
A General Method for Sensor Planning in Multi-Sensor Systems:

Extension to Random Occlusion

Anurag Mittal (amittal@cse.iitm.ernet.in)

Department of Computer Science and Engg.∗,

Indian Institute of Technology Madras,

Chennai, India - 600036.

Larry S. Davis (lsd@cs.umd.edu)

Computer Science Department,

University of Maryland,

College Park, MD 20742.

Abstract.

Systems utilizing multiple sensors are required in many domains. In this paper, we specifically concern our-

selves with applications where dynamic objects appear randomly and the system is employed to obtain some

user-specified characteristics of such objects. For such systems, we deal with the tasks of determining measures for

evaluating their performance and of determining good sensor configurations that would maximize such measures

for better system performance.

We introduce a constraint in sensor planning that has not been addressed earlier: visibility in the presence

of random occluding objects. Two techniques are developed to analyze such visibility constraints: a probabilistic

approach to determine “average” visibility rates and a deterministic approach to address worst-case scenarios.

Apart from this constraint, other important constraints tobe considered include image resolution, field of view,

capture orientation, and algorithmic constraints such as stereo matching and background appearance. Integration

of such constraints is performed via the development of a probabilistic framework that allows one to reason about

different occlusion events and integrates different multi-view capture and visibility constraints in a natural way.

Integration of the thus obtained capture quality measure across the region of interest yields a measure for the

effectiveness of a sensor configuration and maximization ofsuch measure yields sensor configurations that are

best suited for a given scenario.

The approach can be customized for use in many multi-sensor applications and our contribution is especially

significant for those that involve randomly occuring objects capable of occluding each other. These include se-

curity systems for surveillance in public places, industrial automation and traffic monitoring. Several examples

illustrate such versatility by application of our approachto a diverse set of different and sometimes multiple

system objectives.

∗ Most of this work was done while the author was with Real-TimeVision and Modeling Department, Siemens

Corporate Research, Princeton, NJ 08540.
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1. Introduction

Systems utilizing multiple visual sensors are required in many applications. In this paper,

we consider applications where such sensors are employed toobtain information about dy-

namic objects that appear randomly in a monitored region. Weassume that the probability

distributions of the occurrence of such objects along with probability distributions of ob-

ject characteristics such as appearance and geometry are known a priori. Also known are

the characteristics of the static parts of the scene consisting of geometric and appearance

models. Given such information, we address the task of determining quality measures for

evaluating the performance of a vision system and of determining sensor configurations that

would maximize such a quality measure.

Such analysis is applicable to several domains including surveillance and monitoring,

industrial automation, transportation and automotive, and medical solutions. A common ob-

jective is to monitor a large area by having the sensors look at different parts of the scene;

a typical system goal is to track each object within and across views (camera hand-off) as

it moves through the scene(Kettnaker and Zabih, 1999; Cai and Aggarwal, 1999; Collins

et al., 2001). Another objective is to utilize multiple closely-spaced cameras for the purpose of

accurate stereo matching and reconstruction (Darrell et al., 2001; Darrell et al., 1998; Krumm

et al., 2000). Such reconstructions can then be fused acrossthe views in 3D space. A sensor

configuration might be chosen that sacrifices matching accuracy for better visibility by uti-

lizing widely separated cameras (Mittal and Davis, 2003; Mittal and Davis, 2002). Such an

approach might be appropriate in more crowded scenes. Another alternative (Grimson et al.,

1998; Kelly et al., 1995; Khan et al., 2001; Khan and Shah, 2003) is to not match informa-

tion directly across the views, but to merge the detections observed by multiple sensors in a

consistent manner. These systems have different requirements and constraints. Here, we for-

mulate a generic framework that incorporates a variety of such constraints with probabilistic

visibility constraints that arise due to occlusion from other objects. Such framework enables

analytical evaluation of the performance of a given vision system given the task requirement

and maximization of such performance via better sensor placement.



3

1.1. PRIOR WORK

Sensor planning has been studied extensively. Following (Maver and Bajcsy, 1993) and (Tara-

banis et al., 1995a), these methods can be classified based onthe amount of information

available about the scene: (1) No information is available,(2) A set of models for the objects

that can occur in the scene are available, and (3) Complete geometric information is available.

1.1.1. Scene Reconstruction

The first set of methods, which may be called scene reconstruction or next view planning, at-

tempt to build a model of the scene incrementally by successively sensing the unknown world

from effective sensor configurations using the informationacquired about the world up to this

point (Miura and Ikeuchi, 1995; Ye and Tsotsos, 1999; Pito, 1999; Cook et al., 1996; Roy et al.,

2001; Maver and Bajcsy, 1993; Lehel et al., 1999; Kutulakos and Dyer, 1994; Armstrong and

Antonis, 2000; Krishnan and Ahuja, 1996; Cameron and Durrant-Whyte, 1990; Hager and

Mintz, 1991). The sensors are controlled based on several criteria such as occlusion, ability to

view the largest unexplored region, ability to perform goodstereo matching etc.

1.1.2. Model-Based Object Recognition

The second set of methods assume knowledge about the objectsthat can be present in the

scene. The task, then, is to develop sensing strategies for model-based object recognition

and localization (Grimson, 1986; Hutchinson and Kak, 1989;Kim et al., 1985; Magee and

Nathan, 1987; Deinzer et al., 2003; Roy et al., 2004). Sensing strategies are chosen that

are most appropriate for identifying an object or its pose. Typically, such methods involve

three steps: (1) Generation of the hypothesis remaining after an observation, (2) Evaluation

of such hypothesis to generate information about the occluded parts of the scene, and (3)

Determination of the next sensing configuration that best reduces the ambiguity about the

object. Such ahypothesize-and-verifyparadigm involves an expensive search in the sensor

parameter space, and a discrete approximation of this spaceis typically employed. One such

method is that of aspect graphs (Gigus et al., 1991; Petitjean et al., 1992; Gigus and Malik,

1990; Cameron and Durrant-Whyte, 1990; Hutchinson and Kak,1989) that capture the set of

features of an object visible from a given viewpoint, grouping together viewpoints that have

the same aspect into equivalence classes.
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1.1.3. Scene Coverage

Methods that are directly related to ours are those that assume that complete geometric infor-

mation is available and determine the location of static sensors so as to obtain the best views

of a scene. This problem was originally posed and has been extensively considered in the

computational geometry literature as the “art-gallery problem” (O’Rourke, 1987; Shermer,

1992; Urrutia, 1997; Aggarwal, 1984): Find the minimum set of points G in a Polygon P such

that every point of P is visible from some point of G. Here, a simple definition of visibility

is defined such that two points are called visible if the straight line segment between them

lies entirely inside the polygon. Even this simpler problemwas shown to be NP-hard by Lee

and Lin (Lee and Lin, 1986). However, Chvátal (Chvátal, 1975) showed that the number of

points of G will never exceed⌊n/3⌋ for a simple polygon ofn sides. Several researchers have

demonstrated geometric combinatorial methods to obtain a “good” approximate solution to

the problem (Ghosh, 1987; Chin and Ntafos, 1988). Furthermore, several extensions of this

problem have been considered in the literature that generalize the problem for different types

of guards and visibility definitions (Edelsbrunner et al., 1984; J. and R., 1988; Kay and Guay,

1970; Lingas, 1982; Masek, 1978; O’Rourke, 1982). The reader is referred to (Shermer, 1992)

and (O’Rourke, 1987) for surveys of work done in this field.

Several recent papers have incorporated additional sensorconstraints such as incidence

angle and range into the problem and reduce the resultant sensor planning problem to the

well-known set-cover problem (González-Banos and Latombe, 2001; Danner and Kavraki,

2000; Gonzalez-Banos et al., 1998; Gonzalez-Banos and Latombe, 1998): select a group of

sets from a given collection of sets such that the union of such group equals a given setX.

Such a set cover problem is again NP-hard and it is also well-known that the general version

of the set cover problem cannot be approximated with a ratio better thanlog n, wheren is

the size of the covered setX(Slavik, 1997). However, for sets systems with a finite so-called

VC-dimensiond, polynomial time solutions exist that yield a set of size at mostO(d ·c · logc),

wherec is the size of the optimal set. Gonzalez et. al. (González-Banos and Latombe, 2001)

use such results from VC-dimensionality in order to obtain apolynomial time algorithm for

obtaining a sensor set of size at mostO(c · log(n + h) · log(c log(n + h))), wheren is the

number of sides of a polygon, andh is the number of holes in it. Recent work by (Isler et al.,

2004) determines the VC-dimensionality of several set systems that are formed by utilizing
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different visibility and space (2D vs. 3D) assumptions. Such analysis can then be used to

determine efficient approximation algorithms for these particular problems.

Several researchers (Cowan and Kovesi, 1988; Stamos and Allen, 1998; Reed and Allen,

2000; Tarabanis et al., 1996; Maver and Bajcsy, 1993; Yi et al., 1995; Spletzer and Taylor,

2001; Wixson, 1994; Abrams et al., 1999) have studied and incorporated more complex con-

straints based on several factors not limited to (1) resolution, (2) focus, (3) field of view, (4)

visibility, (5) view angle, and (6) prohibited regions. Theset of possible sensor configurations

satisfying all such constraints for all the features in the scene is then determined. There are

several different strategies for determining sensor parameter values. Several systems take a

generate-and-testapproach (Sakane et al., 1987; Sakane et al., 1992; Yi et al.,1995), in

which sensor configurations are generated and then evaluated with respect to the task con-

straints. Another set of methods take asynthesisapproach (Anderson, 1982; Tarabanis et al.,

1995b; Tarabanis et al., 1996; Tarabanis et al., 1991; Cowan, 1988; Cowan and Bergman,

1989; Cowan and Kovesi, 1988; Stamos and Allen, 1998), in which the task constraints are

analytically analyzed, and the sensor parameter values that satisfy such analytical relation-

ships are then determined.Sensor simulationis another approach utilized by some systems

(Ikeuchi and Robert, 1991; Raczkowsky and Mittenbuehler, 1989). Such systems simulate the

observed view given the description of objects, sensors andlight sources and evaluate the

task constraints in such views. Finally, there has been workthat utilizes theexpert systems

paradigm, where expert knowledge of viewing and illumination techniques is used to provide

advice about appropriate sensor configurations (Kitamura et al., 1990; Novini, 1988). The

reader is referred to the survey paper by (Tarabanis et al., 1995a) for further details.

Another related set of methods (Kang et al., 2000; Stuerzlinger, 1999; Durand et al., 1997)

has focused on finding good sensor positions for capturing a static scene from desirable view-

points assuming that some geometric information about the scene is available. Bordering on

the field of graphics, the main contribution of such methods is to develop efficient methods

for determining the view of the scene from different viewpoints. The reader is referred to

(Durand, 1999) for a survey of such visibility problems thatarise in different fields.
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1.2. MOTIVATION AND CONTRIBUTIONS

In addition to the “static” constraints that have been analyzed previously in the literature,

there are additional constraints that arise when random occluding objects are present. Such

constraints are essential to analyze since system performance is a function of object visibility.

In people detection and tracking, for instance, handling occlusion typically requires the con-

struction of motion models during visibility that can then be utilized to interpolate the missing

object trajectories(MacCormick and Blake, 2000; Zhao et al., 2001). However, if objects are

occluded for a significant amount of time, the motion models become unreliable and the

tracking has to be reinitialized. Using appearance models and temporal constraints, it might be

possible to match these tracks and identify common objects(Khan and Shah, 2003; Zhao and

Nevatia, 2004; Isard and MacCormick, 2001). The accuracy ofsuch a labeling, however, is

again a function of the frequency and duration of the occlusion and deteriorates significantly

with the increase in such duration. Thus, it is important to analyze such occlusion caused by

other objects and the effect of such occlusion on system performance. The first part of the

paper focuses on developing methods for the analysis of suchvisibility constraints arising due

to the presence of random obstacles. Two types of methods areconsidered - probabilistic and

worst-case (deterministic). The probabilistic approach analyzes visibility constraints for the

“average” case, while the deterministic approach analysesworst-case scenarios.

System performance also depends on a number of other constraints such as image resolu-

tion, field of view and static obstacles as well as more complex algorithmic constraints such as

stereo matching and background appearance. Integration ofsuch constraints with probabilistic

visibility constraints is considered in the next part of thepaper. Most of the existing work has

focused on allowing only specification ofhardconstraints, where any particular constraint has

a binary decision regarding its satisfaction at a given location. In reality, many constraints are

soft, in the sense that certain locations are better captured compared to others. Furthermore,

a trade-off is typically involved between different requirements. For instance, a reduction in

the distance from the camera enhances resolution but might increase the viewing angle from

the camera and cause difficulties in stereo matching. The relative importance of different

trade-offs and the function integrating the different constraints is task-specific and needs to

be specified according to the particular application. In this paper, we propose the use of such

a function that specifies the quality of the object capture ata particular location from a given
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set of cameras provided that the object is visible from all ofthem. Then, a probabilistic frame-

work is developed that allows one to reason about different occlusion events and integrates

multi-view capture and visibility constraints in a naturalway.

Integration of the capture quality measure across the region of interest yields a measure

of the effectiveness of a given sensor configuration for the whole region. Then, the sensor

planning problem can be formulated as the optimization of such a measure over the space

of possible sensor configurations. Since exact optimization of such a criteria is an NP-hard

problem, we propose methods that yield “good” configurations in a reasonable amount of

time and are able to improve upon such solutions over time.

The above general method for sensor planning can be applied to many different systems in

domains such as surveillance, traffic monitoring and industrial automation. Customization of

the method for a given system requirement is performed by specification of the capture quality

function that incorporates the different constraints specific to the system objective. The results

section of the paper demonstrates the flexibility of the proposed approach in addressing several

different system requirements.

The paper is organized as follows. Section 2 develops the theoretical framework for es-

timating the probability of visibility of an object at a given location in a scene for a certain

configuration of sensors. Section 3 introduces some deterministic tools to analyze worst-case

visibility scenarios. Section 4 describes the integrationof static constraints with probabilistic

visibility constraints to develop and then minimize a cost function in order to perform sensor

planning in diverse environments. Section 5 concludes withmodel validation and planning

experiments for a diverse set of synthetic and real scenes.

2. Probabilistic Visibility Analysis

In this section, we develop tools for evaluating the probability of visibility of an object from a

given set of sensors in the presence of random occluding objects. Since this probability varies

across space, it is estimated as a function of object position.

Since the particular application domain might contain either two or three dimensions, we

consider the general case of anm dimensional space. Assume that we have a regionR ⊂ R
m

of “volume” A observed byn sensors [Fig. 1] (The area ofR if m = 2, and its volume if
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(a) (b)

Figure 1. Scene Geometry for (a) 3D case, (b) 2.5D case, where the sensors have finite heights.

m = 3). Let Ei be the event that a target objectO at locationL ∈ R in angular orientation

θ is visible from sensori. The definition of such “visibility” can be defined accordingto the

application (e.g visibility of only a part of the object might be sufficient) and will be illustrated

with an example subsequently. We will develop tools to estimate the following probabilities:

P (Ei),i = 1..n

P (Ei ∩ Ej),i, j = 1..n

. . .

P (
⋂

i

Ei)

(1)

Although the reason for such estimation will become fully clear later, one can motivate it by

the following observation: The probability thatO is visible from at least one sensor may be

expressed mathematically as the unionP (
⋃n

i=1 Ei) of such events, which may be expanded

using the inclusion-exclusion principle as:

P (
⋃

i

Ei) =
∑

∀i

P (Ei) −
∑

i<j

P (Ei ∩ Ej) + · · · + (−1)n+1P (
⋂

i

Ei) (2)

It is much easier to compute the terms on the RHS (right hand side) than the one on the LHS.

The computation of such “intersection” terms is considerednext.

In order to develop the analysis, we start with the case of a fixed number of objects in the

scene. This will later be extended to the more general case ofvariable object densities. For

ease of modeling, we assume that all objects are identical.
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2.1. FIXED NUMBER OF OBJECTS

Assume that there are a fixed number,k, of objects in the scene located randomly and uni-

formly in regionR. We first estimateP (Ei), which is the probability thatO is visible from

sensori. Such visibility may be obstructed by the presence of another object in a certain

“region of occlusion” denoted byRo
i [Fig. 1]. Such a region of occlusion is dependent on the

application as well as on the size and shape of the occluding object. For instance, requiring

that all of an object be visible will yield a different regionof occlusion than the requirement

that only the object center is visible. In any case, given such a region, denote the volume ofRo
i

by Ao
i . Then, we need to estimate the probability that none of thek objects is present in this

region of occlusionRo
i . Since there arek objects in the scene located independently of each

other, the probability that none of them is present in the region of occlusion is
(

1 − Ao
i

A

)k
.

Thus:

P (Ei) =

(

1 − Ao
i

A

)k

(3)

However, this neglects the fact that two objects cannot overlap each other. In order to

incorporate this condition, observe that the(j + 1)-th object has a possible volume of only

A − jAob available to it, whereAob is the volume of an occluding object1. Thus, Equation 3

can be refined as

P (Ei) =
k−1
∏

j=0

(

1 − Ao
i

A − jAob

)

(4)

This analysis can be generalized to other terms in Eq. 1. The probability that the object is

visible from all of the sensors in a specified set(i1, i2 . . . im) can be written as:

P (
⋂

i∈(i1,i2,...im)

Ei) =
k−1
∏

j=0

(

1 −
Ao

(i1,i2,...im)

A − jAob

)

(5)

whereAo
(i1,...im) is the volume of the combined region of occlusionRo

(i1,...im) for the sensor set

(i1, . . . im) formed by the “geometric” union of the regions of occlusionRo
ip for the sensors

in this set, i.e.Ro
(i1,...im) =

⋃m
p=1 Ro

ip .

1 The prohibited volume is in fact larger. For example, for circular 2D objects, another object cannot be placed

anywhere within a circle of radius2r (rather thanr) without intersecting the object. For simplicity, we redefine

Aob as the volume “covered” by the object. This is the volume of the prohibited region and in the 2D case, may

be approximated as four times the actual area of the object.
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2.2. UNIFORM OBJECT DENSITY

A fixed assumption on the number of objects in a region is very restrictive. A more realistic

assumption is that the objects have a certain density of occupancy. First, we consider the case

of uniform object density in the region. This will then be extended to the more general case of

non-uniform object density. The uniform density case can betreated as a generalization of the

“k objects” case introduced in the previous section. To this end, we increasek and the volume

A proportionately such that

k = λA (6)

where a constant object densityλ is assumed. Equation 5 can then be written as

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0

(

1 −
Ao

(i1,...im)

k/λ − jAob

)

(7)

Defining

a =
1

λAo
(i1,...im)

, b =
Aob

Ao
(i1,...im)

(8)

we obtain

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0

(

1 − 1

ka − jb

)

(9)

Denoting this limit byL and taking the logarithm of both sides yields:

ln L = lim
k→∞

k−1
∑

j=0

ln

(

1 − 1

ka − jb

)

This sum may be approximated via an integral:

ln L ≈ lim
k→∞

∫ k

0
ln

(

1 − 1

ka − xb

)

dx

Such integration may be performed using the method of “integration by parts”. Then, one

obtains:

ln L ≈ lim
k→∞

(

(ka − xb)

b
ln(ka − xb) − (ka − xb − 1)

b
ln(ka − xb − 1)

)∣

∣

∣

∣

k

0

After some calculations, one obtains:

L ≈ lim
k→∞

(

1 − 1

k(a − b)

)−k(a−b)/b (

1 − 1

ka

)k(a/b) (k(a − b) − 1

ka − 1

)1/b
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Using some results on limits including the identitylimx→∞(1 + 1
x)x = e, we get:

L = P (
⋂

i∈(i1,...im)

Ei) ≈
(

1 − b

a

)1/b

= (1 − λAob)
(Ao

(i1,...im)
/Aob) (10)

For obtaining this result, we approximated the sum via an integral. Using analysis very similar

to the one presented here, it is not too difficult to show that the error in this approximation

satisfiese <=
∫ k
0

(

ln
(

1 − 1
ka−xb

)

− ln
(

1 − 1
ka−(x−1)b

))

dx → 0 ask → ∞.

We note at this point that the result obtained here is more accurate than the result presented

in our earlier paper (Mittal and Davis, 2004). However, for most cases where it can be safely

assumed thata ≫ b, it can be shown that the result in (Mittal and Davis, 2004) isa close

approximation to the current result. We also note in passingthat the problem is related to the

M/D/1/1 queuing model used in Queuing Theory(Kleinrock, 1975).

So far, we assumed that all objects are identical. We now extend the analysis to the case of

probabilistically varying shapes. We first note that in Equation 7, the termjAob simply adds

the contribution from the pastj objects. Thus, more precisely, this term is equal to
∑j

i Aj
ob.

With sufficiently largej, which is the case whenk → ∞, one may approximate this term by

jAavg
ob . Then, the only variable left in this term isAo

(i1,...im). Such a region of occlusion is a

function of the size of the occluding objects and given the size distribution of such objects,

one may estimate the probability distributionpAo() of Ao
(i1,...im). Then, the average visibility

probability may be computed as:

P (
⋂

i∈(i1,...im)

Ei) =

∫

∞

0

(

1 − λAavg
ob

)(Ao
(i1,...im)

/Aavg

ob
)
pAo(Ao

(i1,...im)) dAo
(i1,...im) (11)

In order to illustrate the computation of the density functionpAo(), consider the case of cylin-

drical objects with radiusr. In this case, the area of occlusion may be shown to be equal to
∑

i 2rdi, wheredi’s are the distances of occlusion from the object (see Fig. 2 and Section 2.4

for more details). Then, if the radii of the objects are normally distributed: r ∼ N(µr, σr),

the distribution of the area of occlusion is also normally distributed with mean
∑

i 2µrdi and

variance
∑

i 4σ
2
rd

2
i . Using such a distribution function forAo

(i1,...im), one may compute the

probability in Equation 11.
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2.3. NON-UNIFORM OBJECT DENSITY

In general, the object density (λ) is a function of location. For example, the object density

near a door might be higher. Moreover, the presence of an object at a location can influence

the object density nearby since objects can appear in groups. We can integrate both of these

object density factors with the help of a conditional density functionλ(xc|xO) that might be

available to us. This density function gives the density at locationxc given that visibility is

being calculated at locationxO. Thus, this function captures the effect that the presence of the

object at locationxO has on the density nearby2.

In order to develop the formulation for the case of non-uniform density, we note that the

(j + 1)-th object has a region available to it that isR minus the region occupied by thej

previous objects. This object is located in this “available” region according to the density

functionλ(). The probability for this object to be present in the region of occlusionRo
(i1,...im)

can then be calculated as the ratio of the average number of objects present in the region of

occlusion to the average number of objects in the available region. Thus, one can write:

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0



1 −

∫

Ro
(i1,...im)

λ(xc|x0) dxc

∫

R−R
j

ob

λ(xc|x0) dxc



 (12)

whereR
j
ob is the region occupied by the previousj objects. Since the previousj objects are

located randomly inR, one can simplify:

∫

R−R
j

ob

λ(xc|x0) dxc = λavg(A − jAob)

whereλavg is the average object density in the region. Using this equation in Equation 12 and

noting thatλavgA = k, we obtain:

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0



1 −

∫

Ro
(i1,...im)

λ(xc|x0) dxc

k − j · λavg · Aob



 (13)

Defining:

a =
1

∫

Ro
(i1,...im)

λ(xc|x0) dxc

, b =
Aob · λavg

∫

Ro
(i1,...im)

λ(xc|x0) dxc

, (14)

2 Such formulation only captures the first-order effect of thepresence of an object. While higher order effects

due to the presence of multiple objects can be considered, they are likely to be small.
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Equation 13 may be put in the form of Equation 9. As before, this can be simplified to obtain:

P (
⋂

i∈(i1,...im)

Ei) ≈
(

1 − b

a

)1/b

= (1 − λavgAob)

(

∫

Ro
(i1,...im)

λ(xc|x0) dxc

)

/λavgAob

(15)

Furthermore, similar to the uniform density case, one may generalize this equation to the case

of probabilistically varying object shape:

P (
⋂

i∈(i1,...im)

Ei) =

∫

∞

0

(

1 − λavgA
avg
ob

)

(

∫

Ro
(i1,...im)

λ(xc|x0) dxc

)

/λavgAavg

ob

pRo(Ro
(i1,...im))dR

o
(i1,...im)

(16)

wherepRo() is the probability density function for the distribution ofthe volume of the region

of occlusion. This may again be computed from the distribution of the shape of the objects

causing the occlusion.

2.4. MODELS FORPEOPLE DETECTION AND TRACKING

We have presented a general method for determining object visibility given the presence of

random occluding objects. In this section, we consider model specification for the2.5D case

of objects moving on a ground plane such that the sensors are placed at some known heights

Hi from this plane. The objects are assumed to have the same horizontal profile at each

height. Examples of such objects include cylinders, cubes,cuboids, and square prisms, and

can adequately describe the objects of interest in many applications such as people detection

and tracking. Let the area of their projection onto the ground plane beAob.

A useful quantity may be defined for the objects by considering the projection of the object

in a particular direction. We then definer as the average, over different directions, of the

maximum distance from the centroid to the projected object points. For e.g., for cylinders,r is

the radius of the cylinder; for a square prism with side2s, r = 1
π/4

∫ π/4
0 scosθ dθ = 2

√
2s/π.

The visibility of an object may be defined according to the requirements of the particular

application. For some applications, it may be desirable to view the entire object. For others,

it may be sufficient to view the center line only. Furthermore, visibility for a certain heighth

from the top may be sufficient for some other applications like people detection and tracking.

The occlusion region formed is a function of such visibilityrequirements. For the case of vis-

ibility of the center line and desired visibility only up to alengthh from the top of the object,



14

Figure 2. The distance up to which an object can occlude another objectis proportional to its distance from the

sensor.

this region is a rectangle of width2r and a distancedi from the object, that is proportional to

the object’s distance from sensori [Fig. 2]. Specifically,

di = (Di − di)µi = Di
µi

µi + 1
, where µi =

h

Hi
(17)

Assuming that all object orientations are equally likely3, one may approximate the area

of the region of occlusionRo
i asAo

i ≈ di(2r). Utilizing such models, it is possible to reason

about the particular application of people detection and tracking for objects moving on a plane.

Such a model will be utilized for the rest of the paper.

The analysis presented so far is probabilistic and provides“average” answers. In high secu-

rity areas, worst-case analysis might be more appropriate.Such an analysis will be presented

in the next section.

3. Deterministic Worst-Case Visibility Analysis

The probabilistic analysis presented in the last section yields results in the average case.

When targets are non-cooperative, a worst-case analysis ismore appropriate. In this section,

we analyze location-specific limitations of a given system in the worst-case. This analysis

provides conditions that guarantee visibility regardlessof object configuration and enables

3 It is possible to perform the analysis by integration over different object orientations. However, for ease of

understanding, we will use this approximation.
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Figure 3. Six sensors are insufficient in the presence of six potentialobstructors.

sensor placement such that such conditions are satisfied in agiven region of interest. Towards

this end, we provide the following results:

3.1. POINT OBJECTS

For point objects with negligible size, the following can beeasily proved:

THEOREM 3.1

Part 1: Suppose there is an objectO at locationL. If there arek point objects in the vicinity of

O, andn sensors have visibility of locationL all with different lines of sight toL, thenn > k

is the necessary and sufficient condition to guarantee visibility for O from at least one sensor.

Part 2: If visibility from at leastm sensors is required, then the condition to be satisfied is

n > k + m − 1.

PROOF:

Part 1

(a)Necessary

Supposen <= k. Then, consider the following configuration. Placen objects such that each

of them is obstructing one of the sensors (Fig. 3 shows the case for 6 sensors and 6 objects).

In this situation,O is not visible from any of the sensors.

(b) Sufficient
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Figure 4. α = 60 ◦ for identical cylinders,α = 90 ◦ for square prisms. An angular separation ofα

between the sensors from the point of view of the object ensures that one object can only obstruct one

sensor.

Supposen > k. O hasn lines of sight to the sensors. However, there are onlyk objects that

can obstruct these lines of sight. Since the objects are assumed to be point objects, they cannot

obstruct more than one sensor. Therefore, by simple application of the pigeon-hole principle,

there must be at least one sensor viewingO.

Part 2

(a)Necessary

Similar to the reasoning of Part 1(a) above, supposen <= k + m − 1. Placep = min(k, n)

objects such that each obstructs one sensor. The number of sensors having a clear view of

the object are then equal ton − p which is less thanm (follows easily from the condition

n <= k + m − 1).

(b) Sufficient

Supposen > k + m − 1. O hasn lines of sight to the sensors,k of which are possibly

obstructed by other objects. Therefore, by the extended pigeon-hole principle, there must be

at leastn − k >= m sensors viewingO.�

The actual arrangement of sensors does not matter as long as no two sensors are along the

same line of sight fromL. This is due to the limitation of considering only point objects.
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3.2. 2D FINITE OBJECTS

Assume that we are given a distinguished point on the object such that object visibility is

defined as the visibility of this point. This point may be defined arbitrarily. We will also assume

that all objects are identical and defineα as the maximum angle that any object can subtend at

the distinguished point of any other object. For example, one can consider a flat world scenario

where the objects and sensors are in 2D. In such a case, for cylinders with the center of the

circular projection as the distinguished point,α = 60◦; for square prisms,α = 90◦[Fig. 4].

Similarly, in 3D, α = 60◦ for spherical objects and60◦ for cubic ones.

Under these assumptions, the following results hold:

THEOREM 3.2

Part 1: Suppose there is an objectO at locationL and there arek identical objects with

maximum subtending angleα in the vicinity ofO. Also, letn be the cardinality of the largest

set of sensors such that all such sensors have visibility of locationL and the angular separation

between any two sensors in this set from the point of viewL is at leastα. Then,n > k is a

necessary and sufficient condition to guarantee visibilityfor O from at least one sensor.

Part 2: If we want visibility from at leastm sensors, thenn >= k + m − 1 is the necessary

and sufficient condition.

PROOF:

Part 1

The necessary condition follows directly from Theorem 3.1 Part1(a). For the sufficiency con-

dition, we note that the distinguished point ofO can be obstructed by another object for a

maximum viewing angle ofα (Figure 4). Therefore, if the sensors are separated by an angle

> α, no single object can obstruct more than one sensor. Since there are onlyk objects and

n > k sensors, by simple application of the pigeon-hole principle, there must be at least one

sensor viewingO.

It may be noted that in the2D case,n is never more than2π
α since it is not possible to

placen > 2π
α sensors such that there is an angular separation of at leastα between them. In

the3D case, such maximum angle is4πr2/4πr2 sin2(α/4) = 1/ sin2(α/4), calculated as the

surface area of a cube divided by the maximum surface area of apatch created by an object

subtending an angleα at the center of the cube.
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Figure 5. Every location within the circle has an angle> α to the sensors.

Part 2

The proof is similar to the proof in Part 1.�

An observation may be made here for the region “covered” by any two sensors such that

an object will be guaranteed to have a minimum angular separation α between the views of

the two sensors. Such a region is a circle passing through thecenters of the two sensors such

that the angle that the two centers subtend at the center of the circle is2α [Fig. 5]. This result

is derived from the condition that the angle subtended by a chord at any point on a circle is

fixed and equal to half the angle subtended by it at the center.

4. Sensor Planning

In the previous sections, we have presented mechanisms for evaluation of the visibility con-

straints arising due to the presence of random occluders. Other “‘static” constraints also affect

the view of the cameras and need to be considered in order to perform sensor planning. We

next consider the incorporation of such constraints.

4.1. “STATIC” CONSTRAINTS

Several stationary factors limit the view of any camera. We first describe such factors briefly

and then discuss how they can be incorporated into a generic formulation that enables opti-

mization of the sensor configuration with respect to a user-defined criteria. Such factors may
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be categorized as:hard constraints thatmustbe satisfied at the given location for visibility, or

softconstraints that may be measured in terms of a measure for capture quality.

1. FIELD OF VIEW: Cameras have a limited field of view. Such constraint may be specified

in terms of maximum viewing angles from a central direction of the camera, and it can be

verified whether a given location is viewable from a given camera.

2. OBSTACLES: Fixedhigh obstacles like pillars block the view of a camera. From a given

location, it can be determined whether any obstacle blocks the view of a particular camera.

3. PROHIBITED AREAS: There might also exist prohibited areas where people are not

able to walk. An example of such an area is a desk. These areas have a positive effect on

the visibility in their vicinity since it is not possible forobstructing objects to be present

within such regions.

4. RESOLUTION: The resolution of an object in an image reduces as the object moves

further away from the camera. Therefore, useful observations are possible only up to

a certain distance from the camera. It is possible to specifysuch constraint as ahard

one by specifying a maximum “resolution distance” from the camera. Alternately, such

a constraint may be measured in terms of a quality measure (i.e. asoft constraint) that

deteriorates as we move away from the camera.

5. ALGORITHMIC CONSTRAINTS: Such constraints may involve inter-relationships be-

tween the views of several cameras. Stereo matching across two or more cameras is an

example of such a constraint and involves an integration of several factors including image

resolution, the maximum distortion of a view that can occur from one camera to the other

and the minimum angular separation that would guarantee a certain resolution in depth

recovery. Such constraints may again be specified either as ahard or soft.

6. VIEWING ANGLE: An additional constraint exists for the maximum angleαmax at

which the observation of an object is meaningful. Such an observation may be the basis

for performing some task such as object recognition. This constraint translates into a

constraint on the minimum distance from the sensor to an object. This minimum dis-

tance guarantees the angle of observation to be smaller thanαmax. Alternately, a quality

measure may be defined that deteriorates as one moves closer to the camera center.
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4.2. THE CAPTURE QUALITY

In order to determine the quality or goodness of any given sensor configuration, the “static”

constraints need to be integrated into a singlecapture qualityfunctionql(θ) that measures how

well a particular object at locationl in angular orientationθ is captured by the given sensor

configuration. Due to occlusions, however, such a quantity is a random variable that depends

on the occurrence of eventsEi. Thus, one needs to specify thecapture qualityas a function

of such events. More specifically, such function needs to be specified for all camera tuples

that can be formed from the sensor set, i.e. one needs to determine {ql(i, θ)}, i = 1 . . . n,

{ql(i, j, θ)}, i, j = 1 . . . n, and so on. Here, the m-tupleql(i1, . . . , im, θ) refers to the capture

quality obtained if an object at the locationl in angular orientationθ is visible fromall of the

sensors in the m-tuple (i.e. the eventP (
⋂

i∈(i1,...im) Ei) occurs).

To give some insight into such specification, one can consider the case of stereo match-

ing. Then, since visibility from at least two sensors would be required for matching, the

capture quality{ql(i, θ)}, i = 1 . . . n would be zero. For the terms involving two sensors,

several competing requirements need to be considered. It has been shown (Mulligan et al.,

2001; Rodriguez and Aggarwal, 1990; Kamgar-Parsi and Kamgar-Parsi, 1989; Georgis et al.,

1998; Blostein and Huang, 1987) that under some simplifyingassumptions, the error in the

recovered depth due to image quantization is approximatelyproportional toδz ≈ z2/bf ,

wherez is the distance from the cameras,b is the baseline distance between the cameras, and

f is focal length. On the other hand, the angular distortion ofthe image of an object from

one camera to the other may be approximated asθd ≈ tan−1(b/z), and is directly related to

the accuracy with which stereo matching may be performed. Furthermore, an increase in the

distance from the cameras also decreases the projected sizeof the object, which might further

decrease the accuracy of stereo matching. Thus, the accuracy of stereo matching first increases

with the distances from the cameras, and then decreases, while the quantization error increases

with such distances. Thus, a function that first increases and then decreases as a function of

the distance from the cameras might be an appropriate choicefor the quality function.

If a multi-camera algorithm is utilized, one may perform a similar (though more complex)

analysis for terms involving more than two sensors. In the absence of such an algorithm, one

possibility is to consider the quality of the best two pairs in the m-tuple as the quality of the

m-tuple.
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Thus, one needs to integrate several of the constraints previously described into a single

quality function. As in the stereo matching example mentioned above, a trade-off between

different constraints is typically involved and it is up to the user to specify functions that

define the desired behavior in such conditions.

4.3. INTEGRATING STATIC CONSTRAINTS WITH PROBABILISTIC VISIBILITY

Given the capture quality measures for different m-tuples at a given location, we now present

a framework that allows us to determine an overall measure for the capture quality of a sensor

configuration at a given location such that the probabilities of visibility from different sensors

are taken into consideration. We first partition the event space into the following disjoint sets

[Fig. 6]:

NoEi occurs, with quality: 0

OnlyEi occurs, with quality: q(Ei)

OnlyEi ∩ Ejoccurs, with quality: q(Ei ∩ Ej)
⋂

i

Ei occurs, with quality: q(
⋂

i

Ei)

Such separation allows one to specify the quality measure for each of such events separately.

Figure 6. The event space may be partitioned into disjoint event sets.Here,only Ei, for instance, would only

include event space that is not common with other events.

Then, the computation of probabilities for these disjoint events will yield a probability func-

tion for the capture quality at this location (Fig. 15 illustrates an example where the function

is averaged over the entire region of interest.). While it ispossible to utilize such function

directly and consider complex integration measures, we assume for simplicity that the mean

is a good measure for combining the quality from different events. In order to compute the
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meancapture quality, note that if the event space is partitionedinto disjoint sets, themean

may be computed directly as the weighted average over all such sets, i.e. if eventsE1 andE2

are disjoint, one may compute:qavg = q(E1) ·P (E1) + q(E2) · P (E2). So, themeancapture

quality at a particular location for a particular object orientationθ can be calculated as:

q(θ) =
∑

∀i

q(Ei, θ)P (OnlyEi) +
∑

i<j

q(Ei ∩ Ej , θ)P (OnlyEi ∩ Ej)+

· · · + q(
⋂

i

Ei, θ)P (Only
⋂

i

Ei)

This expression may be rearranged to obtain:

q(θ) =
∑

∀i

qc(Ei, θ)P (Ei) −
∑

i<j

qc(Ei ∩ Ej , θ)P (Ei ∩ Ej)+

· · · + (−1)n+1qc(
⋂

i

Ei, θ)P (
⋂

i

Ei) (18)

whereqc(
⋂

i∈(i1,...im) Ei, θ) is defined as:

qc(
⋂

i∈(i1,...im)

Ei, θ) =
∑

i∈(i1,...im)

q(Ei, θ)−
∑

i<j

q(Ei∩Ej, θ)+ · · · +(−1)m+1q(
⋂

i∈(i1,...im)

Ei, θ)

(19)

This analysis yields a capture quality measure for each location and each angular orienta-

tion for a given sensor configuration. Such quality measure needs to be integrated across the

entire region of interest in order to obtain a quality measure for the given configuration. This

integration is considered in the next section.

4.4. INTEGRATION OFQUALITY ACROSS SPACE

The analysis presented so far yields a functionqs(x, θ) that defines the capture quality of an

object with orientationθ at locationx given the sensor configuration defined by the parameter

vectors. The parameter vector may include, for instance, the location, viewing direction and

zoom of each camera. Given such a function, one can define a suitablecostfunction to evaluate

a given set of sensor parameters w.r.t to the entire region tobe viewed. Such sensor parameters

may be constrained further due to other factors. For instance, there typically exists a physical

limitation on the positioning of the cameras (walls, ceilings etc.). The sensor planning problem

can then be formulated as a problem of constrained optimization of the cost function.
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Figure 7. The Cost Function for the scene in Figure [12 (a)] where, for illustration purposes, only the

x-coordinate and direction of the second camera have been varied.

Several cost functions may be considered. Based on deterministic visibility analysis, one

can consider a simple cost function that sums, over the region of interestRi, the numberN(x)

of cameras that a locationx is visible from:

C(s) = −
∑

x∈Ri

N(x) (20)

Using probabilistic analysis, a cost function can be definedthat maximizes the minimum

quality in the region:

C(s) = − min
x∈Ri,θ∈[0...2π]

qs(x, θ))

Another cost function, and perhaps the most plausible one inmany situations, is to define the

cost as the negative of the average capture quality in a givenregion of interest:

C(s) = −
∫

Ri

∫ 2π

0
λ(x, θ)qs(x, θ) dθ dx (21)

This cost function has been utilized for obtaining the results in this paper. Note that we have

added an additional parameterθ to the object density function in order to incorporate informa-

tion about object orientations into the density function. Since the orientation does not affect

the occluding characteristics of an object, this parameterwas integrated (and eliminated) for

the visibility analysis presented previously.
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4.5. MINIMIZATION OF THE COST FUNCTION

While it may be possible to efficiently minimize the cost function when the specified con-

straints are simple (e.g. see (González-Banos and Latombe, 2001)), minimization for the most

general capture quality functions is a difficult and computationally expensive problem. For

instance, the cost function obtained in Equation 21 is quitecomplex and it can be shown that

it is not differentiable. Furthermore, in most non-trivialcases, it has multiple local minima and

possibly multiple global minima. Figure 7 illustrates the cost function for the scene shown in

Figure 12 (a). where, for illustration purposes, only two ofthe nine parameters have been

varied. Even in this two dimensional space, there are two global minima and several local

minima. Furthermore, the gradient is zero in some regions.

Due to these characteristics, some of the common optimization techniques like simple gra-

dient descent or a “set cover” formulation are not appropriate. Therefore, we consider global

minimization techniques that can deal with complex cost functions(Shang, 1997). Simulated

Annealing and Genetic Algorithms are two classes of algorithms that have commonly been

employed to handle such optimization problems. The nature of the cost function suggests

that either of these two algorithms should provide an acceptable solution(Duda et al., 2001).

For our experiments, we implemented simulated annealing using a sophisticated simulated

re-annealing softwareASAdeveloped by L. Ingber (Ingber, 1989).

Using this algorithm, we obtain extremely good sensor configurations in a reasonable

amount of time (5min - a couple of hours on a Pentium IV 2.2GHz PC, depending on the

desired accuracy of the result, the number of dimensions of the search space and complexity

of the scene). For low dimensional spaces (< 4), where it was feasible to verify the results

using full search, it was found that the algorithm quickly converged to a global minimum.

For moderate dimensions of the search space (< 8), the algorithm was able to obtain a

good solution, but only after some time. Although optimality of the solution could not be

verified by full search, we believe the solutions to be close to the optimum since running the

algorithm several times from different starting points andusing different annealing parameters

did not alter the final solution. For very high dimensional spaces (> 8), although the algorithm

provided reasonably good solutions very quickly, it sometimes took several hours to “jump”

to a better solution.
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Figure 8. Some images from sequences used to validate the analytical visibility model.
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Figure 9. Comparison of visibility rates obtained using our model with those obtained for real data.

5. Validation and Experiments

We have proposed analytical methods for computing the visibility characteristics of sensor

configurations and integrated them with static constraintsto provide a framework and an

algorithm for recovering good sensor configurations with respect to certain quality measures.

We first validate the analytical visibility models using real data. Then, we illustrate the ap-

plicability of the sensor planning algorithm by providing planning results for various scenes,

synthetic and real.

5.1. VALIDATION OF THE V ISIBILITY MODEL

In order to validate the analytical visibility analysis developed in this paper, we compare

the predicted visibility with the visibility obtained for some real sequences [Fig. 8]. These

sequences were captured in a laboratory environment using multiple cameras. Ground truth

about person locations was established by using the M2Tracker algorithm (Mittal and Davis,

2003) that detects and tracks people automatically under occlusions using multiple cameras.

This people location information was then used to determinethe empirical visibility rate in
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the area where people were allowed to move (of approx. size 3mX 3m). Visibility rates

were determined for the cases of visibility fromk cameras, such that visibility from even one

camera is sufficient. Visibility was defined as visibility ofthe center line of the person. This

information was computed over 200 time steps and averaged over all possible (Cn
k ) camera

k-tuples, wheren is the total number of cameras actually available. Different sequences were

captured containing different number of people and statistics were obtained for each of them.

This information was then compared with the theoretical visibility rate obtained using our

models [Fig. 9]. Since a fixed number of people were restricted to move in the region, the

analysis that uses a fixed number of objects was utilized for comparison purposes. Since the

region is not too crowded, the visibility rates obtained using a uniform density assumption

(with density computed as the number of people/area of the region) were quite close to the

fixed objects assumption. As can be observed from the plot in Figure 9, the predicted and

actual visibility rates are quite close to each other, whichvalidates the applicability of the

analytical models developed in the paper.

5.2. SENSORPLANNING EXPERIMENTS

We now present results of the application of the sensor planning algorithm to various scenes. In

order to illustrate the algorithm for complex scenes, we first consider synthetic examples. Then

we show, for some simple real scenes, how the method may be utilized for sensor placement

by utilization of information about object characteristics that may be obtained automatically

by utilization of image-based detection and tracking algorithms.

5.2.1. Synthetic Examples

In the synthetic examples, we make the following assumptions. The sensors are mounted

H = 2.5m above the ground and have a field of view of 90◦. We use a uniform object

densityλ = 1m−2, object height = 150cm, object radius r=15cm, minimum visibility height

h=50cm and maximum visibility angleαmax = 45◦. Furthermore, for ease of understanding,

the first few examples will assume a simple quality function such that visibility fromany

direction is considered of equal utility and fixed thresholds are put on the visibility distance

from the camera based on camera resolution (maxdistres)and maximum viewing angleαmax
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Figure 10. Maps for themeancaputure quality for 1,2,3 and 4 sensors in a square region. H=10m,

R=50mX50m,λ = 1m−2, , r=15cm, h=50cm, andαmax = 30 ◦. Note how the quality decreases as

we move away from a camera due to an increase in occlusion caused by an increase in the distance

of occlusiondi (Fig. 2). The average capture qualities obtained were (a) 0.4296, (b) 0.672, (c) 0.8095,

and (d) 0.888 respectively.

(mindistview):

qx(Ei, θ) =







1 if mindistview < dist(x, cam) < maxdistres

0 otherwise
(22)

Note that the parameterθ is neglected. Furthermore, for multiple sensor termsqc(
⋂

i∈(i1,...im) Ei, θ),

the quality is defined simply as the quality of the sensor having the best view:

q(
⋂

i∈(i1,...im)

Ei, θ) = max
i∈(i1,...im)

q(Ei, θ) (23)

Under this assumption, it is easy to verify that the quantityqc defined in Equation 19 becomes:

qc(
⋂

i∈(i1,...im)

Ei, θ) = min
i∈(i1,...im)

q(Ei, θ) (24)

First, we consider a simple square area of size 10mX10m and determine the number of

cameras required for the scene. Figure 10 shows the mean quality maps obtained for the

case of one, two, three and four sensors respectively. The maps are scaled such that [0,1]

maps onto [0,255], thus creating a gray scale image. Brighter regions represent higher quality.

Note how the mean capture quality decreases as we move away from a camera due to an

increase in occlusion, in turn due to increase in the distance of occlusiondi. The average

capture quality obtained for the four cases were (a) 0.4296,(b) 0.672, (c) 0.8095, and (d)

0.888 respectively. This information can be used to select the appropriate number of cameras

based on the application requirements.

In all the synthetic examples we consider next, we consider arectangular room of size

10mX20m. Figure 11 illustrates the effect that an obstacle can have on camera placement.
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(a) (b) (c)

Figure 11. Illustration of the effect of scene geometry on sensor placement. Optimum configuration when (a):

obstacle size is small. (b): obstacle size is big. (c): obstacle size is such that both configurations are equally good.

Using a maximum of two cameras having a field of view of90◦, the first configuration [a]

was found to be optimum when the obstacle size was small(<60cm). Configuration [b] was

optimum when the object size was big (>60cm). For the object size shown in configuration [c]

(∼60cm), both configurations were equally good. Note that in both configurations all locations

are visible from at least one camera. Therefore, current methods based solely on analysis of

static obstacles would not be able to distinguish between the two.

Figure 12 illustrates how the camera specifications can significantly alter the optimum

sensor configuration. Notice that the scene has both obstacles and prohibited areas. With three

available cameras, configuration [a] was found to be optimumwhen the cameras have only

90◦ field of view but are able to “see” up to 25m. With the same resolution, configuration [b]

is optimum if the cameras have a 360◦ field of view (Omni-Camera(Nayar, 1997; Peleg et al.,

2001)). If the resolution is lower so that cameras can “see” only up to 10m, configuration [c]

is optimum.

Figure 13 illustrates the effect of different assumptions about the objects and their visibility.

With all other assumptions the same as above, configuration [a] was found to be optimum

when the worst case analysis was utilized [Eq. 20]. On the other hand, a uniform object den-

sity assumption [Eq. 21] yielded configuration [b] as the optimum one. When an assumption
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(a) (b) (c)

Figure 12. Illustration of the effect of different camera specifications. With a uniform density assumption and

visibility from any direction, the optimum configuration when the cameras have:(a): field of view of 90◦ and

resolution up to 25m, (b):360◦ field of view (Omni-Camera), and resolution up to 25m, (c):360
◦ field of view,

but resolution only up to 10m.

of variable object densities was utilized such that the density is highest near the door and

decreases linearly with the distance from it [d], configuration [c] was found to be the best.

Note that a higher object density near the door leads to a repositioning of the cameras so that

they can better capture this region.

So far, we have assumed a simple quality function [Eq.s 22 & 23] that ignores the angular

orientationθ of the objects and imposes fixed constraints on the camera resolution and viewing

angle. We now illustrate how one may change this function in order to incorporate more

complex visibility requirements. Assuming that one requires visibility from all directions,

one may alter the quality function as follows:

qx(Ei, θ) =



















1 if θdiff < θmax

& dmin
view < dist(x, cam) < dmax

res

0 otherwise

(25)

whereθmax is the maximum angular orientation at which the observationof the object is still

considered useful, andθdiff = abs(θ − dir(cam,x)) such thatdir(cam,x) is the angular

direction of the camera from the point of viewx [Fig. 14]. Assuming a uniform density and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Illustration of the effect of different object characteristics and visibility requirements. Optimum con-

figuration using:

(a): object visibility fromanydirection using worst-case analysis [Eq. 20],

(b): object visibility fromanydirection using a uniform density [Eq. 21],

(c): object visibility fromanydirection using variable densities [Eq. 21], for the objectdensity shown in (d),

(e): object visibility fromall directions [Eq. 25],

(f): object visibility fromall directions, with a soft constraint on image resolution [Eq.26],

(g): object visibility fromall directions, with soft constraint on resolution [Eq. 26], and using variable densities

(d),

(h): object visibility fromall directions, with soft constraints on resolution and viewing angle [Eqs. 26 & 27].
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Figure 14. Computation of the viewing angleθdiff

the above definition of quality, withθmax = 90◦, we obtain the sensor configuration shown in

[e]. This may be compared with configuration [b]. Note that the cameras are now more spread

out in order to capture the objects from many directions.

One may further expand the definition of the quality functionin order to incorporate the

camera distanceconstraints as soft constraints rather than hard ones. One possible assumption

is that the quality decreases linearly with the camera distance when such distance is less than

dmin
view, and decrease exponentially when such distance is abovedmax

res :

qx(Ei, θ) = H(θdiff ) ∗























1 if dmin
view < dist(x, cam) < dmax

res

dist(x,cam)
dmin

view

if dist(x, cam) < dmin
view

exp
(

−dist(x,cam)−dmax
res

dmax
res

)

if dist(x, cam) > dmax
res

(26)

whereH(θdiff ) = 1 if θdiff ≥ θmax, = 0 otherwise. The sensor configuration obtained

for such definition of the quality function is illustrated in[f]. Note that the cameras move

inwards compared to configuration [e] because of the increased visibility in the regions close

to a camera. Utilization of variable densities with such quality measure leads to configuration

[g].

One may further allow a soft constraint on the viewing orientation. One possibility is to

assume that the quality deteriorates linearly as the angular orientationθdiff increases between

a low and high value. Such factor may be incorporated into above the mentioned quality
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Figure 15. The probability density function for the capture quality. Note the unusually high values for

zero and one capture quality due to the possibilities of complete object occlusion and perfect capture

in certain conditions.

measure [Eq. 26] by specifying:

H(θdiff ) =



















1 if θdiff < θmin

θdiff−θmin

θmax−θmin if θmin < θdiff < θmax

0 if θdiff > θmax

(27)

Such quality measure leads to the sensor configuration [h] whenθmin = π/2 andθmax = π.

Note that camera one moves further inwards compared to configuration [f] since the direc-

tional visibility requirement has been made a little less rigid. The probability distribution for

the capture quality for this case is shown in Fig. [15]. Usingsuch information, one may be

able to utilize more complex capture requirements. For instance, one may be able to specify

that a certain percentile of the capture quality be maximized.

Next, we consider a stereo scenario in which matching acrosscameras and 3D reconstruc-

tion becomes an additional constraint. One can show that theerror in triangulation for an

omni-camera is proportional to:

etr ∝
√

d2
1 + d2

2 + d1d2 cos(α)/ sin(α) (28)

whered1 andd2 are the distances of the object from the two cameras, andα is the angular

separation between the two cameras as seen from the object. Although the error in matching

is algorithm-dependent, a reasonable assumption is that:

em ∝ d1/cos(θ/2) + d2/cos(θ/2) (29)

Considering a quality function that uses a weighted averageof the two errors:q = −(w1etr +

w2em), configuration Fig. 16 [a] was found to the best. Note that allthe three cameras come

closer to each other in order to be able to conduct stereo matching between any two of them.
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(a) (b) (c)

Figure 16. Illustration of integration of more complex algorithmic constraints. Configuration obtained using three

omni-cameras, non-directional object visibility, uniform densities, and:

(a): a stereo requirement Eq.s 28, 29.

(b): three omni-cameras, algorithmic constraint of no visibility with the top wall as background,

(i): no visibility with the left wall as background.

In the final example for this scene, we consider a case where, because of algorithmic con-

straints, capture of an object with one of the walls as background is not useful. For instance, the

wall may be painted a certain color and the objects may have a high probability of appearing

in this color. Assuming that visibility with the top wall as background is not useful, we obtain

configuration Fig. 16[b]. The same constraint with the left wall yields configuration Fig. 16

[c]. Note that some cameras move close to the prohibited wallin order to avoid it as the

background.

Next, we consider a more complex scene where several constraints are to be satisfied

simultaneously. In Fig. 17, the scene of a “museum” is shown where the entrance is on the left

upper corner and the exit is on the bottom right corner. One isrequired to view the faces of

people as they enter or exit the scene. For the rest of the area, 3D object localization is to be

performed via stereo reconstruction. In the first part of thescene, the four cameras are trying

to simultaneously satisfy the tasks of capturing the faces of the entering people inROI 1and

performing stereo reconstruction for the rest of the scene.In the middle portion, only stereo

is to be performed. Finally, in the last part, the faces of thepeople leaving the scene inROI
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Figure 17. Sensor Planning in a large “Museum”, where several constraints are to be satisfied

simultaneously.

2 are to be additionally captured. The difference in sensor placement for the three zones is

interesting.

We have illustrated the applicability and generality of thesensor planning algorithm in

various synthetic scenarios. Next, we will show results from the algorithm in some real scenes.

5.2.2. Real Scenes

We first present analysis of sensor placement for a real officeroom. The structure of the

room is illustrated in Figure 18 (a). We used the following parameters - uniform densityλ =

0.25m−2, object height = 170cm,r = 23cm, h = 40cm, andαmax = 60◦. The cameras

available to us had a field of view of 45◦ and needed to be mounted on the ceiling which

is 2.5m high. In order to view people’s face as they enter the room, the quality function was

chosen such that it includes only the “entering” object orientation. We first consider the case

when there is no panel (separator). If only one camera is available, the best placement was

found to be at location (600,600) at an angle of135◦ (measured clockwise from the positive

x-axis). If two cameras are available, the best configuration consists of one camera at (0,600)

at an angle of67.5◦ and the other camera at (600, 600) at an angle of132◦. Figures 18 (b) and

(c) show the views from the cameras.
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(a)

(b) (c)

(d) (e)
Figure 18. (a) Plan view of a room used for a real experiment. (b) and (c) are the views from the

optimum camera locations when there is no panel (obstacle).Note that, of the three people in the

scene, one person is occluded in each view. However, all of them are visible from at least one of the

views. Image (d) shows the view from the second camera in the presence of the panel. Now, one person

is not visible in any view. To improve visibility, the secondcamera is moved to (180, 600). The view

from this new location is shown in (e), where all people are visible again.

Next, we place a thin panel at location (300, 300) - (600, 300). The optimum configuration

of two cameras consists of a camera at (0,600) at an angle of67.5◦ (same as before) and the

other camera at (180, 600) at an angle of88◦. Figures 18 (d) & (e) show the views from the

original and new location of the second camera.

Next, we consider sensor planning in a small controlled environment [Fig. 20]. In the

first experiment, face detection is maximized, while in the second one, we try to maximize

person detection via background subtraction and grouping.We utilized an off-the-shelf face

detector from OpenCV and characterized its performance over different camera distances and

person orientations[Fig. 19]. This gives us the quality function that we need for our sensor

planner. Cameras were then placed in the optimum sensor configuration thus obtained and

face detection was performed on the video data. We also askeda test user to try to position the

cameras manually and experiments were conducted with this configuration as well. Results

of this experiment are presented in Fig.s [20(a)-(f) & 21]. In the next experiment, we tried

to maximize person detection using background subtractionand grouping. An additional

constraint we considered was that the appearance of one of the actors matched with one of

the walls, thus making detection in front of it difficult. This condition was then integrated

into the quality function. The results of this experiment are shown in Fig.s [20 (g)-(l) & 21].
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Distance Face Detection Rate

1.8m - 2.5m 97.5%

2.5m - 3.1m 94%

3.1m - 3.8m 92.5%

3.8m - 4.5m 85%

4.5m - 5.2m 77%

5.2m - 6m 40%

> 6m 0 %

Figure 19. Empirical face detection rates for different distances from the cameras for the face detector from

OpenCV. Additionally, detection rates reduced by about 30%from the frontal to the side view. This information

is used by the sensor planner in the quality function.

The actual rates were quite close to the predicted rates, thedifference being possibly due to

the small experimental data sizes used for the experiments and inaccuracies in the models

utilized. Inspite of these differences, the relative performance of the different configurations

was correctly predicted by the sensor planner, allowing foreffective planning of the sensors.

In the next example, we consider camera placement in the lobby of a building, where the

objective was to capture the faces of people as they enter4 [Fig. 22]. Video was captured from

an existing camera over a period of a couple of hours and a common background subtraction

method (Stauffer and Grimson, 2000) was utilized in order todetect foreground pixels. Spatial

integration and reasoning on top of such pixel-level detection(Greiffenhagen et al., 2000; Para-

gios and Ramesh, 2001) yields estimates of the position of the people on the ground plane.

Such information was then averaged over time in order to determine the object densities at

different portions on the plane. However, partial or total occlusions cannot be handled by a

single camera and thus the algorithm fails to detect people that are occluded by other people.

Other methods that utilize temporal information to track objects over time(Zhao and Nevatia,

4 Thus, the quality function includes only “entering” objectorientations near the door.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 20. (a): Configuration of two cameras for optimum face detection. (b) & (c): Sample images captured from

these camera locations. Note that some of the faces are not detected because of a large viewing angle or errors in

the face detector. (d): Configuration selected by a human operator. (e) & (f): Sample images captured from this

camera configuration. (g): Configuration of two cameras for person detection using background subtraction, where

the right wall matches the color of people 33% of the time. (h)& (i): Sample images captured from the optimal

camera locations. (j): Configuration selected by a human operator. (k) and (l): Sample images from the camera

configuration in (j). Note how the top portion of one person isnot detected due to similarity with the background.
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Face Detection Person Detection

w/ planning w/o planning w/ planning w/o planning

Predicted 53.6% 48% 85% 81%

Actual 51.33% 42% 82% 76%

Figure 21. Detection rates predicted by the algorithm compared with the actual rates obtained from experimental

data.

2004; Zhao and Nevatia, 2003; Isard and MacCormick, 2001; Elgammal and Davis, 2001) or

use multiple cameras to improve object visibility(Mittal and Davis, 2003) could be utilized

to improve such estimation. Furthermore, we found that there were long periods of inactivity

followed by bursts of activity where several people appear suddenly in a group. Therefore, we

considered only those portions of the video that contained some activity in order to determine

the object densities.

Utilizing such automatic algorithm, we were able to obtain the object density shown in

Fig. 22 [c]. This object density was then utilized to identify a better location for the camera

22 [d]. The average visibility probability predicted was about 72%, while the actualy obtained

probability was 78%. In order to improve the visibility probability, if a second camera is also

utilized, the two cameras in optimum configuration [e] achieve about 93% visibility (91%

visibility predicted). Using two cameras, one may want to obtain 3D information via stereo

matching. Utilization of such a constraint leads to the sensor configuration [f]. Note that the

two cameras are much closer to each other in order to minimizethe image distortion across the

views. When the cameras were optimized for face detection, configuration [g] was obtained,

while fixing the position of the camera but adjusting only thezoom and camera rotation led to

configuration [h]. The images obtained from these configurations and the results of the face

detector on such images is shown in images [i] and [j].
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(a1) (a2) (b)

(c) (d) (e) (f) (g) (h)

(i) (j)

Figure 22. Sensor placement in a lobby. (a): Two views from an original camera location at different times of

the day. (b): Density map obtained via background subtraction (darker represents higher object density). (c):

Mapping of the density map onto a plan view of the scene. (d): Optimal object visibility using one camera (72%

visibility predicted, 78% obtained). (e): Optimal sensor placement using two cameras (91% visibility predicted,

93% obtained). (f): Optimal sensor placement using two cameras and a stereo requirement. (g): Optimization of

face detection for people entering the building (46 % detection predicted, 43% obtained). An example of face

detection using this sensor setting is shown in (i). (h): Optimization of face detection when the position of the

camera cannot be changed (but the direction and zoom can) (33% detection predicted, 35 % obtained). Note that

people turning right cannot be detected in this configuration. An example of face detection using this setting is

shown in (j).
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6. Discussion and Conclusion

We addressed the problem of sensor placement in multi-camera systems, especially those

that are deployed to capture certain characteristics of dynamic objects that appear and move

randomly in a specified region. While static constraints such as those due to image resolu-

tion, camera field-of-view, focus, static obstacles and thechosen algorithm have been well

studied in the literature, occlusion due to the presence of other dynamic objects has not

been considered. Such occlusion is random and necessitatesa probabilistic formulation of

the problem.

We developed two different approaches for modeling the constraints arising due to the

presence of random occluding objects. The first approach utilizes a probabilistic framework

to determine the average rates of visibility of an object from a given set of sensors. The second

method evaluates worst-case scenarios and provides conditions that would guarantee visibility

regardless of object configuration.

Integration of constraints due to occlusion from other objects with other types of con-

straints requires special care due to the random nature of the occlusion. On the other hand,

all static constraints may be integrated into a single capture quality function that denotes the

quality of the object acquisition when the object is visiblefrom all of the sensors in a given

set. This led us to the development of a framework for integration of probabilistic occlusion

constraints with static constraints. Such an analysis yields information about the probability

distribution of the capture quality at a particular location. Integration of this information over

a given region of interest and maximization of appropriately chosen integrated measures over

the space of possible camera parameters then leads to a method for determining good sensor

locations. Selection of different measures for the qualityfunction and different optimization

criteria facilitate customization of the method to a variety of multi-sensor systems.

The utilization of the system for a given scenario requires that certain information is avail-

able. This includes not only the scene geometry and appearance, but also estimates of the

probability distributions of the geometry and appearance of the objects that are expected to

be present. In some scenarios, it may be possible to compute such distributions by utilization

of advanced algorithms and additional cameras during training(Zhao and Nevatia, 2004; Zhao

and Nevatia, 2003; Isard and MacCormick, 2001; Elgammal andDavis, 2001; Mittal and



41

Davis, 2003). Furthermore, if the object distributions areexpected to be similar across a large

area or across multiple locations, then it may be possible tocompute such information from

running such algorithms on only a part of the scene. In some other scenes, it may be sufficient

to specify approximations to such distributions by hand.

The framework developed in the paper is perhaps most relevant to surveillance where many

target areas are crowded and require multiple cameras for sufficient visibility and system

performance. Another application domain is that of industrial automation where objects ar-

rive randomly, for e.g. on a belt, and the vision system is utilized for providing real-time

information for intelligent control of such objects. Otherpossible application domains include

traffic monitoring and light control via “smart” vision sensor input and cameras mounted on

cars for enhancing driver safety. Future work on this topic includes specification of more

complex cost functions, investigation of more efficient methods for optimization of specific

cost functions and better estimation of the visibility probability by considering the effect of

long-term interaction between objects.
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