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Abstract

Background modeling and subtraction is a core compo-
nent in motion analysis. The central idea behind such mod-
ule is to create a probabilistic representation of the static
scene that is compared with the current input to perform
subtraction. Such approach is efficient when the scene to be
modeled refers to a static structure with limited perturba-
tion.

In this paper, we address the problem of modeling dy-
namic scenes where the assumption of a static background
is not valid. Waving trees, beaches, escalators, natural
scenes with rain or snow are examples. Inspired by the work
proposed in [4], we propose an on-line auto-regressive
model to capture and predict the behavior of such scenes.
Towards detection of events we introduce a new metric that
is based on a state-driven comparison between the predic-
tion and the actual frame. Promising results demonstrate
the potentials of the proposed framework.

1 Introduction

The proliferation of cheap sensors and increased pro-
cessing power has made the acquisition and processing of
video information more feasible. Real-time video analysis
tasks such as object detection and tracking can increasingly
be performed efficiently on standard PC’s for a variety of
applications such as: Industrial automation, transportation,
automotive, security & surveillance, and communications.
The use of stationary cameras is rather common in several
applications.

Background subtraction is a core component in such ap-
plications where the objective is to separate the foreground
from the static parts of the scene. The information provided
by such a module can be considered as a valuable low-level
visual cue to perform high-level tasks of motion analysis,
like motion estimation, tracking, etc. To this end, one has to
obtain a representation of the background, update this rep-
resentation over time and compare it with the actual input
to determine areas of discrepancy.

Such methods have to be adaptive and able to deal with
changes of the illumination conditions. Image averaging
over a certain window of time is a computationally efficient
approach to provide a fair description of the static scene in
the absence of moving objects. A step further involves the
use of continuous functions to better describe the illumi-
nation behavior of such a scene. Under the assumption of
limited and smooth variation, in [19] a Kalman-filter driven
approach was proposed to capture the background proper-
ties while in [26] the use of a single Gaussian distribution
was considered.

The use of multiple hypotheses to describe the behavior
of an evolving scene at the pixel level [10] was a break-
through in the area of background modeling and subtrac-
tion. Such an approach is capable of dealing with signifi-
cant variations, and was to be the basis for a large number
of related techniques [14, 11, 12]. Parametric methods are
a reasonable compromise between low complexity and fair
approximation of the signal when it obeys the general as-
sumptions imposed by the selected model. To deal with
such limitation, in [5] a non-parametric approach was pro-
posed. Their model was capable of describing the back-
ground density using temporal samples of the intensity at
the pixel level.

The methods presented in [10, 5, 6, 24, 16] can effec-
tively describe scenes that have a smooth behavior and lim-
ited variation. Consequently, they are able to cope with
gradually evolving scenes. However, their performance de-
teriorates [Figure (5)] when the scene to be described is dy-
namic and exhibits non-stationary properties in time. Ex-
amples of such scenes are shown [Figure (3)] and include
ocean waves, waving trees, rain, moving clouds, etc. Such
events refer to a consistent pattern of change of the obser-
vation space in the spatio-temporal domain.

In this paper, we present a method for background mod-
eling that is able to account for dynamic scenes. Using the
ideas proposed in [4, 22], we treat the image as a time se-
ries and consider a predictive model to capture the most im-
portant variation based on a sub-space analysis of the sig-
nal. The components of this model are used in an auto-
regressive form to predict the frame to be observed. Differ-
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ences in the state space between the prediction and the ob-
servation quantify the amount of change and are considered
to perform detection. Two different techniques are studied
to maintain the model, one that update the states in an incre-
mental manner and one that replaces the modes of variation
using the latest observation map.

The reminder of the paper is organized as follows: in sec-
tion 2, we briefly present the concept of the method while
in section 3, we discuss the construction and maintenence
of the background model. The detection mechanism is con-
sidered in section 4. Experimental results and discussion
appear in section 5.

2 Scene Modeling

Let {I(t)}t=1...τ be a given set of images 1. The central
idea behind our approach is to generate a prediction mech-
anism that can determine the actual frame using the k lat-
est observed images. Such an objective can be defined in a
more rigorous mathematical formulation as follows:

Ipred(t) = f(I(t − 1), I(t − 2), . . . , I(t − k)) (1)

where f , a k-th order function is to be determined. Quite
often, information provided by the input images is rather
complex and cannot be used in an efficient manner for pre-
diction. Furthermore, solving the inference problem leads
to a high-dimensional search space. In that case, complex
techniques and significant amount of samples are required
in order to recover a meaningful solution. One can address
this limitation by the use of spatial filter operators. Com-
plexity reduction of the search space and efficient data rep-
resentation are the outcome of such procedure. Let {φi}

n
i=1,

be a filter bank and si(t) = φi(I(t)), the output of convo-
lution between the operator φi and the image I(t). The out-
come of such a convolution process can be combined into a
vector that represents the current state s(t) of the system.

sT (t) = [s1(t), . . . , sn(t)]

Wavelet operators, Gabor filters, anisotropic non-linear fil-
ters can be considered. Within the proposed framework,
linear filters are considered. Limited complexity and ex-
istence of efficient algorithms are the main motivation for
such selection. Moreover, such filters are able to capture a
significant amount of variations in real scenes.

2.1 Feature space

Based on the predictive model that was earlier intro-
duced (Equation 1), a similar concept can be defined in the
state space. Similar notation can be considered leading to

spred(t) = f(s(t − 1), s(t − 2), . . . , s(t − k)) (2)

1In order to achieve insensitivity to changes in illumination, the input
may be transformed into a normalized space of S = R+G+B, r = R/S,
and g = G/S, and the quantity S divided by an appropriate constant.

Several techniques can be considered to determine such pre-
diction model. Principal component analysis [13, 3] refers
to a linear transformation of variables that retains - for a
given number n of operators - the largest amount of vari-
ation within the training data. In a prediction mechanism,
such module can retain and recover in an incremental man-
ner the core variations of the observed data.

The estimation of such operators will be addressed in
the next section. In order to facilitate the introduction of the
method at a concept level, one can consider them known
{φi = bi}

n
i=1, where bi are the set of basis vectors. We

consider these operators to produce the state vector s(t):

s(t) = [φ1(Ĩ(t)), φ2(Ĩ(t)), . . . , φn(Ĩ(t))]T

= [bT
1 · Ĩ(t),bT

2 · Ĩ(t), . . . ,bT
n · Ĩ(t)]T

= BT · Ĩ(t)

where B = [b1, . . . ,bn] denotes the matrix of basis vec-
tors, and Ĩ(t) = I(t)− Ī denotes the mean subtracted input.

2.2 Prediction mechanism

The next step - given the selected feature space - refers
to the modeling and estimation of the prediction function
f . One can consider various forms (linear or non-linear)
for such prediction mechanism. Non-linear mechanisms in-
volve higher sophistication and can capture more compli-
cated structures. However, the estimation of such functions
is computationally expensive and suffers from instability.

Linear models are a good compromise between low com-
plexity and a fairly good approximation of the observed
structure. Auto-regressive models of a certain order k can
be considered to approximate and predict the actual obser-
vation based on the latest k feature vectors. The predicted
state will be a linear combination of these vectors:

spred(t) = f(s(t − 1), (s(t − 2), . . . , (s(t − k))

=
k
∑

i=1

Ais(t − i)

where A is an n×n prediction matrix. The prediction in the
image space can then be computed using the pseudo-inverse
of BT:

Ĩpred(t) = pseudoinv(BT ) · spred(t)

where the pseudo-inverse is defined as

pseudoinv(BT ) = (BBT )−1 · B = B

since BBT = I (The basis vectors are orthogonal and have
unit norm). Thus, the unknown variables of our scene model
consist of the basis vectors and the auto-regressive matrix.

Visual appearance of indoors/outdoors scenes evolves
over time. Global and local illumination changes, position
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of the light sources, tidal changes, etc. are some exam-
ples of such dynamic behavior. One can account for such
changes by continuously updating both the basis vectors
and the predictive model according to the changes on the
observed scene. Last, but not least the discriminability of
the model should be preserved in order to perform accurate
detection.

3 Model Construction

Estimation of the basis vectors from the observed data
set can be performed through singular value decomposi-
tion. Then one can update such estimation as follows: (i)
Considering an observation set that consists of the last m
frames and recomputing the SVD based on the new data,
(ii) Performing an incremental update of the basis vectors
with exponential forgetting where every new frame is used
to revise the estimate of these vectors. Similar procedures
can be considered when recovering the parameters of the
auto-regressive model.

3.1 Estimation of Basis Vectors

3.1.1 Batch PCA

Let {I(t)}t=1...m be a column vector representation of the
previous m observations. We assume that the dimensionaly
of this vector is d. One can estimate the mean vector Ī and
subtract it from the input to obtain zero mean vectors {Ĩ(t)}
Given the set of training examples and the mean vector, one
can define the d × d covariance matrix:

Σ
Ĩ
= E{Ĩ(t)ĨT (t)}

It is well known that the principal orthogonal directions of
maximum variation for I(t) are the eigenvectors of Σ

Ĩ
[13].

Therefore, one can assume that the use of such vectors is an
appropriate selection for the filter bank.

One can approximate Σ
Ĩ

with the sample covariance ma-
trix that is given by ĨM ĨT

M , where ĨM is the matrix formed
by concatenating the set of images {Ĩ(t)}t=1...m. Then, the
eigenvectors of Σ

Ĩ
can be computed through the singular

value decomposition (SVD) of ĨM :

ĨM = UDVT (3)

The eigenvectors of the covariance matrix Σ
Ĩ

are the
columns of the matrix U (reffered to as the basis vectors
henceforth) while the elements of the diagonal matrix D are
the square root of the corresponding eigenvalues and refer
to the variance of the data in the direction of the basis vec-
tors. Such information can be used to determine the number
of basis vectors (n) required to retain a certain percentage
of the variance in the data.

(a)

(b)

(c)

Figure 1. Basis Vectors: (a) mean, (b,c) mean
+ constant ×(6 principal) basis vectors. Insignificant
basis vectors are represented with dark color.

Examples2 of retained eigenvectors are shown in Figure
(1). Information related with their magnitude and number
are given in Figure (2).

3.1.2 Incremental PCA

The batch method is computationally inefficient and it
might not be possible to execute it at each frame. There-
fore, we consider a fast incremental method. The current
estimate of the basis vectors is updated based on the new
observation and the effect of the previous observations is
exponentially reduced. Several methods for incremental
PCA (IPCA) [25, 1] can be considered. We adapt the
method developed by Weng et. al.[25] to suit to our
application.

Amnesic Mean

Let I1, . . . Im be the previous m observations . The mean
Īm of the images can be computed incrementally:

Īm+1 =

(

m

m + 1

)

· Īm +

(

1

m + 1

)

· Im+1

This computation gives equal weight to all of the past obser-
vations. In order to reduce the effect of previous samples,
one can compute the amnesic mean:

Īm+1 =

(

m − l

m + 1

)

· Īm +

(

1 + l

m + 1

)

· Im+1

where l is called the amnesic parameter that determines
the rate of decay of the previous samples. If l is a fixed

2The image is divided into equal size blocks to reduce complexity.
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(a) (b)

Figure 2. (a) Number of retained eigenvectors, (b)
Magnitude of the largest eigenvalue.

multiple of m (l = λm), one obtains exponential decay in
the effect of past samples. Typical values of λ that we used
were between 0.01 and 0.05.

Update of the Basis Vectors

Let {b1, . . . ,bn} be the current set of estimates of the
basis vectors. For reasons that become apparent later, these
vectors are not normalized, although they are orthogonal 3.
Now, suppose we observe a new image I(t+1) and subtract
the mean Ī to obtain Ĩ(t + 1). Then, we update the first
basis vector b1 by essentially “pulling” it in the direction of
Ĩ(t + 1) by an amount equal to the projection of Ĩ(t + 1)
onto the unit vector along b1:

b′
1 =

(

m − l

m + l

)

·b1+

(

l + 1

t + 1

)

(

b1 · Ĩ(t + 1)

‖Ĩ(t + 1)‖‖b1‖

)

·Ĩ(t+1)

Here, b1 ·̃I(t+1)
‖b1‖

is the projection of Ĩ(t + 1) in the direction

of b1, and Ĩ(t+1)

‖Ĩ(t+1)
‖ is the unit vector in the direction of

Ĩ(t + 1).
Next, we compute the residue R1 of Ĩ(t + 1) on b1:

R1 = Ĩ(t + 1) − Projb1
(Ĩ(t + 1))

= Ĩ(t + 1) −

(

b1 · Ĩ(t + 1)

‖b1‖2

)

· b1

This residue is perpendicular to b1 and is used to “pull” b2

in the direction of R1 by an amount equal to the projection
of R1 onto the unit vector along b2:

b′
2 =

(

m − l

m + l

)

· b2 +

(

l + 1

t + 1

)(

b2 · R1

‖R1‖‖b2‖

)

·R1

The residue R2 is calculated similarly:

R2 = R1 − Projb2
(R1)

= R1 −

(

b2 ·R1

‖b2‖2

)

· b2

3However, they can be normalized for use in the background model.

This residue is perpendicular to the span of < b1b2 >.
This procedure is repeated for each subsequent basis vector
such that the basis vector bj is pulled towards Ĩ(t + 1) in a
direction perpendicular to the span of < b1 . . . .bj−1 >.

Zhang and Weng [25] have proved that, with the above
algorithm, bi → ±λiei as n → ∞. Here, λi is the i-th
largest eigenvalue of the covariance matrix Σ

Ĩ
, and ei is the

corresponding eigenvector. Note that the obtained vector
has a scale of λi and is not a unit vector. Therefore, in our
application we store these unnormalized vectors. The mag-
nitude λi yields the eigenvalue and normalization yields the
eigenvector at any iteration.

3.2 Estimation of the predictive model

As stated earlier, we will use a linear auto-regressive
model to model the transformation of states:

spred(t) =

k
∑

i=1

Ais(t − i)

for a k-th order auto-regressive model. The parameters of
the model, contained in Ai’s, can be recovered if a data set
of previous state transformations is available.

We illustrate the approach to be followed in computing
the coefficients of the matrices Ai by considering the case
of k = 1. Let us form two matrices from the state vectors
{s(t)}:

S2 = [s(2), s(3), . . . , s(t)]

S1 = [s(1), s(2), . . . , s(t − 1)]

Now, the application of spred(t) =
∑k

i=1 Ais(t − i) =
A1s(t − 1) on the state transformations yields an over-
constrained set of linear equations. This set of equations can
then be solved for the best A in the sense of least squares
error argminA‖S2 − A · S1‖ by the method of normal
equations [4, 9]:

A = S2 · S1T · (S1 · S1T )−1

A closed form solution for the optimal parameters of the
auto-regressive model in a least squares sense is possible for
any k. This is achieved by solving an over-constrained set
of linear equations that are formed by taking each row of the
equation s(t) =

∑

i Ais(t − i), where the the coefficients
of the n × n square matrices Ai are the unknowns. These
can be solved using the method of normal equations.

4 Detection

A simple mechanism to perform detection is by com-
paring the prediction with the actual observation. Under
the assumption that the auto-regressive model was built us-
ing background samples, such technique will provide poor
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(a) (b)

Figure 3. (a) Input signal, (b) Prediction.

prediction for objects while being able to capture the back-
ground. Two types of changes in the signal may be consid-
ered for detection: (1) “structural” change in the appearance
of pixel intensities in a given region, and (2) change in the
motion characteristics of the signal. Measures are devel-
oped in order to detect each of these types of changes.

4.1 Structural Change

In order to develop the approach for estimating structural
change in the signal, we begin by reviewing some concepts
in Principal Component Analysis and its relationship to
density estimation in a multi-dimensional space. The prin-
cipal component analysis decomposes the vector space R

d

into two mutually exclusive and complementary subspaces:
the principal subspace (or feature space) F = {bi}

n
i=1 con-

taining the principal components and its orthogonal com-
plement F̄ = {bi}

d
i=n+1. Then, using s = BT · Ĩ, the

residual reconstruction error for an input vector Ĩ(t) can be

defined as [7, 15]:

ε2(Ĩ) =

d
∑

i=n+1

s2
i = ‖Ĩ‖2 −

n
∑

i=1

s2
i

This can be easily computed from the first n principal com-
ponents and the L2-norm of the mean-normalized image Ĩ.
Then, the L2 norm of any element x ∈ R

d can be decom-
posed in terms of its projection in these two subspaces. The
component in the orthogonal subspace F̄ , referred to as the
“distance-from-feature-space” (DFFS) [15], is a simple Eu-
clidean distance equivalent to ε2(x).

Let us assume a Gaussian model for the density in
high-dimensional space. More complicated models for the
density, like mixture-of-Gaussians, or non-parametric ap-
proaches can also be considered and easily integrated by
explicitly building a background model on the state space.
If we assume that the mean Ī and covariance Σ of the dis-
tribution have been estimated robustly, the likelihood of an
input I to belong to the background class Ω is given by:

p(I|Ω) =
1

(2π)d/2|Σj |1/2
exp

(

−
1

2
(I − Ī)T Σ−1(I − Ī)

)

The sufficient statistic for characterizing this likelihood is
the Mahalanobis distance:

d(I) = ĨT Σ−1Ĩ

where Ĩ = I− Ī. Utilizing the eigenvalue decomposition of
Σ: Σ = BΛBT where B is the eigenvector matrix of Σ and
is the same as the matrix of basis vectors B used earlier and
Λ is the diagonal matrix of eigenvalues (= D2 in Equation
3), the Mahalanobis distance can be written as:

d(I) = ĨT Σ−1Ĩ = ĨT [BΛ−1BT ]Ĩ = sT Λ−1s

since BT Ĩ = s. Due to the diagonal form of Λ, we can
rewrite this equation as:

d(I) =

d
∑

i=1

s2
i

λi

where λi is the i-th eigenvalue. If we seek to estimate d̃(I)
using only the n principal projections, one can formulate an
optimum estimator for d̃(I) as follows:

d̃(I) =

n
∑

i=1

s2
i

λi
+

1

ρ

[

d
∑

i=n+1

s2
i

]

=

n
∑

i=1

s2
i

λi
+

1

ρ
ε2(Ĩ)

(4)

In [15], it was shown that an optimal ρ in terms of a suitable
error measure based on the Kullback-Leibler divergence is:

ρ∗ =
1

d − n

d
∑

i=n+1

λi
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(a) (b)

Figure 4. (a) Input frames, (b) Detection Compo-
nents. In each block, green represents r1, pink shows
r2 and white represents detection by combining r1

and r2.

We propose the use of d̃(I) as the first detection mea-
sure r1. It is an optimum measure for estimating the dis-
tance from the Gaussian density represented by the prin-
cipal component analysis such that the covariances of the
data are properly taken into account while estimating the
difference. High values of such distance measure have the
following interpretation: the original vector is not close to
the training data, and may correspond to a new object in
the scene. In other words, this is a measure of change of
the scene structure. Such case can occur either because of
changes in the appearance of the scene (color), or because of
structural changes. Therefore, such technique can better de-
tect objects than the standard background subtraction tech-
niques that consider each pixel individually without consid-
ering the relationships between them.

4.2 Change in Motion Characteristics

The measure r1 can deal efficiently with changes of ap-
pearance in the structural sense but would fail to capture
changes in the temporal domain. This can occur when in-
formation appears in a different temporal order than the one
for the background. To this end, one can consider the SSD
(sum of squared differences) error between the input and
predicted image, which can be expressed as the square of
the L2 norm of the difference between the vectorized in-
put and predicted images: ‖I − Ipred‖

2
2. Since any vector

I may be written in terms of its components along the basis
vectors, I =

∑d
i=1 siBi, we may write:

I− Ipred =

d
∑

i=1

siBi −

d
∑

i=1

s
pred
i Bi =

d
∑

i=1

(si − s
pred
i )Bi

Therefore, the norm of this vector may be computed thus:

‖I− Ipred‖
2
2 = ‖

d
∑

i=1

(si − s
pred
i )Bi‖

2
2 =

d
∑

i=1

(si − s
pred
i )2

=

n
∑

i=1

(si − s
pred
i )2 +

d
∑

i=n+1

(si)
2

since the prediction is made from only the first n compo-
nents, and therefore s

pred
i = 0, i = n + 1 . . . d. Recalling

the definition of ε2(Ĩ), we obtain:

‖I− Ipred‖
2
2 =

n
∑

i=1

(si − s
pred
i )2 + ε2(Ĩ)

Since the effect of the second term has already been cap-
tured in r1, we define

r2(t) =

n
∑

i=1

(si − s
pred
i )2 = ‖s− spred‖2

2

where the state vectors are considered only upto the n prin-
cipal components. Such measure captures the change in
the motion characteristics. Objects following motion tra-
jectories different than the ones being considered (auto-
regressive model) will reflect to important values for r2.
Such metric is an additional cue for detection based on
structural motion that has not been considered in traditional
background adaptation methods [10, 5].

4.3 Implementation Details

Real-time processing is a standard requirement of video
surveillance. In particular, when dealing with techniques
that are aimed at background adaptation, such requirement
is strictly enforced. Changes of the background structure
should be captured from the model to preserve satisfactory
detection rate.
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(a) (b) (c)

Figure 5. Detection result for the images in Figure
(4) using (a) a mixture of Gaussians model[10], (b) a
non-parametric model[5], and (c) the non-parametric
model with low detection threshold.

Computing the basis components for large vectors is a
time consuming operation. Optimal algorithms for singular
value decomposition of an m×n matrix take O(m2n+n3))
time[9]. A simple way to deal with such complexity is by
considering the process at a block level. To this end, we
divide the image into blocks and run the algorithm indepen-
dently on each block. For each of these blocks, the number
of components retained is determined dynamically by the
singular values (which refer to the standard deviation in the
direction of basis vectors). Also determined by the singular
values is the number of past images over which the SVD
is computed (for the non-incremental method). This is be-
cause higher variation in a region suggests that more images
would be required to model it. Furthermore, we compute
the PCA only over those frames that are not well modeled
by the current basis vectors. This enables us to capture the
variation of the data over a much longer time window with
the same computational cost.

Such mechanism leads to a quasi real-time (∼5fps) im-
plementation for a 340 × 240 3-band video stream on a 2.2
GHz Pentium 4 processor machine.

4.4 Experimental Results

In order to validate the proposed technique, the challeng-
ing scene of the ocean front was considered. Such scene in-
volves wave motion, blowing grass, long-term changes due

to tides, global illumination changes, shadows etc. An as-
sessment on the performance of the existing methods [10, 5]
is shown in Figure (5). Even though these techniques were
able to cope to some extent with the appearance change of
the scene, their performance can be considered unsatisfac-
tory for video based surveillance systems.

The detection of events was either associated with a non-
acceptable false alarm rate or the detection was compro-
mised when focus was given to reducing the false alarm
rate. Our algorithm was able to detect events of interest in
the land and simulated events on the ocean front as shown
in Figure 4.

The essence of the approach is depicted in Figures (3)
and (4). Observation as well as prediction are presented for
comparison. Visually, one can conclude that the prediction
is rather close to the actual observation for the background
component. On the other hand, prediction quality deterio-
rates when a non-background structure appear in the scene.
A more elaborate technique to validate prediction is through
the detection process as shown in Figure (4).

Based on the experiments, one can claim that our ap-
proach was able to capture the dynamic structure of the
ocean front as well as the blowing grass. At the same time,
dealing with the static parts of the scene is trivial with the
proposed framework.

A second scene we considered was a regular traffic
surveillance scene that has several waving trees [Figure (6)].
The algorithm was again able to perform better than tradi-
tional methods and acheived reduced false alarm rate in the
tree region without any manual adjustment of parameters.

5 Discussion

In this paper we have proposed a prediction-based on-
line method for the modeling of dynamic scenes. The core
contribution of our approach is the integration of a powerful
set of filter operators within a linear prediction model to-
wards the detection of events using measures that are adap-
tive to the complexity of the scene. Furthermore, we have
proposed an on-line adaptation technique to maintain the
selection of the best filter operators and the background
model.

The approach has been tested and validated using a chal-
lenging setting, the detection of events on the coast line and
the ocean front [Figure (3)]. Large scale experiments that
involved real events as well as simulated ones were con-
ducted. The proposed technique was able to detect such
events with a minimal false alarm rate. Detection perfor-
mance was a function of the complexity of the observed
scene. High variation in the observation space reflected
to a mechanism with limited discrimination power. The
method was able to adapt with global and local illumination
changes, weather changes, changes of the natural scene, etc.
Our method could meet and overcome in some cases the
performance of existing techniques [Figure (5)] for station-
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Figure 6. Results for a sequence of a road with wav-
ing trees. Left: Input signal, Middle: Predicted sig-
nal, Right: Block-wise response of the detection mea-
sures. As before, green represents r1, pink represents
r2 and white represents detection in a block.

ary scenes, while being able to deal with more complex and
evolving natural scenes.

On-line adaptation of the prediction mechanism (auto-
regressive model) is an on-going work. Such component
will further reduce the complexity and make the method
more efficient. More sophisticated tools that take decisions
at a higher level and consider neighborhood dependencies
is something to be explored. Exploration of non-linear op-
erators that can better capture the variation of the data lead-
ing to a strong discriminabilty for the model is a direction
that has to be considered. Last, but not least more elabo-
rated prediction mechanisms can further improve the per-
formance of the algorithm.
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