object is deleted only if it is not found
over an extended period. We have found this simple algo-
rithm to work quite well given the robust probability values
obtained from the previous steps.

9 Implementation and Experiments

In our system, image sequences are captured using 16 color
cameras synchronized for simultaneous capture. The cam-
eras are located at positions surrounding the room so that
they see the objects from different viewpoints. All of the
cameras are calibrated using a global coordinate system.

In order to evaluate our algorithm, we conducted exper-
iments on four sequences containing 3, 4, 5 and 6 people
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No. of cameras→ 4 8 16
No. of people No. of True Objects

3 900 795 0 1
4 1200 1208 135 104
5 1500 209 1 0
6 1800 435 1 0

Table 1: No. of false matches integrated over all frames of
the 300-frame sequences

No. of cameras→ 4 8 16
No. of people No. of True Objects

3 900 0 27 35
4 1200 0 6 27
5 1500 200 531 242
6 1800 100 457 312

Table 2: No. of true objects missed

respectively. Each sequence consists of 300 frames and
people were constrained to move in a region approximately
3.5mX3.5m in size. For each of the sequences, we calcu-
lated the number of false objects found, number of true ob-
jects missed by the algorithm, and the average probability
value at non-object locations. We calculated these metrics
using 4, 8 and all 16 cameras in order to study the effect of
varying the number of cameras, thus enabling us to deter-
mine the minimum number of cameras required to prop-
erly identify and track a certain number of objects. All
of these are calculated using a threshold probability value
which seems to give the best results for 16 cameras. The
results obtained are shown in tables 1, 2 and 3.

As was expected, generally, the errors decrease both by
increasing the number of cameras and decreasing the num-
ber of objects. Although the general trend is sometime bro-
ken in a single metric, when the three tables are viewed to-
gether, it is seen that the trend is mostly maintained. For
example, although there is a large drop in the number of
false matches while going from the sequence with 4 peo-
ple to the sequence with 5 people, there is a corresponding
large increase in the number of true objects not found. We
attribute these changes to the fact that we have different se-
quences with different people, which makes it quite difficult
to compare the results.

10. Summary and Conclusions
In this paper, we have presented a method for detecting
and tracking densely located multiple objects using multi-
ple synchronized cameras located far away from each other.
The method matches regions along epipolar lines in camera

No. of cameras→ 4 8 16
No. of people

3 0.1281 0.848 0.1019
4 0.1890 0.1259 0.1255
5 0.1682 0.1525 0.1340
6 0.2134 0.1915 0.1584

Table 3: Average non-normalized probability value at Non-
object locations. These values can be compared to the
threshold value of 5.0 used to identify objects.

pairs in order to obtain ground points guaranteed to lie in-
side objects. Results from camera pairs are integrated using
an outlier-rejection scheme so as to obtain robust estimates
of the 2D locations of objects, which are then used to track
objects across time.

Future direction of work includes utilization of object
properties like color and shape to improve tracking and im-
provement in matching by utilization of object properties
and occlusion information from previous time frames.

Appendix A

In this section, we prove that, in the case of orthographic
projection and a convex object, the intersection of the mid-
points of corresponding segments is guaranteed to lie inside
the object; and that no other point can be guaranteed thus.

We illustrate this with the help of an illustration showing
the plane corresponding to the epipolar lines. (see Figure
7). Leta andb be the rays back-projected from the left and
right ends of the segment as seen from the first camera. Let
us assume that this segment covers the whole object. In the
case of an orthographic projection,a andb will be parallel.
Let c andd be the corresponding rays from the second cam-
era. Also, lete andf represent rays back-projected from
the mid-points of the segments in camera one and two re-
spectively. Now, letP1, P2, P3 andP4 be the points of in-
tersection ofa, b, c andd as shown in the diagram. Since
a‖b andc‖d, P1P2P3P4 is a parallelogram. Since camera
1 sees a point on linea belonging to this object, and the
object is guaranteed to lie betweenc andd, we can con-
clude that there exists a point on the line segmentP1P2 that
lies on the object. Let this point be called A. Similarly, we
can conclude the existence of points on line segmentsP2P3,
P3P4 andP4P1. Let these points be called B, C and D re-
spectively. Since the object is convex, we can now conclude
that all points lying inside the quadrilateral ABCD also lie
within the object.

Now, consider the line passing through A and B. It di-
vides the 2D plane in two parts, the quadrilateral ABCD
lying on one side of it. The pointP must lie on the side
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Figure 7: Illustration for appendix A - shows that, in the
case of orthographic projection and a convex object, the
point of intersection of the back-projected mid-points is the
only point guaranteed to lie inside the object

including the quadrilateral ABCD. For, suppose it does not.
Then, sinceP1P2P3P4 is a parallelogram, the pointP is
also the mid-point of the line segmentP1P3. Therefore,
since the pointP lies on the side of line AB not contain-
ing ABCD, at least one of A and B must lie on the side of
line P1P3 towardsP4, which is a contradiction since both A
and B lie towardsP2. Therefore, we can conclude that the
point P must lie on the side of line AB containing ABCD.
Similarly, we can prove that the pointP must lie on the
side towards ABCD, as seen from BC, CD and AD. But
this means that the point P lies inside ABCD, and hence the
object.

For any pointP ′ other thanP , it is possible to place A, B,
C and D such that the pointP ′ lies outside the quadrilateral
ABCD. For, it must lie on one side of at least one of the
linesP1P3 andP2P4. If it lies on the side ofP1P3 towards
P2, then we can place AB such thatP ′ lies on the side of
AB towardsP2, thus implying that it lies outside ABCD.
We can similarly prove for the other cases.

Therefore, the pointP is the only point guaranteed to lie
inside the object.

optic
center

optic
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point of
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Figure 8: Illustration for appendix B - shows, for pin-hole
camera projection model, a case where the back-projections
of the mid-points do not intersect inside the object

Appendix B

In this section, we show an example where, for a pin-hole
model of camera projection and a convex object, the in-
tersection of the mid-points of the corresponding segments
does not lie inside the object. See Figure 8.
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