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Abstract.

Systems utilizing multiple sensors are required in many aam In this paper, we specifically concern our-
selves with applications where dynamic objects appearorahdand the system is employed to obtain some
user-specified characteristics of such objects. For susteys, we deal with the tasks of determining measures for
evaluating their performance and of determining good secmafigurations that would maximize such measures
for better system performance.

We introduce a constraint in sensor planning that has nat bedressed earlier: visibility in the presence
of random occluding objects. Two techniques are developethalyze such visibility constraints: a probabilistic
approach to determine “average” visibility rates and a meit@stic approach to address worst-case scenarios.
Apart from this constraint, other important constraintbé&considered include image resolution, field of view,
capture orientation, and algorithmic constraints suchter®s matching and background appearance. Integration
of such constraints is performed via the development of bailistic framework that allows one to reason about
different occlusion events and integrates different ribiiv capture and visibility constraints in a natural way.
Integration of the thus obtained capture quality measuresacthe region of interest yields a measure for the
effectiveness of a sensor configuration and maximizatiosuch measure yields sensor configurations that are
best suited for a given scenario.

The approach can be customized for use in many multi-sepgdications and our contribution is especially
significant for those that involve randomly occuring objecapable of occluding each other. These include se-
curity systems for surveillance in public places, indadtdutomation and traffic monitoring. Several examples
illustrate such versatility by application of our approacha diverse set of different and sometimes multiple

system objectives.

* Most of this work was done while the author was with Real-TwWisgon and Modeling Department, Siemens

Corporate Research, Princeton, NJ 08540.



1. Introduction

Systems utilizing multiple visual sensors are required enynapplications. In this paper,
we consider applications where such sensors are employetam information about dy-
namic objects that appear randomly in a monitored regiona¥geime that the probability
distributions of the occurrence of such objects along witbbpbility distributions of ob-
ject characteristics such as appearance and geometry ana kan priori. Also known are
the characteristics of the static parts of the scene camgistf geometric and appearance
models. Given such information, we address the task of mhét@rg quality measures for
evaluating the performance of a vision system and of detengisensor configurations that
would maximize such a quality measure.

Such analysis is applicable to several domains includingedlance and monitoring,
industrial automation, transportation and automotivel eredical solutions. A common ob-
jective is to monitor a large area by having the sensors laakfferent parts of the scene;
a typical system goal is to track each object within and acréews (camera hand-off) as
it moves through the scene(Kettnaker and Zabih, 1999; CaiAgggarwal, 1999; Collins
etal., 2001). Another objective is to utilize multiple addgspaced cameras for the purpose of
accurate stereo matching and reconstruction (Darrell 2@01; Darrell et al., 1998; Krumm
et al., 2000). Such reconstructions can then be fused attresgews in 3D space. A sensor
configuration might be chosen that sacrifices matching acguior better visibility by uti-
lizing widely separated cameras (Mittal and Davis, 2003ttfliand Davis, 2002). Such an
approach might be appropriate in more crowded scenes. Anatternative (Grimson et al.,
1998; Kelly et al., 1995; Khan et al., 2001; Khan and Shah32@to not match informa-
tion directly across the views, but to merge the detectidiseved by multiple sensors in a
consistent manner. These systems have different requitsraed constraints. Here, we for-
mulate a generic framework that incorporates a variety ohsonstraints with probabilistic
visibility constraints that arise due to occlusion fromentiobjects. Such framework enables
analytical evaluation of the performance of a given visigstem given the task requirement

and maximization of such performance via better sensoepiaat.



1.1. RIORWORK

Sensor planning has been studied extensively. Followirgyévland Bajcsy, 1993) and (Tara-
banis et al., 1995a), these methods can be classified bast#t @mount of information
available about the scene: (1) No information is availafie A set of models for the objects

that can occur in the scene are available, and (3) Compleraegeic information is available.

1.1.1. Scene Reconstruction

The first set of methods, which may be called scene recotistnuar next view planning, at-

tempt to build a model of the scene incrementally by suceelyssensing the unknown world
from effective sensor configurations using the informatioquired about the world up to this
point (Miura and lkeuchi, 1995; Ye and Tsotsos, 1999; P#8at Cook et al., 1996; Roy et al.,
2001; Maver and Bajcsy, 1993; Lehel et al., 1999; Kutulakus Ryer, 1994; Armstrong and
Antonis, 2000; Krishnan and Ahuja, 1996; Cameron and Dtivenyte, 1990; Hager and
Mintz, 1991). The sensors are controlled based on sevétaliarsuch as occlusion, ability to

view the largest unexplored region, ability to perform gateleo matching etc.

1.1.2. Model-Based Object Recognition

The second set of methods assume knowledge about the otfjattsan be present in the
scene. The task, then, is to develop sensing strategies ddeldbased object recognition
and localization (Grimson, 1986; Hutchinson and Kak, 198 et al., 1985; Magee and
Nathan, 1987; Deinzer et al., 2003; Roy et al., 2004). Sgnstrategies are chosen that
are most appropriate for identifying an object or its posgidally, such methods involve
three steps: (1) Generation of the hypothesis remainireg aft observation, (2) Evaluation
of such hypothesis to generate information about the oedyshrts of the scene, and (3)
Determination of the next sensing configuration that bedtices the ambiguity about the
object. Such aypothesize-and-verifgaradigm involves an expensive search in the sensor
parameter space, and a discrete approximation of this spaggically employed. One such
method is that of aspect graphs (Gigus et al., 1991, Petig¢al., 1992; Gigus and Malik,
1990; Cameron and Durrant-Whyte, 1990; Hutchinson and K889) that capture the set of
features of an object visible from a given viewpoint, grauptogether viewpoints that have

the same aspect into equivalence classes.
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1.1.3. Scene Coverage

Methods that are directly related to ours are those thanassiat complete geometric infor-
mation is available and determine the location of staticeenso as to obtain the best views
of a scene. This problem was originally posed and has beeam&xely considered in the
computational geometry literature as the “art-gallerybtem” (O’Rourke, 1987; Shermer,
1992; Urrutia, 1997; Aggarwal, 1984): Find the minimum dgpa@ints G in a Polygon P such
that every point of P is visible from some point of G. Here, e definition of visibility

is defined such that two points are called visible if the gtraline segment between them
lies entirely inside the polygon. Even this simpler probleas shown to be NP-hard by Lee
and Lin (Lee and Lin, 1986). However, Chvatal (Chvatal73Pshowed that the number of
points of G will never exceetn /3| for a simple polygon of: sides. Several researchers have
demonstrated geometric combinatorial methods to obtaigoad” approximate solution to
the problem (Ghosh, 1987; Chin and Ntafos, 1988). Furthezraeveral extensions of this
problem have been considered in the literature that geperdde problem for different types
of guards and visibility definitions (Edelsbrunner et a@84; J. and R., 1988; Kay and Guay,
1970; Lingas, 1982; Masek, 1978; O’'Rourke, 1982). The nesdeferred to (Shermer, 1992)
and (O’Rourke, 1987) for surveys of work done in this field.

Several recent papers have incorporated additional seosstraints such as incidence
angle and range into the problem and reduce the resultasbiselanning problem to the
well-known set-cover problem (Gonzéalez-Banos and Lawn@001; Danner and Kavraki,
2000; Gonzalez-Banos et al., 1998; Gonzalez-Banos andritetp1998): select a group of
sets from a given collection of sets such that the union o giroup equals a given sef.
Such a set cover problem is again NP-hard and it is also welvk that the general version
of the set cover problem cannot be approximated with a ratttebthanlog n, wheren is
the size of the covered séi(Slavik, 1997). However, for sets systems with a finite sikeda
VC-dimensiond, polynomial time solutions exist that yield a set of size asb® (d- c- logc),
wherec is the size of the optimal set. Gonzalez et. al. (GonzalazeB and Latombe, 2001)
use such results from VC-dimensionality in order to obtapolynomial time algorithm for
obtaining a sensor set of size at m6Xi - log(n + k) - log(clog(n + h))), wheren is the
number of sides of a polygon, atds the number of holes in it. Recent work by (Isler et al.,

2004) determines the VC-dimensionality of several setesgstthat are formed by utilizing
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different visibility and space (2D vs. 3D) assumptions. ISaoalysis can then be used to
determine efficient approximation algorithms for thesdipalar problems.

Several researchers (Cowan and Kovesi, 1988; Stamos aed, A®98; Reed and Allen,
2000; Tarabanis et al., 1996; Maver and Bajcsy, 1993; Yi etl895; Spletzer and Taylor,
2001; Wixson, 1994; Abrams et al., 1999) have studied anatjparated more complex con-
straints based on several factors not limited to (1) regwiu(2) focus, (3) field of view, (4)
visibility, (5) view angle, and (6) prohibited regions. Téet of possible sensor configurations
satisfying all such constraints for all the features in tbeng is then determined. There are
several different strategies for determining sensor patanvalues. Several systems take a
generate-and-tesapproach (Sakane et al., 1987; Sakane et al., 1992; Yi e1285), in
which sensor configurations are generated and then evdluatie respect to the task con-
straints. Another set of methods takeyathesisapproach (Anderson, 1982; Tarabanis et al.,
1995b; Tarabanis et al., 1996; Tarabanis et al., 1991; Cot@88; Cowan and Bergman,
1989; Cowan and Kovesi, 1988; Stamos and Allen, 1998), irclwthie task constraints are
analytically analyzed, and the sensor parameter valuéssétiafy such analytical relation-
ships are then determine8ensor simulatios another approach utilized by some systems
(Ikeuchi and Raobert, 1991; Raczkowsky and Mittenbueh@89). Such systems simulate the
observed view given the description of objects, sensorslightl sources and evaluate the
task constraints in such views. Finally, there has been wuak utilizes theexpert systems
paradigm, where expert knowledge of viewing and illumioratiechniques is used to provide
advice about appropriate sensor configurations (Kitamura.e1990; Novini, 1988). The
reader is referred to the survey paper by (Tarabanis ete854d) for further details.

Another related set of methods (Kang et al., 2000; Stueyelinl999; Durand et al., 1997)
has focused on finding good sensor positions for capturingti& scene from desirable view-
points assuming that some geometric information aboutdbeesis available. Bordering on
the field of graphics, the main contribution of such methai®idevelop efficient methods
for determining the view of the scene from different viewpsi The reader is referred to

(Durand, 1999) for a survey of such visibility problems thése in different fields.
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1.2. MOTIVATION AND CONTRIBUTIONS

In addition to the “static” constraints that have been aredypreviously in the literature,
there are additional constraints that arise when randoriudiog objects are present. Such
constraints are essential to analyze since system penfiaaria a function of object visibility.
In people detection and tracking, for instance, handlingjusion typically requires the con-
struction of motion models during visibility that can themlttilized to interpolate the missing
object trajectories(MacCormick and Blake, 2000; Zhao gt24101). However, if objects are
occluded for a significant amount of time, the motion modeadsdme unreliable and the
tracking has to be reinitialized. Using appearance modaltemporal constraints, it might be
possible to match these tracks and identify common obj€bts{ and Shah, 2003; Zhao and
Nevatia, 2004; Isard and MacCormick, 2001). The accuracguch a labeling, however, is
again a function of the frequency and duration of the ocolusind deteriorates significantly
with the increase in such duration. Thus, it is importantrialgze such occlusion caused by
other objects and the effect of such occlusion on systenopadnce. The first part of the
paper focuses on developing methods for the analysis ofssittility constraints arising due
to the presence of random obstacles. Two types of method®asidered - probabilistic and
worst-case (deterministic). The probabilistic approachlyzes visibility constraints for the
“average” case, while the deterministic approach analysest-case scenarios.

System performance also depends on a number of other datsseach as image resolu-
tion, field of view and static obstacles as well as more coralgorithmic constraints such as
stereo matching and background appearance. Integratgrcbfconstraints with probabilistic
visibility constraints is considered in the next part of gager. Most of the existing work has
focused on allowing only specification b&ird constraints, where any particular constraint has
a binary decision regarding its satisfaction at a giventlooaln reality, many constraints are
soft, in the sense that certain locations are better capturegpaa@d to others. Furthermore,
a trade-off is typically involved between different reauritents. For instance, a reduction in
the distance from the camera enhances resolution but nmigtgdse the viewing angle from
the camera and cause difficulties in stereo matching. Tlativelimportance of different
trade-offs and the function integrating the different domisats is task-specific and needs to
be specified according to the particular application. Is traper, we propose the use of such

a function that specifies the quality of the object capture particular location from a given
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set of cameras provided that the object is visible from alhefn. Then, a probabilistic frame-
work is developed that allows one to reason about differentusion events and integrates
multi-view capture and visibility constraints in a natuvey.

Integration of the capture quality measure across the megfionterest yields a measure
of the effectiveness of a given sensor configuration for thele region. Then, the sensor
planning problem can be formulated as the optimization chsa measure over the space
of possible sensor configurations. Since exact optimiaatiosuch a criteria is an NP-hard
problem, we propose methods that yield “good” configuratioma reasonable amount of
time and are able to improve upon such solutions over time.

The above general method for sensor planning can be appliedny different systems in
domains such as surveillance, traffic monitoring and irmialstutomation. Customization of
the method for a given system requirement is performed bgifsgetion of the capture quality
function that incorporates the different constraints #jeto the system objective. The results
section of the paper demonstrates the flexibility of the psel approach in addressing several
different system requirements.

The paper is organized as follows. Section 2 develops thardtieal framework for es-
timating the probability of visibility of an object at a gimdocation in a scene for a certain
configuration of sensors. Section 3 introduces some dat@stici tools to analyze worst-case
visibility scenarios. Section 4 describes the integratibatatic constraints with probabilistic
visibility constraints to develop and then minimize a casidtion in order to perform sensor
planning in diverse environments. Section 5 concludes witldel validation and planning

experiments for a diverse set of synthetic and real scenes.

2. Probabilistic Visibility Analysis

In this section, we develop tools for evaluating the prolitgtf visibility of an object from a
given set of sensors in the presence of random occludingtsbjgince this probability varies
across space, it is estimated as a function of object positio

Since the particular application domain might containagittivo or three dimensions, we
consider the general case ofandimensional space. Assume that we have a reian R™

of “volume” A observed by sensors [Fig. 1] (The area & if m = 2, and its volume if
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Figure 1. Scene Geometry for (a) 3D case, (b) 2.5D case, where thersdmee finite heights.

m = 3). Let &; be the event that a target objegtat locationl € R in angular orientation
0 is visible from sensot. The definition of such “visibility” can be defined accorditathe
application (e.g visibility of only a part of the object migte sufficient) and will be illustrated

with an example subsequently. We will develop tools to esténthe following probabilities:

P(EZ N Ej),i,j =1l.n
1)

P( &)
Although the reason for such estimation will become fullyasllater, one can motivate it by
the following observation: The probability th@tis visible from at least one sensor may be
expressed mathematically as the un®@J;_, €;) of such events, which may be expanded
using the inclusion-exclusion principle as:
P(J&)=>_PE)=>_PENE)+ - +(=1)""P(&) 2)
i Vi i<j i

It is much easier to compute the terms on the RHS (right hate) ghan the one on the LHS.
The computation of such “intersection” terms is considerext.

In order to develop the analysis, we start with the case ofealfitumber of objects in the

scene. This will later be extended to the more general casarible object densities. For

ease of modeling, we assume that all objects are identical.



2.1. HXED NUMBER OF OBJECTS

Assume that there are a fixed numbierof objects in the scene located randomly and uni-
formly in region®R. We first estimateP(&;), which is the probability tha0 is visible from
sensori. Such visibility may be obstructed by the presence of amodhgect in a certain
“region of occlusion” denoted bR¢[Fig. 1]. Such a region of occlusion is dependent on the
application as well as on the size and shape of the occludijerp For instance, requiring
that all of an object be visible will yield a different regiafi occlusion than the requirement
that only the object center is visible. In any case, givemsugegion, denote the volume &f

by A?. Then, we need to estimate the probability that none ofktbbjects is present in this
region of occlusiorR¢. Since there aré objects in the scene located independently of each
other, the probability that none of them is present in théoregf occlusion is(l — %)k.
Thus:

Pe) = (1- %)k ©)

However, this neglects the fact that two objects cannotlageeach other. In order to
incorporate this condition, observe that ttye+ 1)-th object has a possible volume of only
A — jA,, available to it, whered,, is the volume of an occluding objett Thus, Equation 3

can be refined as
k—1 A0
P(&;) = 1—-— 4
( ) ]l;IO < A~ jAob) ( )
This analysis can be generalized to other terms in Eq. 1. Tdtgapility that the object is

visible from all of the sensors in a specified &gt is . . . i,,,) can be written as:

k-1 A2
PN 8z~>:H(1—7X1“““W> ©)

; —jA
i€ (i1,02,.-im) j=0 JHob

whereAf; . isthe volume of the combined region of occlusigf), , ., forthe sensor set

01,...0

(i1,...1,) formed by the “geometric” union of the regions of occluslﬁg for the sensors

inthis set, i.eR(; ;= UpLi R

! The prohibited volume is in fact larger. For example, focular 2D objects, another object cannot be placed
anywhere within a circle of radiug- (rather tharr) without intersecting the object. For simplicity, we redefi
A,p as the volume “covered” by the object. This is the volume ef phohibited region and in the 2D case, may

be approximated as four times the actual area of the object.
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2.2. UNIFORM OBJECTDENSITY

A fixed assumption on the number of objects in a region is vesyrictive. A more realistic
assumption is that the objects have a certain density ofpaeuty. First, we consider the case
of uniform object density in the region. This will then be@xtled to the more general case of
non-uniform object density. The uniform density case catrdsged as a generalization of the
“k objects” case introduced in the previous section. To thik e increasé& and the volume
A proportionately such that

k=M\A (6)

where a constant object densityis assumed. Equation 5 can then be written as

N s AQ
P( &) = lim (1 - #) @
i€ (i1,enim) ko0 S k/A—jAob
Defining
1 Aob
a= 5 , b= P (8)
A14(1171’(77,) A(’Ll, ’Lm)
we obtain
k—1 1
P( ﬂ &;) = lim (1 — ) 9)
i€(i1im) koo iy ka — jb

Denoting this limit byL and taking the logarithm of both sides yields:

k—1 1
InL = 1li In{1-—
. kgﬂozn( ka—jb)
7=0
This sum may be approximated via an integral:

. k 1
lanlerrolo ; In <1— ka—xb) dx

Such integration may be performed using the method of “nattign by parts”. Then, one

obtains:
(ka — xb) k
b

InL ~ lim ( In(ka — zb) — w

k—oo

In(ka — xb — 1))

0

After some calculations, one obtains:

1 —k(a—b)/b 1 k(a/b) k(a o b) 1 1/b
L~ 1 l1—— 1—-— _
Pl < k(a — b)> ( ka> < ka—1 >
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Using some results on limits including the identityn, (1 + %)x = e, We get:

1/b .
L=P( m &i) ~ (1 - 9) =(1- )\Aob)(A(ilwim)/A"b) (10)

.. . a
1€(91,...0m)

For obtaining this result, we approximated the sum via aggiral. Using analysis very similar
to the one presented here, it is not too difficult to show thaterror in this approximation
satisfiese <= [ (ln (1 —~ ﬁ) ~In (1 —~ m)) dz — 0 ask — oo.

We note at this point that the result obtained here is morerate than the result presented
in our earlier paper (Mittal and Davis, 2004). However, favshcases where it can be safely
assumed that > b, it can be shown that the result in (Mittal and Davis, 20043 islose
approximation to the current result. We also note in passiagthe problem is related to the
M/D/1/1 queuing model used in Queuing Theory(Kleinrock73p

So far, we assumed that all objects are identical. We nowndxtee analysis to the case of
probabilistically varying shapes. We first note that in Boua7, the termj A, simply adds
the contribution from the pagtobjects. Thus, more precisely, this term is equan)A{;b.
With sufficiently largej, which is the case whelh — oo, one may approximate this term by
jAg’. Then, the only variable left in this term i47; , . Such a region of occlusion is a
function of the size of the occluding objects and given the glistribution of such objects,

one may estimate the probability distributipn. () of A?

(i1,...4

) Then, the average visibility

probability may be computed as:

oo av Ao. ) Aa'ug o o
P( m &) :/0 (1 _)‘Aobg)( (i) Aot )pAO(A(il,...im))dA(z'1,...z'm) (11)
i€ (i1, 0m)

In order to illustrate the computation of the density fuoeth 40 (), consider the case of cylin-
drical objects with radius. In this case, the area of occlusion may be shown to be equal to
>-; 2rd;, whered;’s are the distances of occlusion from the object (see Figd2Section 2.4

for more details). Then, if the radii of the objects are ndiyndistributed:r ~ N (u,, 0,.),

the distribution of the area of occlusion is also normalistabuted with meary"; 24,.d; and
variance}", 402d?. Using such a distribution function fof? ) ON€ may compute the

(i1,...

probability in Equation 11.
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2.3. NON-UNIFORM OBJECTDENSITY

In general, the object density\Y is a function of location. For example, the object density
near a door might be higher. Moreover, the presence of artosje location can influence
the object density nearby since objects can appear in gro@gan integrate both of these
object density factors with the help of a conditional dgnginction \(x.|xo) that might be
available to us. This density function gives the densityoatitionx. given that visibility is
being calculated at locatiatng . Thus, this function captures the effect that the presehtteeo
object at locationko has on the density nearhy

In order to develop the formulation for the case of non-umifalensity, we note that the
(7 + 1)-th object has a region available to it that®®sminus the region occupied by the
previous objects. This object is located in this “availdbiegion according to the density
function A(). The probability for this object to be present in the regiboaciusionky, ;
can then be calculated as the ratio of the average numberjedtsipresent in the region of

occlusion to the average number of objects in the availag®n. Thus, one can write:

k—1 ( S ))\(xclxo)dxc>
1 —

(i1 im

ffkickjb A(Xc|x0) dxe

P( () &)= lim (12)

P€(i1,.5m) Jj=0

Whereﬂzib is the region occupied by the previog®bjects. Since the previoysobjects are

located randomly iR, one can simplify:

/fR o )‘(XC‘XO) dxc = )\avg(A - jAob)
—ob

where),,, is the average object density in the region. Using this eguat Equation 12 and

noting that\,,,A = &, we obtain:

k—1 ( f%() . A(xc|%0) dxc)
P( ﬂ 82) = lim 1-— oetm (13)
i€ (11,0 tm) k=00 j= k — J- )‘cwg : Aob
Defining:
= 1 h= Aob . )\avg
T e Ao dxe’ | Jm A(Xelx0)dxc’ (14)

(i1,--im) (i1,---im)

2 such formulation only captures the first-order effect of ghesence of an object. While higher order effects

due to the presence of multiple objects can be considereg atte likely to be small.
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Equation 13 may be put in the form of Equation 9. As befores thin be simplified to obtain:

1/b (fo e lx. X, >/Aav Aob
P( N &)z(l—é) = (1= Mg Agp) \ a0 TR (g5

a

’LE(’h,...’im)
Furthermore, similar to the uniform density case, one manedize this equation to the case
of probabilistically varying object shape:

avg
Alxelxq) dxc) [Aavg ALY

0 (f R
P( ﬂ &) :/ (1 —)\angZgg)( Rigsevsim)

P (R, i) ARG
i€ (i1, mim) 0

(i1,-im)
(16)

wherep«o () is the probability density function for the distributiontbie volume of the region

of occlusion. This may again be computed from the distrdsutf the shape of the objects

causing the occlusion.

2.4. MODELS FORPEOPLE DETECTION AND TRACKING

We have presented a general method for determining objsittility given the presence of
random occluding objects. In this section, we consider mgplecification for the2.5D case
of objects moving on a ground plane such that the sensordaredbat some known heights
H; from this plane. The objects are assumed to have the samzohtaii profile at each
height. Examples of such objects include cylinders, cubelspids, and square prisms, and
can adequately describe the objects of interest in manycapiphs such as people detection
and tracking. Let the area of their projection onto the gtbplane beA,;.

A useful quantity may be defined for the objects by considgtiire projection of the object
in a particular direction. We then defineas the average, over different directions, of the
maximum distance from the centroid to the projected objetttp. For e.g., for cylinders, is
the radius of the cylinder; for a square prism with skder = 7%/4 fgr/4 scosf df = 2+/2s /.

The visibility of an object may be defined according to theursments of the particular
application. For some applications, it may be desirableida/the entire object. For others,
it may be sufficient to view the center line only. Furthermaiigibility for a certain height
from the top may be sufficient for some other applications pkople detection and tracking.
The occlusion region formed is a function of such visibiligguirements. For the case of vis-

ibility of the center line and desired visibility only up tdengthh from the top of the object,
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Figure 2. The distance up to which an object can occlude another olgjgrbportional to its distance from the

sensor.

this region is a rectangle of widthr and a distancd; from the object, that is proportional to
the object’s distance from sensdiFig. 2]. Specifically,

; h
di = (D; — d;)p; = Di#7 where p; = A (17)

Assuming that all object orientations are equally lik&Jyone may approximate the area
of the region of occlusioR{ as A ~ d;(2r). Utilizing such models, it is possible to reason
about the particular application of people detection aacking for objects moving on a plane.
Such a model will be utilized for the rest of the paper.

The analysis presented so far is probabilistic and proviaesrage” answers. In high secu-
rity areas, worst-case analysis might be more appropi$ateh an analysis will be presented

in the next section.

3. Deterministic Wor st-Case Visibility Analysis

The probabilistic analysis presented in the last secti@idgiresults in the average case.
When targets are non-cooperative, a worst-case analysisris appropriate. In this section,
we analyze location-specific limitations of a given systemthe worst-case. This analysis

provides conditions that guarantee visibility regardles®bject configuration and enables

3 It is possible to perform the analysis by integration ovéfedént object orientations. However, for ease of

understanding, we will use this approximation.
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Figure 3. Six sensors are insufficient in the presence of six poteotisiructors.

sensor placement such that such conditions are satisfiegivemregion of interest. Towards

this end, we provide the following results:

3.1. RPoINT OBJECTS

For point objects with negligible size, the following canésesily proved:

THEOREM 3.1

Part 1: Suppose there is an obja2tat locationL. If there arek point objects in the vicinity of

0, andn sensors have visibility of locatiof all with different lines of sight tdC, thenn > &

is the necessary and sufficient condition to guaranteeiligifor © from at least one sensor.
Part 2: If visibility from at leastm sensors is required, then the condition to be satisfied is

n>k+m-—1.

PROOF:

Part 1

(a) Necessary

Supposen <= k. Then, consider the following configuration. Placebjects such that each
of them is obstructing one of the sensors (Fig. 3 shows the foa$ sensors and 6 objects).
In this situation,O is not visible from any of the sensors.

(b) Sufficient
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Figure 4. « = 60 ° for identical cylindersp = 90 ° for square prisms. An angular separationcof

between the sensors from the point of view of the object exssilirat one object can only obstruct one
sensor.

Supposen > k. O hasn lines of sight to the sensors. However, there are énbpjects that
can obstruct these lines of sight. Since the objects arerasbto be point objects, they cannot
obstruct more than one sensor. Therefore, by simple appiicaf the pigeon-hole principle,

there must be at least one sensor viewing

Part 2
(a) Necessary
Similar to the reasoning of Part 1(a) above, suppose= k + m — 1. Placep = min(k,n)
objects such that each obstructs one sensor. The numbengirsehaving a clear view of
the object are then equal to— p which is less thann (follows easily from the condition
n<=k+m-—1).
(b) Sufficient
Supposen > k + m — 1. O hasn lines of sight to the sensorg, of which are possibly
obstructed by other objects. Therefore, by the extendegbpidnole principle, there must be
at leastn — k >= m sensors viewind).[]

The actual arrangement of sensors does not matter as lormta® sensors are along the

same line of sight fromd.. This is due to the limitation of considering only point otte
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3.2. 2D HNITE OBJECTS

Assume that we are given a distinguished point on the objstt ¢hat object visibility is
defined as the visibility of this point. This point may be defirarbitrarily. We will also assume
that all objects are identical and defines the maximum angle that any object can subtend at
the distinguished point of any other object. For example,an consider a flat world scenario
where the objects and sensors are in 2D. In such a case, fiodesd with the center of the
circular projection as the distinguished poiat= 60°; for square prismsy = 90°[Fig. 4].
Similarly, in3D, o = 60° for spherical objects anéD° for cubic ones.

Under these assumptions, the following results hold:

THEOREM 3.2

Part 1: Suppose there is an objeét at locationL and there aré: identical objects with
maximum subtending angtein the vicinity of O. Also, letn be the cardinality of the largest
set of sensors such that all such sensors have visibiligoationZ and the angular separation
between any two sensors in this set from the point of View at leasio. Then,n > k is a
necessary and sufficient condition to guarantee visititityO from at least one sensor.

Part 2: If we want visibility from at leastn sensors, then >= k + m — 1 is the necessary

and sufficient condition.

PROOF:

Part 1

The necessary condition follows directly from Theorem 3aitHa). For the sufficiency con-
dition, we note that the distinguished point @fcan be obstructed by another object for a
maximum viewing angle ofv (Figure 4). Therefore, if the sensors are separated by de ang
> «, no single object can obstruct more than one sensor. Siece #re onlyk objects and

n > k sensors, by simple application of the pigeon-hole priegighere must be at least one
sensor viewing).

It may be noted that in theD case,n is never more thar%7r since it is not possible to
placen > %’T sensors such that there is an angular separation of atldastiveen them. In
the3D case, such maximum angledisr? /4nr? sin?(a/4) = 1/sin?(a/4), calculated as the
surface area of a cube divided by the maximum surface aregatch created by an object

subtending an angle at the center of the cube.
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Figure 5. Every location within the circle has an anglex to the sensors.

Part 2
The proof is similar to the proof in Part(d.

An observation may be made here for the region “covered” lyytano sensors such that
an object will be guaranteed to have a minimum angular sépara between the views of
the two sensors. Such a region is a circle passing througtetiiters of the two sensors such
that the angle that the two centers subtend at the centee a@irtie is2« [Fig. 5]. This result
is derived from the condition that the angle subtended byocadcht any point on a circle is

fixed and equal to half the angle subtended by it at the center.

4. Sensor Planning

In the previous sections, we have presented mechanismsdlragion of the visibility con-
straints arising due to the presence of random occludergrJstatic” constraints also affect
the view of the cameras and need to be considered in orderflarmesensor planning. We

next consider the incorporation of such constraints.

4.1. “STATIC” CONSTRAINTS

Several stationary factors limit the view of any camera. W tiescribe such factors briefly
and then discuss how they can be incorporated into a germritufation that enables opti-

mization of the sensor configuration with respect to a uséirdd criteria. Such factors may
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be categorized asard constraints thamustbe satisfied at the given location for visibility, or

softconstraints that may be measured in terms of a measure fureaquality.

1. FIELD OF VIEW: Cameras have a limited field of view. Such tmaint may be specified
in terms of maximum viewing angles from a central directibthe camera, and it can be

verified whether a given location is viewable from a given eeam

2. OBSTACLES: Fixedigh obstacles like pillars block the view of a camera. From amgive

location, it can be determined whether any obstacle blduksiew of a particular camera.

3. PROHIBITED AREAS: There might also exist prohibited areghere people are not
able to walk. An example of such an area is a desk. These aagastpositive effect on
the visibility in their vicinity since it is not possible fabstructing objects to be present

within such regions.

4. RESOLUTION: The resolution of an object in an image reduas the object moves
further away from the camera. Therefore, useful obsematiare possible only up to
a certain distance from the camera. It is possible to spexifjh constraint as hard
one by specifying a maximum “resolution distance” from tlagnera. Alternately, such
a constraint may be measured in terms of a quality measuerea@oft constraint) that

deteriorates as we move away from the camera.

5. ALGORITHMIC CONSTRAINTS: Such constraints may involvger-relationships be-
tween the views of several cameras. Stereo matching assossrtmore cameras is an
example of such a constraint and involves an integratioewd#ral factors including image
resolution, the maximum distortion of a view that can ocecanf one camera to the other
and the minimum angular separation that would guaranteetairteesolution in depth

recovery. Such constraints may again be specified eithehaglar soft

6. VIEWING ANGLE: An additional constraint exists for the wimum angleq,,,, at
which the observation of an object is meaningful. Such aragion may be the basis
for performing some task such as object recognition. Thisstraint translates into a
constraint on the minimum distance from the sensor to ancbbjéhis minimum dis-
tance guarantees the angle of observation to be smallenthan Alternately, a quality

measure may be defined that deteriorates as one moves dadlerdamera center.
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4.2. THE CAPTURE QUALITY

In order to determine the quality or goodness of any givels@econfiguration, the “static”
constraints need to be integrated into a sirglpture qualityfunctiong; () that measures how
well a particular object at locatiohin angular orientatior® is captured by the given sensor
configuration. Due to occlusions, however, such a quargityrandom variable that depends
on the occurrence of evenfs. Thus, one needs to specify thapture qualityas a function
of such events. More specifically, such function needs topeeiied for all camera tuples
that can be formed from the sensor set, i.e. one needs tarde&efq(i,0)},i = 1...n,
{@(1,7,0)},4,7 = 1...n,and so on. Here, the m-tupl(iy, . . ., i, 0) refers to the capture
quality obtained if an object at the locatidim angular orientatiod is visible fromall of the
sensors in the m-tuple (i.e. the evéni;c(;, ;) &) occurs).

To give some insight into such specification, one can conslaecase of stereo match-
ing. Then, since visibility from at least two sensors woukld fequired for matching, the
capture quality{q;(i,0)},7 = 1...n would be zero. For the terms involving two sensors,
several competing requirements need to be considereds Ibéen shown (Mulligan et al.,
2001; Rodriguez and Aggarwal, 1990; Kamgar-Parsi and KaiRgesi, 1989; Georgis et al.,
1998; Blostein and Huang, 1987) that under some simplifgisgumptions, the error in the
recovered depth due to image quantization is approximaedportional todz ~ 22/bf,
wherez is the distance from the camerass the baseline distance between the cameras, and
f is focal length. On the other hand, the angular distortiothefimage of an object from
one camera to the other may be approximated;as tan~!(b/z), and is directly related to
the accuracy with which stereo matching may be performeghEumore, an increase in the
distance from the cameras also decreases the projecteaf ii|eobject, which might further
decrease the accuracy of stereo matching. Thus, the agafrstereo matching first increases
with the distances from the cameras, and then decreasds thdguantization error increases
with such distances. Thus, a function that first increasestlagn decreases as a function of
the distance from the cameras might be an appropriate cfaritiee quality function.

If a multi-camera algorithm is utilized, one may perform migir (though more complex)
analysis for terms involving more than two sensors. In theeabe of such an algorithm, one
possibility is to consider the quality of the best two pairghie m-tuple as the quality of the

m-tuple.
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Thus, one needs to integrate several of the constraintsopsdy described into a single
quality function. As in the stereo matching example mem@above, a trade-off between
different constraints is typically involved and it is up teetuser to specify functions that

define the desired behavior in such conditions.

4.3. INTEGRATING STATIC CONSTRAINTS WITH PROBABILISTIC VISIBIUTY

Given the capture quality measures for different m-tuptesgiven location, we now present
a framework that allows us to determine an overall measurdnéocapture quality of a sensor
configuration at a given location such that the probakdlitévisibility from different sensors

are taken into consideration. We first partition the eveatsgnto the following disjoint sets
[Fig. 6]:

Noé&; occurs, with quality: 0
Only€&; occurs, with quality: q(&;)
Only&; N &;occurs, with quality: ¢(€; N E;)

() & occurs, with quality: ([ &)

(2

Such separation allows one to specify the quality measureaith of such events separately.

Event Space

Figure 6. The event space may be partitioned into disjoint event stge, only &;, for instance, would only

include event space that is not common with other events.

Then, the computation of probabilities for these disjowdrds will yield a probability func-
tion for the capture quality at this location (Fig. 15 illcetes an example where the function
is averaged over the entire region of interest.). While passible to utilize such function
directly and consider complex integration measures, wenasdor simplicity that the mean

is a good measure for combining the quality from differergrés. In order to compute the
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meancapture quality, note that if the event space is partitiomtd disjoint sets, thenean
may be computed directly as the weighted average over dil sets, i.e. if event&; and E»
are disjoint, one may comput@;,, = q(£1) - P(E1) + q(E2) - P(E2). So, themeancapture

quality at a particular location for a particular objectemtationd can be calculated as:

9(0) =" q(&,0)P(Only ;) + 3" q(€;NE;,0)P(Only€; N &)+

Vi 1<j

o+ +q([) &, 0)P(Only (&)

This expression may be rearranged to obtain:

q(@) = ch(gz,H)P(gl) — ch(gz‘ N 8]‘, Q)P(gz N 8j)+
Vi

i<j

+ (=) (€ 0PN €:) (18)
whereg®(Nic(i, ..., €, 0) is defined as:

“C ) &= D aE,0)-> q&ne; 0+ - +(-1)"q( [\ &i0)
’ie(ilv---im) iE(ilv---im) 1<j iE(ilv---im)
(19)
This analysis yields a capture quality measure for eacttitotand each angular orienta-
tion for a given sensor configuration. Such quality measesss to be integrated across the
entire region of interest in order to obtain a quality meadur the given configuration. This

integration is considered in the next section.

4.4. INTEGRATION OF QUALITY ACROSS SPACE

The analysis presented so far yields a functjgfx, ) that defines the capture quality of an
object with orientatiord at locationx given the sensor configuration defined by the parameter
vectors. The parameter vector may include, for instance, the looatiiewing direction and
zoom of each camera. Given such a function, one can defintgahlsgiostfunction to evaluate

a given set of sensor parameters w.r.t to the entire regiba teewed. Such sensor parameters
may be constrained further due to other factors. For instahere typically exists a physical
limitation on the positioning of the cameras (walls, cajbretc.). The sensor planning problem

can then be formulated as a problem of constrained optiiaizaf the cost function.
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Figure 7. The Cost Function for the scene in Figure [12 (a)] where,[fastration purposes, only the
x-coordinate and direction of the second camera have be@dva

Several cost functions may be considered. Based on deistimivisibility analysis, one
can consider a simple cost function that sums, over themegfimterest®;, the numbetV (x)

of cameras that a locationis visible from:

C(s)=— > N(x) (20)
xeR;

Using probabilistic analysis, a cost function can be defitted maximizes the minimum

quality in the region:

C(s) = — ' s(x,0
(s) xe%%lel%“%]Q(X )

Another cost function, and perhaps the most plausible onggimy situations, is to define the

cost as the negative of the average capture quality in a gagian of interest:

2T
Cfs) = — /% /0 A(x, 0)gs(x, 0) df dx 21)

This cost function has been utilized for obtaining the rssil this paper. Note that we have
added an additional parameteto the object density function in order to incorporate infier

tion about object orientations into the density functiomc® the orientation does not affect
the occluding characteristics of an object, this parameter integrated (and eliminated) for

the visibility analysis presented previously.
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4.5. MINIMIZATION OF THE COSTFUNCTION

While it may be possible to efficiently minimize the cost ftion when the specified con-
straints are simple (e.g. see (Gonzalez-Banos and Latd0ba)), minimization for the most
general capture quality functions is a difficult and compatelly expensive problem. For
instance, the cost function obtained in Equation 21 is qrotaplex and it can be shown that
itis not differentiable. Furthermore, in most non-trivialses, it has multiple local minima and
possibly multiple global minima. Figure 7 illustrates thastfunction for the scene shown in
Figure 12 (a). where, for illustration purposes, only twotlod nine parameters have been
varied. Even in this two dimensional space, there are twbalminima and several local
minima. Furthermore, the gradient is zero in some regions.

Due to these characteristics, some of the common optirnizétichniques like simple gra-
dient descent or a “set cover” formulation are not appragridherefore, we consider global
minimization techniques that can deal with complex costfioms(Shang, 1997). Simulated
Annealing and Genetic Algorithms are two classes of algor#t that have commonly been
employed to handle such optimization problems. The natéithe cost function suggests
that either of these two algorithms should provide an aed#ptsolution(Duda et al., 2001).
For our experiments, we implemented simulated annealiivggws sophisticated simulated
re-annealing softwar@SAdeveloped by L. Ingber (Ingber, 1989).

Using this algorithm, we obtain extremely good sensor caondiions in a reasonable
amount of time (5min - a couple of hours on a Pentium IV 2.2GKz &epending on the
desired accuracy of the result, the number of dimensionkeo§éarch space and complexity
of the scene). For low dimensional spaces4), where it was feasible to verify the results
using full search, it was found that the algorithm quicklyneerged to a global minimum.
For moderate dimensions of the search spaceg], the algorithm was able to obtain a
good solution, but only after some time. Although optimaliff the solution could not be
verified by full search, we believe the solutions to be clasthé optimum since running the
algorithm several times from different starting points asahg different annealing parameters
did not alter the final solution. For very high dimensionaags > 8), although the algorithm
provided reasonably good solutions very quickly, it somes took several hours to “jump”

to a better solution.
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Figure 9. Comparison of visibility rates obtained using our modehvfiose obtained for real data.

5. Validation and Experiments

We have proposed analytical methods for computing the ilitgitcharacteristics of sensor
configurations and integrated them with static constraiotprovide a framework and an
algorithm for recovering good sensor configurations wigpeet to certain quality measures.
We first validate the analytical visibility models using Iréata. Then, we illustrate the ap-

plicability of the sensor planning algorithm by providintapning results for various scenes,

synthetic and real.

5.1. VALIDATION OF THE VISIBILITY MODEL

In order to validate the analytical visibility analysis @éyped in this paper, we compare
the predicted visibility with the visibility obtained forome real sequences [Fig. 8]. These
sequences were captured in a laboratory environment usifiipla cameras. Ground truth
about person locations was established by using theradtker algorithm (Mittal and Davis,
2003) that detects and tracks people automatically undgdugions using multiple cameras.

This people location information was then used to deterrttieeempirical visibility rate in
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the area where people were allowed to move (of approx. sizeX3m). Visibility rates
were determined for the cases of visibility frdntameras, such that visibility from even one
camera is sufficient. Visibility was defined as visibility thie center line of the person. This
information was computed over 200 time steps and averagedadvpossible ;') camera
k-tuples, where is the total number of cameras actually available. Diffeemguences were
captured containing different number of people and stegistere obtained for each of them.
This information was then compared with the theoreticalbilisy rate obtained using our
models [Fig. 9]. Since a fixed number of people were resttittemove in the region, the
analysis that uses a fixed number of objects was utilizeddorparison purposes. Since the
region is not too crowded, the visibility rates obtainedngsa uniform density assumption
(with density computed as the number of people/area of thieme were quite close to the
fixed objects assumption. As can be observed from the ploigar€ 9, the predicted and
actual visibility rates are quite close to each other, whighdates the applicability of the

analytical models developed in the paper.

5.2. SENSORPLANNING EXPERIMENTS

We now present results of the application of the sensor pigraigorithm to various scenes. In
order to illustrate the algorithm for complex scenes, we ¢iomsider synthetic examples. Then
we show, for some simple real scenes, how the method may lledtior sensor placement
by utilization of information about object characteristithat may be obtained automatically

by utilization of image-based detection and tracking athors.

5.2.1. Synthetic Examples

In the synthetic examples, we make the following assumgtidine sensors are mounted
H = 2.5m above the ground and have a field of view of°90Ne use a uniform object
density\ = 1m~2, object height = 150cm, object radius r=15cm, minimum vigybheight
h=50cm and maximum visibility angle,,., = 45°. Furthermore, for ease of understanding,
the first few examples will assume a simple quality functiotsthat visibility fromany
direction is considered of equal utility and fixed threslsotale put on the visibility distance

from the camera based on camera resolutinnAdist,..;)and maximum viewing angle, ...
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Figure 10. Maps for themeancaputure quality for 1,2,3 and 4 sensors in a square regisdOh,

R=50mX50m\ = 1m~2, , r=15cm, h=50cm, and,,., = 30 °. Note how the quality decreases as
we move away from a camera due to an increase in occlusiorddiysan increase in the distance
of occlusiond; (Fig. 2). The average capture qualities obtained were ¢29®, (b) 0.672, (c) 0.8095,
and (d) 0.888 respectively.

(mindistyiew):

(22)

(&:.6) 1 if mindistyiew < dist(x,cam) < mazdistys
qx\Ci, =
' 0 otherwise

Note that the parametéiis neglected. Furthermore, for multiple sensor teqﬁﬁﬁie(il,__.im) &, 0),
the quality is defined simply as the quality of the sensorrathe best view:

ot [) &0 = max q(&,0) (23)

i€ (iv,nim) 1€ (115 tm)

Under this assumption, it is easy to verify that the quanfitglefined in Equation 19 becomes:

i€ (100 im) 1€(41 50 tm)

First, we consider a simple square area of size 10mX10m aredngi@e the number of
cameras required for the scene. Figure 10 shows the meaityguaps obtained for the
case of one, two, three and four sensors respectively. Thes @@ scaled such that [0,1]
maps onto [0,255], thus creating a gray scale image. Brightgons represent higher quality.
Note how the mean capture quality decreases as we move awrayafrcamera due to an
increase in occlusion, in turn due to increase in the distasfcocclusiond;. The average
capture quality obtained for the four cases were (a) 0.48960.672, (c) 0.8095, and (d)
0.888 respectively. This information can be used to selecappropriate number of cameras
based on the application requirements.

In all the synthetic examples we consider next, we considexctngular room of size

10mX20m. Figure 11 illustrates the effect that an obstaale ltave on camera placement.
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Obstacle
(Pillar)

(a) (b) (c)
Figure 11. lllustration of the effect of scene geometry on sensor pras#. Optimum configuration when (a):

obstacle size is small. (b): obstacle size is big. (c): athstsize is such that both configurations are equally good.

Using a maximum of two cameras having a field of view96f, the first configuration [a]
was found to be optimum when the obstacle size was saim). Configuration [b] was
optimum when the object size was biggOcm). For the object size shown in configuration [C]
(~60cm), both configurations were equally good. Note that th bonfigurations all locations
are visible from at least one camera. Therefore, currenboastbased solely on analysis of
static obstacles would not be able to distinguish betweenvib.

Figure 12 illustrates how the camera specifications canifeigntly alter the optimum
sensor configuration. Notice that the scene has both obstanld prohibited areas. With three
available cameras, configuration [a] was found to be optimuren the cameras have only
90 field of view but are able to “see” up to 25m. With the same natsah, configuration [b]
is optimum if the cameras have a 36ild of view (Omni-Camera(Nayar, 1997; Peleg et al.,
2001)). If the resolution is lower so that cameras can “sedy ap to 10m, configuration [C]
is optimum.

Figure 13 illustrates the effect of different assumptidosid the objects and their visibility.
With all other assumptions the same as above, configurasipwds found to be optimum
when the worst case analysis was utilized [Eq. 20]. On therdilnd, a uniform object den-

sity assumption [Eq. 21] yielded configuration [b] as theémpin one. When an assumption
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Figure 12. lllustration of the effect of different camera specificago With a uniform density assumption and
visibility from any direction, the optimum configuration when the cameras héje:field of view of 90 and
resolution up to 25m, (b360° field of view (Omni-Camera), and resolution up to 25m, @5§0° field of view,

but resolution only up to 10m.

of variable object densities was utilized such that the ithenis highest near the door and
decreases linearly with the distance from it [d], configiorafc] was found to be the best.
Note that a higher object density near the door leads to asitepuing of the cameras so that
they can better capture this region.

So far, we have assumed a simple quality function [Eq.s 22]&t28 ignores the angular
orientationd of the objects and imposes fixed constraints on the cameskuties and viewing
angle. We now illustrate how one may change this functionroleoto incorporate more
complex visibility requirements. Assuming that one reggiwisibility from all directions,

one may alter the quality function as follows:

1if Ogipp < 0™
qx(&;,0) = & dmn < dist(x,cam) < d* (25)

view TES

0 otherwise

whered™** is the maximum angular orientation at which the observatiothe object is still
considered useful, anll; s = abs(0 — dir(cam,x)) such thatdir(cam,x) is the angular

direction of the camera from the point of vie[Fig. 14]. Assuming a uniform density and
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Figure 13. lllustration of the effect of different object charact¢igs and visibility requirements. Optimum con-
figuration using:

(a): object visibility fromanydirection using worst-case analysis [Eq. 20],

(b): object visibility fromanydirection using a uniform density [Eq. 21],

(c): object visibility fromanydirection using variable densities [Eq. 21], for the obgensity shown in (d),

(e): object visibility fromall directions [Eq. 25],

(f): object visibility fromall directions, with a soft constraint on image resolution [Eg],

(9): object visibility fromall directions, with soft constraint on resolution [Eq. 26]darsing variable densities
(d),

(h): object visibility fromall directions, with soft constraints on resolution and vieyvimgle [Egs. 26 & 27].
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Chjaet Orientadioni @

Figure 14. Computation of the viewing angt;; s ¢

the above definition of quality, with™** = 90°, we obtain the sensor configuration shown in
[e]. This may be compared with configuration [b]. Note that tameras are now more spread
out in order to capture the objects from many directions.

One may further expand the definition of the quality functiororder to incorporate the
camera distanceonstraints as soft constraints rather than hard ones. @sibe assumption
is that the quality decreases linearly with the camera migtavhen such distance is less than

dm™n  and decrease exponentially when such distance is atjgife

view?

1 if dmin < dist(x,cam) < dme*

view res

ax(€i,0) = H(Ogifs) * W if dist(x,cam) < d7in

eap (_M) if dist(x,cam) > dm®

max
dras res

(26)
where H(0girr) = 11if 0455 > 6™, = 0 otherwise. The sensor configuration obtained
for such definition of the quality function is illustrated ff}. Note that the cameras move
inwards compared to configuration [e] because of the inegeasibility in the regions close
to a camera. Utilization of variable densities with suchliquaneasure leads to configuration
[a].

One may further allow a soft constraint on the viewing omion. One possibility is to
assume that the quality deteriorates linearly as the angtientationd,; s r increases between

a low and high value. Such factor may be incorporated intor@tibe mentioned quality
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Figure 15. The probability density function for the capture qualityotl the unusually high values for

L L
0 0.2 0.

zero and one capture quality due to the possibilities of detagbject occlusion and perfect capture
in certain conditions.

measure [Eq. 26] by specifying:

1 if ediff < gmin
H(ediff) _ Oaqifr—0™" if gmin < ediff < gmaz (27)

gmaz _gmin

0 if Qdiff > gmar

Such quality measure leads to the sensor configuration [Bh@#t" = 7/2 andd™** = r,
Note that camera one moves further inwards compared to coafign [f] since the direc-
tional visibility requirement has been made a little leggdii The probability distribution for
the capture quality for this case is shown in Fig. [15]. Ussugh information, one may be
able to utilize more complex capture requirements. Forimst, one may be able to specify
that a certain percentile of the capture quality be maxidhize

Next, we consider a stereo scenario in which matching acas®ras and 3D reconstruc-
tion becomes an additional constraint. One can show thaertoe in triangulation for an

omni-camera is proportional to:

ety X \/d% + d3 + dydy cos(ar) / sin(«) (28)

whered; andd, are the distances of the object from the two cameras,caisdthe angular
separation between the two cameras as seen from the objgaiugh the error in matching

is algorithm-dependent, a reasonable assumption is that:
em < dy/cos(0/2) + da/cos(0/2) (29)

Considering a quality function that uses a weighted aveohtfee two errorsy = —(wy ey +
waey, ), configuration Fig. 16 [a] was found to the best. Note thathedIthree cameras come

closer to each other in order to be able to conduct sterechingtbetween any two of them.
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Figure 16. lllustration of integration of more complex algorithmicr@giraints. Configuration obtained using three
omni-cameras, non-directional object visibility, unifodensities, and:

(a): a stereo requirement Eq.s 28, 29.

(b): three omni-cameras, algorithmic constraint of nohilgy with the top wall as background,

(1): no visibility with the left wall as background.

In the final example for this scene, we consider a case wheocause of algorithmic con-
straints, capture of an object with one of the walls as bamkapl is not useful. For instance, the
wall may be painted a certain color and the objects may hawghapnobability of appearing
in this color. Assuming that visibility with the top wall astkground is not useful, we obtain
configuration Fig. 16[b]. The same constraint with the leflwyields configuration Fig. 16
[c]. Note that some cameras move close to the prohibited wadrder to avoid it as the
background.

Next, we consider a more complex scene where several cimstare to be satisfied
simultaneously. In Fig. 17, the scene of a “museum” is sholare the entrance is on the left
upper corner and the exit is on the bottom right corner. Omedsired to view the faces of
people as they enter or exit the scene. For the rest of the 2lbeabject localization is to be
performed via stereo reconstruction. In the first part ofstene, the four cameras are trying
to simultaneously satisfy the tasks of capturing the faédékeoentering people iROI 1and
performing stereo reconstruction for the rest of the scenthe middle portion, only stereo

is to be performed. Finally, in the last part, the faces ofgheple leaving the scene ROI
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Figure 17. Sensor Planning in a large “Museum”, where several comifraare to be satisfied

simultaneously.

2 are to be additionally captured. The difference in sensacghent for the three zones is
interesting.
We have illustrated the applicability and generality of 8ensor planning algorithm in

various synthetic scenarios. Next, we will show resultgftbe algorithm in some real scenes.

5.2.2. Real Scenes

We first present analysis of sensor placement for a real offioen. The structure of the
room is illustrated in Figure 18 (a). We used the followinggvaeters - uniform density =
0.25m 2, object height = 170cm; = 23cm, h = 40cm, anda,,., = 60°. The cameras
available to us had a field of view of 45and needed to be mounted on the ceiling which
is 2.5m high. In order to view people’s face as they enter doany; the quality function was
chosen such that it includes only the “entering” objectragion. We first consider the case
when there is no panel (separator). If only one camera idadkaj the best placement was
found to be at location (600,600) at an anglel8%° (measured clockwise from the positive
x-axis). If two cameras are available, the best configunatiansists of one camera at (0,600)
at an angle 067.5° and the other camera at (600, 600) at an angle32f. Figures 18 (b) and

(c) show the views from the cameras.



(0,600cm) (600cm,600¢m)
\Caml___| cam2 Cam2 /
(with panel) (no panel)

Desk

‘Panel(Separator) “

Region of Interest . Desk

J

.0 (600cm,0)

Figure 18. (a) Plan view of a room used for a real experiment. (b) and (e)tlae views from the
optimum camera locations when there is no panel (obstadle that, of the three people in the
scene, one person is occluded in each view. However, alleshthre visible from at least one of the
views. Image (d) shows the view from the second camera inrdeepce of the panel. Now, one person
is not visible in any view. To improve visibility, the secondmera is moved to (180, 600). The view
from this new location is shown in (e), where all people asthlé again.

Next, we place a thin panel at location (300, 300) - (600, 30Bg optimum configuration
of two cameras consists of a camera at (0,600) at an an@e.©f (same as before) and the
other camera at (180, 600) at an angle3&f. Figures 18 (d) & (e) show the views from the
original and new location of the second camera.

Next, we consider sensor planning in a small controlled renvnent [Fig. 20]. In the
first experiment, face detection is maximized, while in teeond one, we try to maximize
person detection via background subtraction and groupMeutilized an off-the-shelf face
detector from OpenCV and characterized its performancedifferent camera distances and
person orientations[Fig. 19]. This gives us the qualityction that we need for our sensor
planner. Cameras were then placed in the optimum sensomguocation thus obtained and
face detection was performed on the video data. We also aslest user to try to position the
cameras manually and experiments were conducted with dimgeiration as well. Results
of this experiment are presented in Fig.s [20(a)-(f) & 21]the next experiment, we tried
to maximize person detection using background subtradiosh grouping. An additional
constraint we considered was that the appearance of one @fctbrs matched with one of
the walls, thus making detection in front of it difficult. Bhcondition was then integrated

into the quality function. The results of this experimerg ahown in Fig.s [20 (g)-(l) & 21].
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Distance | Face Detection Rate
1.8m-2.5m 97.5%
2.5m-3.1m 94%
3.1m - 3.8m 92.5%
3.8m-4.5m 85%
4.5m -5.2m 7%

5.2m - 6m 40%
> 6m 0%

Figure 19. Empirical face detection rates for different distancesrfrthe cameras for the face detector from
OpenCV. Additionally, detection rates reduced by about 369 the frontal to the side view. This information

is used by the sensor planner in the quality function.

The actual rates were quite close to the predicted ratesliffieeence being possibly due to
the small experimental data sizes used for the experimertsraccuracies in the models
utilized. Inspite of these differences, the relative parfance of the different configurations
was correctly predicted by the sensor planner, allowingffactive planning of the sensors.
In the next example, we consider camera placement in theylobh building, where the
objective was to capture the faces of people as they&ffiy. 22]. Video was captured from
an existing camera over a period of a couple of hours and a confrackground subtraction
method (Stauffer and Grimson, 2000) was utilized in ordeletiect foreground pixels. Spatial
integration and reasoning on top of such pixel-level daa@Greiffenhagen et al., 2000; Para-
gios and Ramesh, 2001) yields estimates of the positioneop#ople on the ground plane.
Such information was then averaged over time in order torate the object densities at
different portions on the plane. However, partial or totatlasions cannot be handled by a
single camera and thus the algorithm fails to detect petleare occluded by other people.

Other methods that utilize temporal information to trackeots over time(Zhao and Nevatia,

4 Thus, the quality function includes only “entering” objertentations near the door.
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Figure 20. (a): Configuration of two cameras for optimum face detect{bh& (c): Sample images captured from

these camera locations. Note that some of the faces are teatef because of a large viewing angle or errors in
the face detector. (d): Configuration selected by a humaratgre (e) & (f): Sample images captured from this
camera configuration. (g): Configuration of two cameras &spn detection using background subtraction, where
the right wall matches the color of people 33% of the time.&H)): Sample images captured from the optimal
camera locations. (j): Configuration selected by a humamadpe (k) and (l): Sample images from the camera

configuration in (j). Note how the top portion of one personas detected due to similarity with the background.
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Face Detection Person Detection

w/ planning | w/o planning|| w/ planning| w/o planning

Predicted 53.6% 48% 85% 81%

Actual 51.33% 42% 82% 76%

Figure 21. Detection rates predicted by the algorithm compared wigteittual rates obtained from experimental

data.

2004; Zhao and Nevatia, 2003; Isard and MacCormick, 200jafamal and Davis, 2001) or
use multiple cameras to improve object visibility(MittatdaDavis, 2003) could be utilized
to improve such estimation. Furthermore, we found thatethegre long periods of inactivity
followed by bursts of activity where several people appeddsnly in a group. Therefore, we
considered only those portions of the video that contaimadesactivity in order to determine
the object densities.

Utilizing such automatic algorithm, we were able to obtdie tbject density shown in
Fig. 22 [c]. This object density was then utilized to ideyt# better location for the camera
22 [d]. The average visibility probability predicted waoab72%, while the actualy obtained
probability was 78%. In order to improve the visibility pattility, if a second camera is also
utilized, the two cameras in optimum configuration [e] aghi@bout 93% visibility (91%
visibility predicted). Using two cameras, one may want téagb 3D information via stereo
matching. Utilization of such a constraint leads to the sewsnfiguration [f]. Note that the
two cameras are much closer to each other in order to minithé&enage distortion across the
views. When the cameras were optimized for face detectimnfiguration [g] was obtained,
while fixing the position of the camera but adjusting only toem and camera rotation led to
configuration [h]. The images obtained from these configomatand the results of the face

detector on such images is shown in images [i] and [j].
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Entr;nco l

Prohibited
area

(Desk)

Non-monitored
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I

Camera

Figure 22. Sensor placement in a lobby. (a): Two views from an origireahera location at different times of

the day. (b): Density map obtained via background subtractilarker represents higher object density). (c):
Mapping of the density map onto a plan view of the scene. (@}irtal object visibility using one camera (72%

visibility predicted, 78% obtained). (e): Optimal senstagement using two cameras (91% visibility predicted,
93% obtained). (f): Optimal sensor placement using two camand a stereo requirement. (g): Optimization of
face detection for people entering the building (46 % dé&acpredicted, 43% obtained). An example of face
detection using this sensor setting is shown in (i). (h):i@jation of face detection when the position of the
camera cannot be changed (but the direction and zoom caf} (83ection predicted, 35 % obtained). Note that
people turning right cannot be detected in this configunatAn example of face detection using this setting is

shown in (j).
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6. Discussion and Conclusion

We addressed the problem of sensor placement in multi-easystems, especially those
that are deployed to capture certain characteristics ofuthym objects that appear and move
randomly in a specified region. While static constraintshsas those due to image resolu-
tion, camera field-of-view, focus, static obstacles anddesen algorithm have been well
studied in the literature, occlusion due to the presencetluérodynamic objects has not
been considered. Such occlusion is random and necessitatesbabilistic formulation of
the problem.

We developed two different approaches for modeling the teaimgs arising due to the
presence of random occluding objects. The first approadibegtia probabilistic framework
to determine the average rates of visibility of an objearfiagiven set of sensors. The second
method evaluates worst-case scenarios and provides icosdibat would guarantee visibility
regardless of object configuration.

Integration of constraints due to occlusion from other otgjewith other types of con-
straints requires special care due to the random natureeafdblusion. On the other hand,
all static constraints may be integrated into a single gapquiality function that denotes the
quality of the object acquisition when the object is visifi@m all of the sensors in a given
set. This led us to the development of a framework for intégneaof probabilistic occlusion
constraints with static constraints. Such an analysigigi@iformation about the probability
distribution of the capture quality at a particular locatitntegration of this information over
a given region of interest and maximization of appropriat#losen integrated measures over
the space of possible camera parameters then leads to adhfiethietermining good sensor
locations. Selection of different measures for the qudlityction and different optimization
criteria facilitate customization of the method to a variet multi-sensor systems.

The utilization of the system for a given scenario requihes tertain information is avail-
able. This includes not only the scene geometry and appearéat also estimates of the
probability distributions of the geometry and appearancth® objects that are expected to
be present. In some scenarios, it may be possible to compcitedistributions by utilization
of advanced algorithms and additional cameras duringitig{ihao and Nevatia, 2004; Zhao
and Nevatia, 2003; Isard and MacCormick, 2001; Elgammal Rads, 2001; Mittal and
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Davis, 2003). Furthermore, if the object distributions expected to be similar across a large
area or across multiple locations, then it may be possibtmiopute such information from
running such algorithms on only a part of the scene. In someraicenes, it may be sufficient
to specify approximations to such distributions by hand.

The framework developed in the paper is perhaps most ralevanrveillance where many
target areas are crowded and require multiple cameras fficient visibility and system
performance. Another application domain is that of indak&utomation where objects ar-
rive randomly, for e.g. on a belt, and the vision system ifzefil for providing real-time
information for intelligent control of such objects. Otlparssible application domains include
traffic monitoring and light control via “smart” vision semsinput and cameras mounted on
cars for enhancing driver safety. Future work on this topidiudes specification of more
complex cost functions, investigation of more efficient noels for optimization of specific
cost functions and better estimation of the visibility paibbity by considering the effect of

long-term interaction between objects.
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