
Part-based Deformable Object Detection with a Single

Silhouette Sketch

Sreyasee Das Bhattacharjeea, Anurag Mittalb

aDepartment of Electrical & Electronic Engineering, Nanyang Technological University,
Singapore∗

bDepartment of Computer Science & Engineering, Indian Institute of Technology,
Madras, India

Abstract

Object Detection using shape is interesting since it is well known that humans
can recognise an object simply from its shape. Thus, shape-based methods
have great promise to handle a large amount of shape variation using a com-
pact representation. In this paper, we present a new algorithm for object
detection that uses a single reasonably good sketch as a reference to build a
model for the object. The method hierarchically segments a given sketch into
parts using an automatic algorithm and estimates a different affine transfor-
mation for each part while matching. A Hough-style voting scheme collects
evidence for the object from the leaves to the root in the part decomposi-
tion tree for robust detection. Missing edge segments, clutter and generic
object deformations are handled by flexibly following the contour paths in
the edge image that resemble the model contours. Efficient data-structures
and a two-stage matching approach assist in yielding an efficient and robust
system. Results on ETHZ and several other popular image datasets yield
promising results compared to the state-of-the-art. A new dataset of real-life
hand-drawn sketches for all the object categories in the ETHZ dataset is also
used for evaluation.
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Part-based Models, Dynamic Programming.

1. Introduction

Object Detection is an important problem in Computer Vision. The basic
idea is to search for an object in an image and find its boundary or bounding
box given some information about the object. Such information may be in
the form of a single or a set of images of the object, or even a hand-drawn
sketch. There are two main approaches to this problem that have been
considered in the literature: feature-based [1, 2, 3, 4, 5] and contour-based
[6, 7, 8, 9], although some authors have also tried to combine both these ideas
[10, 11]. While feature-based methods are currently most popular, they have
the limitation that the different appearances and articulations of the object
are difficult to model without a very large training set. For many texture-less
objects (like brand logos), shape is the sole dominant discriminative feature.
Additionally, as observed by Dickinson [12], though humans use many visual
cues to recognize an object, shape information retrieved from image contours
is sufficient for recognition; other features like color, texture, shading, and
depth information are not so essential for the task. Hence, it can lead to
a robust, flexible and efficient system, invariant to object appearance such
as color, texture and illumination, for object detection without the need for
learning from a large set of images.

However, challenges are also manifold. First, it is not so easy to distin-
guish the object (shape) contours from other edges due to the presence of
object and/or background texture. Second, the gradient along the object
boundary may become very weak in certain portions due to the presence of
a matching background. Third, the object may undergo some deformations
due to articulations or a change in the viewpoint. Last but not the least,
there are variations within the input sketches provided and between different
objects in the same object category.

In this work, we address several challenges of a contour-based methodol-
ogy in a Pictorial Structure-like framework, which we believe have not been
fully addressed before. In order to make the problem tractable, we require
the user to have a rough understanding of the general structure of the ob-
ject and be able to draw in a manner which is not very sloppy and indeed
draw a sketch that resembles the object silhouettes. This will be discussed
later at length in the paper. Our system does not solve the general problem
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of learning object models, but the proposed system offers a fast and flexi-
ble sketch-based class-specific modeling with minimal training. The sketch
should actually be recognizable as the object silhouettes, tailored to be good
for recognition by a shape matching system. Apart from the application
of sketch-based image retrieval using input from touch-based devices, the
method can be a component of a complete contour-based learning-detection
system if one or multiple sketches of the object can be learnt from training
data [13, 14].

The rest of the paper is organized as follows: Section 2 discusses some
related works in this problem domain. Section 3 describes our part decom-
position algorithm. The Coarse Matching strategy to detect the objects in
a deformable and locally affine-invariant way is described in Section 4. Con-
tour Tracing to verify the detection and trace the object contour is described
in Section 5. Finally, Section 6 shows the results of experiments on several
datasets.

2. Related Work

The entire spectrum of contour-based methods is huge and can be roughly
divided into two groups; sketch-based [15, 16, 17, 18, 6, 19, 20, 21] and
learning-based [22, 9, 23, 24, 25, 26], although learning may also output a
single or a few sketches as output and thus the two methods are not unrelated.
In this paper, our focus in literature survey will primarily be restricted to
sketch-based methods and a detailed study on learning-based methods is
beyond the scope of this paper. Several contour-based methods [17, 18, 6]
use a single or a few sketches as input models for object detection. Ferrari et
al. [17] process an image to create a Contour Segment Network (CSN) and
find paths in an image resembling the contour chains in the object sketch.
Bai et al. [18] search for image contours within a certain bandwidth of the
object contours using a shape-specific window called ‘ShapeBand’.

Various shape descriptors, especially the edge-based Shape Context [27],
have also been used for this problem for faster retrieval. Thayananthan et
al. [6] use an improved version of Shape Context [27] to incorporate informa-
tion regarding edge orientations and continuity in a Dynamic Programming
framework that finds the best path in the contour network. Lu et al. [28]
have developed a shape descriptor based on a 3D histogram of angles and
distances for pairs of three consecutive sample points along object contours.
Given a model sketch, the proposed method defines a ‘Part Bundle’ to rep-
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resent the different poses of an object part. Such an AND/OR model of
object representation can be used with a variety of matching methods in-
cluding ours. Recently, Donoser et al. [15] and Riemenschneider et al. [16]
have proposed a shape descriptor by analyzing the angles created by pairs of
three sample points along the contour. In another recent work, Ma & Latecki
[20] have proposed a model-based partial shape matching scheme based on a
shape descriptor similar to Shape Context, where the inference is drawn from
a maximum clique on a weighed graph. Toshev et al. [21] propose a global
boundary-based shape descriptor called ‘Chordiogram’, capturing the geo-
metric relationship between every pair of boundary edges called the ‘chord’
of a segmented test image. Object boundary information in terms of the
orientation of boundary normals with respect to the interior is also captured
for attaining better discriminability. However, the descriptor is sensitive to
deformations, clutter and the performance is subject to the correctness of the
initial segmentation. A set of recent papers [29, 30] concentrates on amelio-
rating this drawback, proposing a technique using multiple segmentations.

While most of the above mentioned methods use only a single-level ob-
ject model and the deformation is modeled with respect to a global posi-
tional co-ordinates such as the centroid, this limits the amount of deforma-
tion that can be handled. Thus, there is a growing interest in part-based
object representation [10, 31, 32], which can handle more local shape varia-
tions within a model structure. Each part can be matched separately, while
retaining the global shape description using more sophisticated representa-
tion schemes. Although such representations have been used so far mostly
for feature-based approaches only, we inherit the concept of Pictorial Struc-
tures in sketch-based models using contour-based cues. The original Picto-
rial Structure (PS) was proposed by Fischler and Elschlager [33] and later
its efficient computation method was proposed by Felzenszwalb and Hut-
tenlocher [34]. Ronfard et al. [35] extended the original approach without
needing background subtraction by relying on a discriminative appearance
model. Ramanan [36] extended the above approach with a concept of Im-
age Parsing. Robust part templates are discriminatively learnt [37] using an
iterative parsing approach. In the first iteration, inference is drawn using
only generic edge models as unary potentials. The resulting pose is used to
build case specific appearance models and inference is drawn repeatedly us-
ing both edges and appearance terms. In another recent work, Ferrari et al.
[38] proposed an extension by integrating features from an automatic fore-
ground segmentation step (called Foreground Highlightening) for improved
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performance. Many extensions of the original PS-based method [33] have
also been considered before [34, 39, 6], which typically use various features
like shape context [40], HOG [41] or image intensity information [36] to de-
termine the object pose. Boosted classifiers or SVMs are then typically used
for learning the models.

In the proposed work, one or a handful few (possibly) hand-drawn sketches
are used as the model(s), which can preserve the significant amount of dis-
criminative object structural information required for a reliable detection.
The given sketch model is segmented into multiple parts, which are expected
to capture certain genuine object parts and thus having higher semantic sig-
nificance within the part structures. By semantically significant parts we
plan to identify those parts, which are likely describing certain actual parts
of an object and therefore is expected to be aligned to the choices of a human
observer. The proposed part-based object representation scheme is inspired
by the part-segmentation technique proposed by Gopalan et al. [42] and
proposes an improvement towards automation. Each part is segmented into
contour fragments and represented using affine-deformable Connected Seg-
ment Pairs (CSP) for robust matching in an image. A bottom-up approach
allows us to handle more amount of deformation, especially at the joint points
that connect two neighboring parts and about which the parts are allowed to
rotate. The initial Coarse Matching stage, which works as a rough hypothesis
generator, identifies each of the parts in a locally affine-invariant way. The
constituent CSPs representing a part, contribute their individual estimates
which are accumulated using Hough-style voting to identify candidate part
locations (peripherals or Root). This allows us to handle occlusions better.
The initiatory coarse level search process is further followed by a more ex-
tensive Contour Tracing stage that allows for an exhaustive verification at
a finer level by following the maximum gradients along the contour direc-
tion. Thus, the proposed method can handle the challenges posed by clutter
more effectively. The entire method is diagrammatically explained using a
flow chart in Figure 1. For evaluation purposes, we have created and tested
our system on a new dataset of hand-drawn sketches for the commonly used
ETHZ dataset of images. It has also been evaluated with better computer-
assisted object models ETHZ dataet, INRIA Horse and Weizmann Horse
datasets.
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Figure 1: An overall flowchart for our proposed method for object detection.

3. Sketch Decomposition and Representation

Given an object category, one or a few sketches are used as its shape
representative models. Some examples of such shapes can be seen in Figure
2, Figure 5 or in Figure 16. Such shapes may either be manually obtained
in terms of sketches from some random users, semi-automatically using seg-
mentation algorithms [43] or fully automatically via learning from training
images [23, 13, 14]. Given this sketch, a part-based tree-like structure is built
for shape representation. Each part is further segmented into contour frag-
ments, which are later combined to represent the given part into a collection
of affine-deformable “Connected Segment Pairs” (CSP) features, suitable for
robust matching in an image.

3.1. Decomposition of a Sketch into Parts

Part-based models have become increasingly popular in recent years [44,
39, 45], primarily due to its effectiveness to deformations which are frequent
in real life images. Such models include trees [34], star graphs [46, 31],
k-fans [39] or fully-connected graphs [1]. Since a fully automated process
for obtaining such part-based models is difficult, recently, Branson et.al [43]
attempt to reduce manual intervention using a ‘weak annotation’ scheme,
where interactive labeling on a subset of training images is used along with
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Figure 2: Examples of some detected concave points, with a convexity ratio 0.8

the other unlabelled images for learning the model. The basic assumption
in most of these cases is that an object can be represented in terms of a
collection of local templates that deform and articulate with respect to one
another, while maintaining a good amount of independence of structural
variations within each of these templates. In contrast to the established
methods [31, 47], which attempt to learn the optimized part model of an
object from a large training set, we aim to minimize this effort by proposing
an automatic part-decomposition approach inspired by a Normalized Cut
based method by Gopalan et al. [42]. As a first step, given a closed sketch2,
we follow an area-based approach of Lin and Jacobs [48], as also used by
Gopalan et al. [42], to roughly identify some significant concave points (also
called non-convex points, identified based on a convexity ratio [42] of 0.8)
in the sketch. As such choosing a lower convexity ratio would fetch more
concave points resulting in more number of parts, which would increase the
computational complexity. Additionally, too many parts may also lead to
degrade the performance. For details of how to identify these highly concave
points, readers can follow [42]. Some identified concave points thus obtained
are shown in Figure 2.

Gopalan et al. [42] use these concave points to obtain a part segmentation
of the object contour by performing Normalized Cut, that uses the pairwise
inner distance as the dissimilarity score for all the points lying within the
entire silhouette. Due to this, the approach is relatively slower. Moreover, it
suffers from the problem of semantically incorrect segmentation as the only
criteria that has been exploited in this scenario is the convexity of parts,

2In the case of open sketches, we connect any open ends to close-by open ends with
straight lines. These additional lines are used only for convexity computation in the first
stage and not for any other analysis.
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(a) (b)

Figure 3: (a) Results of Part Decomposition using the method proposed by Gopalan et
al. [42]. Each row represents the results for a specific shape as the user estimate for the
number of parts varies from 2 − 8. (b) Results using the proposed part-decomposition
method on the sketches from the ETHZ.

which does not always produce genuine parts. We would like to reiterate
here that by ‘genuine’ (or ‘best’) parts, we point towards those kinds of part
segmentations which are consistent with human perception. Additionally, in
order to achieve the best part segmentation, this system needs to be provided
with a shape-specific initial user estimate for the number of parts n. As
observed in Figure 3(a), no single estimate for n fits uniformly well for all the
ETHZ shape categories. Figure 3(b) shows some results of part-segmentation
on ETHZ dataset using the automated approach described next in this paper.

We improve upon Gopalan’s algorithm to not only remove this a-priori
specification of the number of parts but to also amend upon the part decom-
position. Figure 3 compares our part-segmentation result with the segmen-
tations obtained using Gopalan’s approach.

Though convexity is one of the main discriminative features for shape
representation and identification, it is not the only cue that humans utilize
for part segmentation. As suggested by Bartamini Wagemans [49], several
other contextual factors are involved in determining a part cut. Therefore,
we do not follow only a convexity criteria for segmenting parts and allow for
more flexibility by exploring a close-by neighborhood around a smaller set of
identified concave points and proposes to generate a part using the concave
point paired with a suitably chosen neighboring silhouette point (called cut-
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(a) (b) (c)

(d) (e)

Figure 4: The process for finding the paired cut-point for a concave point: (a) shows
the identified concave points in ‘blue’. Given every concave point, the zoomed-in region
illustrates the method for obtaining the paired cut-point. (b) A typical example of function
dp used to find the paired cut-point. (c) shows the initial concave & cut-point pairs, each
pair is shown with a pair of ‘blue’ and ‘green’ point linked with an arrow. (d) shows the
resulting part decomposition. The part in ‘brown’ was found to be very small and hence
was merged with its adjacent part in ‘green’ and (e) shows the final part decomposition
result after merging, where ‘Root’ and peripherals are identified as R and P respectively.

point), which may or may not have a significant high curvature value. We
have found that such extracted parts are semantically more meaningful in
nature and perform better in practice than the ones obtained from a pure
convexity criteria.

As illustrated in Figure 4(a), given a concave point p, its paired cut-
point was identified on the shape silhouette using a function dp, defined in
a close circular neighbourhood (having a radius of 10 for a model image
of size 357 × 216) around p, where for every q(6= p), dp(q) represents the
Euclidean distance of q from p. A typical example of a smoothed dp is shown
in Figure 4(b). The local-minima of dp (qmin, as marked in ‘red’ box) having
the sharpest dip observed in dp function, yields a first guess for the paired
cut-point pn of a part. If another high curvature point ph, concave or convex,
is found (using a standard contour corner detector such as [49]) in a close
(similarly defined as above) neighbourhood Npn of pn, then this matched
cut-point pn is shifted to ph. Otherwise, this point is retained as it is, even
if it is in the center of a straight line. It is important to note that the cut-
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point is characterized by a peak or a trough of dp defined in a pre-defined
neighborhood of p, and thus is conceptually different from the canonical
nearest neighboring high curvature point. As can be seen in Figure 4(a), the
nearest neighboring high curvature point (H) to p does not correspond to a
peak or a trough in dp and thus failed to coincide with the chosen paired cut-
point to p. The set of concave & cut-point pairs obtained for Giraffe shape
is shown in Figure 4(c). In another case, as shown in Figure 4(c), given the
cut-point O in the Giraffe’s ‘leg’ there was no nearby high-curvature point.
Hence, the initial estimate Ct for the paired cut-point was retained finally.

In order for sequential part decomposition, the entire set of concave points
is sorted based on their associated curvature values and the approximately
convex parts are created following that sorted order. The object is segmented
at the cut-point pairs to obtain the segmented parts. A segmented part is
treated as final if it is sufficiently long and does not carry any concave point
within itself. Parts with one of more concave points, are processed again for
further segmentations. Parts which are not reasonably complex according to
the length criterion (less than 50 contour pixels, for a standard model size)
are merged with one of its neighbours.

The entire set of parts is classified into two categories, Root and periph-
erals. Parts are connected to each other in a tree-like structure, where each
part acts as a node connected to its neighbours based on an adjacency cri-
terion. The part having its center of mass closest to the object centroid is
defined as the Root. A comprehensive position estimate is finally obtained
with respect to this part. All other parts directly connected to the Root form
the first layer of peripherals ; parts connected with parts in the first layer form
the second layer of peripherals and so on. If a part is found to have more
than one higher order peripheral, the cycle is broken at the connection where
the inter-part distance (which is the Euclidean distance between the centroid
of the two adjoining peripherals) between two adjoining parts is higher. The
resulting unique higher order peripheral part (or Root) is known as the ‘par-
ent’ to all the parts (treated as its children) at the next layer with which it
is connected.

The connection between a part and its parent is identified in terms of
a joint point, which is taken to be the mean of the cut-point pairs. The
proposed part-representation scheme allows relative deformation of the parts
about this joint point. The resulting part-based tree-like structure is shown
pictorially in Figure 5.
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(a) (b) (c)

Figure 5: (a) Tree-shaped part hierarchy. (b) and (c): The part decomposition tree derived
for ‘swan’ and ‘cow’ sketches.

3.2. Decomposition and Representation of a Part

The part representation process is initiated with the decomposition of
each segmented model-part into a collection of straight line-like segments,
which later work as the primitives for Connected Segment Pairs CSPs.

Each CSP is essentially a pair of adjacent segments linked together at
the highly discriminative corner points [49] and therefore can be defined by
a tuple of three control points (p1, p2, p3) (consisting of the two end points
and the join of the constituting segments). By allowing flexibility at the join
of two adjacent segments, one can achieve a good amount of deformation
within a part. At the same time, such local features are more robust to
missing segments in an image. However, retaining a very long edge segment
is undesirable as it is prone to having a different deformation in its different
parts. As shown in Figure 6(a), each side of the ‘mug’ model looks more or
less a perfect straight line. However, the sides of a ‘mug’ instance can also be
curved. Hence, longer model segments are recursively segmented into n (we
chose n = 2) equal smaller sub-segments until any of the newly generated
subsegments is below this size-threshold. The structure of CSPs, created
using pairs of adjacent segments (not sub-segments) is not affected by the
internal variation within sub-segments.

Given these segments and subsegments of a part, CSP ensures a model
representation scheme that can deal with local shape deformation and par-
tial occlusion of a part. Simultaneously, it also helps to deal with clutter
and edge noise as a certain amount of global shape perspective is retained.
For example, as shown in Figure 6(b), there are four CSPs in the Root :
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(1, 2), (2, 3), (3, 4), (4, 1). The structure of our CSP is somewhat similar to
that of the k-adjacent segments (k − AS) proposed by Ferrari et al. [50, 9].
However, unlike CSP, k−AS is only similarity invariant and does not allow
any deformation within its structure.

Although, the proposed part-based shape representation scheme is closely
related to Pictorial Structure (PS) based models, such methods typically
assume rigidity within the structure of a part and allows relative deformation
only at the connections between two adjacent parts. Hence, its expressive
power is limited to the relative spatial arrangement of the parts. In contrast,
our proposed representation scheme can also handle the deformation within
each part, represented using a collection of CSPs.

Based on this sketch decomposition and representation scheme, we employ
a two-stage process to determine the location, if any, of the object in a given
image. The object bounding box estimates are identified in the first stage
with a thorough verification by tracing the exact object boundaries in the
second stage. In combination, the two stages yield fairly accurate Object
detection and boundary delineation in real-world images.

4. Coarse Matching: Part-Based Object Search

The aim of this coarse-level search process is to determine a location and
the corresponding matched scale of the object in an image up to a bounding
box. Towards this goal, the parts are detected from the leaves to the root
in the tree-like shape representation scheme, such that each leaf can rotate
about the joint point. The different CSPs comprising a part vote for its joint
point in an affine-invariant way. A similar voting for the Root ’s centroid
determines its position. Finally, the matched parts are combined following
the tree-structured deformable model representation scheme to evaluate an
object location. Such a part-based bottom-up search strategy is efficiently
implemented using an approach similar to Dynamic Programming-based Pic-
torial Structure (PS) approach by Felzenszwalb and Huttenlocher [34]. How-
ever, as opposed to prior methods, we address an affine change of a part
by matching the CSPs in an affine-invariant way and then transferring the
estimated joint point to the parent part using the affine transformation thus
estimated.

The first stage in Coarse Matching is to detect each individual segmented
part.
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(a) (b) (c)

Figure 6: Neighborhood search for (a) subsegment matches and (b) segment matches
for the CSPs (1,2),(2,3) and (7,8), (Elastica Completion Cost measured using Contour
continuity at the adjoining end points of two subsegments.

4.1. Part Detection

4.1.1. Pre-processing the Test Images

The first step in our processing is to detect edges in the test image. We
use the Berkeley edge detector [51] which combines color, brightness and
texture cues to provide a probabilistic edge map, where for each pixel in the
image, a probability for being an edge is computed. Hysteresis thresholding
followed by efficient contour grouping as proposed by Zhu et al. [52] yields a
set of salient contours derived from the image which is used as an input to
our multi-stage matching process.

Search is initiated for each part independently, which asks for first iden-
tifying a set of possible locations for the basic part-primitives, called sub-
segments.

4.1.2. Subsegment Matching using Fast Directional Chamfer Matching

The recently proposed robust Fast Directional Chamfer Matching(FDCM)
[53], due to its proven effectiveness in a clutter intensive scenario, was used
for matching purpose.

Given a model subsegment, the local maxima (using FDCM score Mdc)
of its matches in an image are determined by non-maximal suppression and
identified by the location of their mid-points and the two end-points, along
with other details about matched scale, rotation angle etc.. This step is
the most computationally expensive part of the entire algorithm since it
needs to be done for each subsegment separately. However, using contour
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breakup into linear structures, the integral image concepts in FDCM[53] and
a dynamic programming based approach has made the entire process efficient.
In addition to it, an inverted-file indexing scheme can be incorporated for
real-time matching, which we have omitted in our present Proof-of-Concept
(PoC) implementation phase. In the next step, we try to find each segment
as a combination of subsegments.

4.1.3. Search for Segments

Each segment with k subsegments consists of a sequence ({ssi}ki=1) of
these subsegments. Each subsegment ssi can be matched against several
matches ss′i in an image. Following a Dynamic Programming based method,
potential matches are stitched together following a cost function defined in
a neighborhood (see Figure 6(a)) to attain the globally best set of matches
for the entire segment. This exhaustive search process is efficiently imple-
mented using geometric data structures such as Range Trees [54]. The cost
of matching a sequence of l(≤ k) subsegments from the model to an image
is defined in terms of a weighted combination of four constituent costs:

C(l) =
l−1∑
i=1

(wsCs(i) + waCa(i) + wgapCgap(i) + welCel(i) + wCMCCM(i)) (1)

where Cs(i) and Ca(i) are the Scale and Angle Dissimilarity Costs between
ss
′
i and ss

′
i+1, Cgap(i) is a cost based on the Euclidean distance between the

two near endpoints of these adjacent subsegments at their join and Cel(i) is
an elastica cost that depends on the continuity of the contour curvature at
the join (recall again we broke the segment at a random point without any
appreciable curvature and this property must be preserved in the matched
contour as well). Finally, CCM(i) represents the corresponding FDCM cost
for the ith subsegment. ws, wa, wgap, wel and wCM are the corresponding
weights (for our experiments, these were chosen as equal) of these five costs
and could possibly be learnt automatically from training data.

While we expect a uniformity of scale estimate for the sub-segments
within the same segment, following [17] the Scale Dissimilarity Cost is defined
as:

Cs(i) = 1− e
(
−max(

σm,t(i)

σm,t(i+1)
,
σm,t(i+1)

σm,t(i)
)

)
(2)

Similarly, the Angle Dissimilarity Cost Ca is defined as:
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Ca(i) = 1− e−((∆αm,t(i))/π)2

(3)

where ∆αm,t(i) = αm(i)− αt(i) such that α(i) is the relative angle between
the ith and the (i+ 1)th (matched) subsegments.

Next, the gap cost is defined as:

Cgap(i) = 1− e
(
−∆dm,t(i)

n

)2

(4)

where ∆dm,t(i) = (−dt(i)/savg,t(i)) is the scaled distance between the two
adjacent endpoints of the two subsegments ss

′
i and ss

′
i+1 that should ideally

have zero distance between them as per the model (note that there is no
gap between two subsegments in the model). The distance is normalized by
savg,t, the estimated average scale of the subsegment set matched so far, and
n, an appropriate normalization constant (we use n = 10 for a normalized
model of size 357× 216).

The Elastica term Cel measures the angle alone estimated from the start
and end points of the subsegments while the Angle Dissimilarity Cost term
looks at the continuity of the curvature within a single segment and thus
is a more local phenomenon. Given two consecutive tangent directions, φ1

and φ2 (see Figure 6(c)), as shown by Kokkinos & Yuille [45], the quantity
El(c1, c2) = 4(ϕ2

1 × ϕ2
2 − ϕ1 × ϕ2) provides a good measure for curvature

inconsistency at this stage. This Elastica energy (El(i)) between ss
′
i and

ss
′
i+1 is used to define the Elastica Contour Completion cost as:

Cel = 1−max(0.5, e−El(i)) (5)

Note that the use of the difference between the relative angles rather
than the absolute angle in the cost components makes our method robust to
rotations as all the terms including the component taking care of the FDCM
dissimilarity are adjustable to an overall rotation of the part. Given these
matched segments, we combine them to form CSPs.

4.1.4. Search for Connected Segment Pairs (CSPs)

Given segments with their adjoining endpoints close to each other, one
can find matched CSPs in the same way as we searched for the segment
matches using subsegment matches (see Figure 6(b)), however with lesser
constraints and allowing for more more flexibility.
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Figure 7: Voting using CSPs: The three control points of a CSP are shown in ‘red’, ‘green’
and ‘blue’ in the model (left) and image (right). The centroid location and its votes in
the image are shown in ‘magenta’ circles. (This figure is best viewed in color).

Recall that each CSP C consists of a triplet of its three control points
(p1, p2, p3) in the sketch which are matched to a triplet of points (p

′
1, p

′
2, p

′
3)

in the image. The correspondence [pi ↔ p
′
i]

3
i=1 representing a matched C,

defines an affine transform. This is compared with the affine transform of
the matches for its adjacent CSPs and the match is retained only if there
exists a corresponding close-by match with a similar affine transform. There-
fore, given a matched CSP (C) and its estimated affine transformation (AC),
the cost corresponding to its neighbouring matched CSP, C1([qi ↔ q

′
i]

3
i=1)is

evaluated using the following dissimilarity measure:

Caf =
3∑
i=1

∥∥∥(AC · qi)− q′i∥∥∥ (6)

The total cost of a matched CSP is defined as the average of the gap
cost component from Equation (4), local affine inconsistency based on the
Equation (6) and an average FDCM cost of its constituent subsegments.
Thus, an overall structural inconsistency is measured.

4.1.5. Estimating the Candidate Part Locations

Given such matched CSPs and their associated affine transformations,
one can determine the location in the image of the desired point - the joint
point in the case of peripherals and the centroid in the case of the Root. A
Hough-style voting is employed to collect votes for this desired point, where
the votes are weighted by a score based on the average FDCM matching score
of the constituent subsegments and the sum of all the costs encountered in
the CSP generation i.e. subsegment, segment and CSP costs for Scale, Angle,
Gap, Elastica and Affine Dissimilarities. This voting process is illustrated in
Figure 7.

Integral image concept [55] is used to smoothen the vote response using
a 3× 3 box filter. The local maxima in the resultant map yields matches for
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(a) (b) (c)

Figure 8: (a) A test image. (b) The point map TCRoot corresponding to its integrated
goodness value at every pixel in the image. (c) Few bounding boxes obtained from Coarse
Matching.

the desired part. At this stage, we also screen the matches to retain only the
ones that got votes from a sufficient number (> 1/2) of the CSPs constituting
a part.

4.2. Estimating the Object Centroid using Dynamic Programming

Given independent estimates for each part of an object, we combine such
estimates using relative positional constraints from the lowest level of the
shape representative tree to its root (i.e. the Root) in a manner quite similar
to the ‘Pictorial Structures’ approach of Felzenswalb and Huttenlocher[34].
Given a parent’s location and affine transform estimate, the location of its
joint point with respect to a particular child can be predicted. Then, the
total cost at different locations of the parent can be estimated as:

TCp(Lp) = Cp(Lp) +
∑

c∈childs(p)
min
Lc

(TCc(Lc) + Vpc(Lp, Lc)) (7)

where, where Lp and Lc denote a matched location for the parent and child
part respectively and Vpc(Lp, Lc) enforces the relative positional constraints,
known as the pair-wise potential function in PS literature. This function is
taken as a simple Euclidean distance between the predicted and the actual
position of the (joint point of the) child, multiplied by a constant. Cp(Lp) and
TCp(Lp) are the individual and total costs respectively of a particular part.
The candidate locations of the Root(see Figure 8(b)) can be determined by
thresholding and non-maximal suppression to extract only the best detection
in a region. Given a valid object hypothesis at a location Lr of the Root, we
can detect the best locations of all the visible peripherals parts.
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In contrast to the original PS-based approaches, each approximately con-
vex part is capable of handling a certain level of deformations within its
structure by using a small collection of locally affine-invariant deformable
CSPs.

This whole Coarse Matching process is pretty fast and yields a few bound-
ing boxes, as shown in Figure 8(c). The original PS approach assumes that
the time taken for detecting each part is constant, which may not be the case
in general. Therefore, following PS-based approach, the time complexity for
detecting a part is linearly proportional to the number of its constituent
CSPs. The entire Coarse Matching process can therefore be performed in∑
pO(hpncp) + O(hn), where hp represents the number of possible locations

for part p with ncp number of CSPs and h represents the total locations of
all the parts.

However, there can still be some errors as only the individual subsegments
and segments are matched and fragmented edges in a highly cluttered domain
may yield a false match. In order to improve matching, we attempt to do a
detailed contour trace in these matched bounding boxes.

5. Contour Tracing and Object Verification

The proposed Contour Tracing approach is primarily motivated by the
method proposed by RaviShankar et al. [8] and can be treated as an improved
version of their algorithm by employing a more robust dynamic programming-
based matching strategy using a small set of more generic and comprehensive
cost functions. The exhaustive contour-tracing stage thus greatly enhances
the accuracy of our algorithm and false positives detected during the first
stage are effectively screened out. At the same time, it is quite efficient since
this search is done in a few small windows only.

A set of candidate locations (up to bounding boxes) detected by the
previous stage, are further explored to trace the contours for each of the
CSPs. The traced contour-lets are then connected with the contours of the
other CSPs and other parts wherever possible. Search for tracing a CSP can
be started from any CSP and is repeated for all CSPs that have not been
found.

5.1. Contour Tracing of a Matched Connected Segment Pair CSP

Given a particular bounding box for an object match, one can identify
the matches for each of the CSP that contributed to this object match. In
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(a) (b) (c) (d)

Figure 9: (a) A Test Image (b) Oriented boxes for the two segments of a CSP in the
edge map of (a). Tracing the contour of a particular segment using search in an oriented
box. The model contour is highlighted using an oriented box in (c) while the trace of the
matched contour is highlighted using a similar box in the test image (which is a zoomed
in version of (b)) in (d). The points pi along the path are found in the image (in (d))
similar to such points pm

i in the model contour (in (c)).

some cases, there might be multiple such matches and all such matches are
considered. Now, in order to trace a matched CSP, an oriented box is placed
at every pair of the control points ((e1, e2)) of each of its two segments at
its matched location (please see Figure 9(b)), where the width of the box
depends on the locally estimated affine transform with some small leeway for
deviations.

Given the sampled CSP in the model sketch, within each oriented box,
starting from the first endpoint e1, explore a small neighboring (appropriately
scaled) patch around it to find a small set of best locally maximal next points
satisfying certain cost constraints (Figure 9(c) and (d)). This process is
followed in an iterative manner using Dynamic Programming to form chains
that are best in terms of a total cost of the chain so far. Local maximality
in path selection ensures distinct paths and the paths are evaluated with the
following cost function:

q = wmCm + weCe + welCel (8)

where Cm, and Cel are the costs for the consistency with the corresponding
model segment and the Elastica energy describing the contour curvature
continuity respectively. Ce is a normalized Edge Strength Cost defined as
the sum of the Berkeley gradients[51] along the Contour path normalized by
the average of such gradients in the oriented bounding box of the segment.
The w’s are the corresponding weights determined empirically as we = 0.5,
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(a) (b)

Figure 10: (a) Stitching CSP using Neighborhood search. (b) The final detected object
contour.

wm = 0.25 and wel = 0.25 in this work.
The first component in this equation ensures that we move along a par-

tially explored path ({pi}i0i=1) similar to that of the model segment ({pmi }
i0
i=1)

(please see Figure 9 (c) and (d)). In order to ensure an approximate similar-
ity between matched path between e1 and e2, and the model path between
the corresponding end-points em1 and em2 a matching cost is defined as:

Cm = 1−max
(

0.25,min

( ∑i0
i=1 ‖pi − e2‖∑i0
i=1 ‖pmi − em2 ‖

,

∑i0
i=1 ‖pmi − em2 ‖∑i0
i=1 ‖pi − e2‖

))
(9)

which keeps the traced points at a distance approximately close to their ex-
pected distance from the end-point e2. This allows for quite a bit of flexibility
in the shape change of the image contour while still giving an overall shape
perspective. A maximum value of 0.75 for Cm ensures some further flexibility.
‖e1 − e2‖ works as a normalizing factor.

5.2. Stitching CSPs

Once the individual CSPs have been traced, we try to stitch them together
for further confirmation of object continuity. This is done in both directions
(Figure 10).

The cost function for evaluating the extended contour at every iteration
is computed as:

Q = wafCaf + weCe + wgapCgap (10)

where Caf is the Affine Dissimilarity Cost (Equation 6), Ce the Edge Strength
Cost and Cgap is the Gap Cost (Equation 4) of the updated contour. We take
a similar set of weight values as before (wa = 0.5, we = 0.25 and wg = 0.25).
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Figure 11: (top) A test image. (bottom) Two traced contour groups for the object bound-
ing boxes detected at the first stage. The first detection was discarded while the second
was taken as a true detection by the Verification stage.

The cost at the end of every iteration is compared with a threshold and
the paths below this threshold are discarded.

5.3. Verification

Given such contours matched in the image, it is possible that they are still
fragmented due to lack of gradients in certain regions of the object, possibly
due to occlusions or a matching background. In order to deal with this
situation, we retain not only the largest contour chain but also some smaller
chains. Using this cleaner edge map containing all the traced contours, we
again run our part-based Matching algorithm (section 4) to verify and detect
the final object along with its contour in the image. As shown in Figure 11,
two groups of matched contours obtained at the end of the Contour Tracing
stage were verified to identify the true detection.

6. Experimental Results and Discussion

We evaluated the performance of our system on ETHZ, INRIA Horse and
Weizmann Horse datasets. While INRIA horse and Weizmann horse datasets
are suitable for investigating performance of deformable articulated objects
with other factors being mostly constant, the ETHZ dataset has challenges
due to the presence of multiple object instances at different resolutions, orien-
tation changes, occlusions, deformation, textured and cluttered backgrounds.

We use a standard PASCAL criteria that treats the detection of a bound-
ing box as correct when its intersection-over-union ratio (IoU) with the
ground truth bounding box is more than 50%. While some of the prior works
also report results at 20%-IoU, we were able to get comparable performance
at even 50%-IoU.
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6.1. Comparative Study using the ETHZ Dataset

The ETHZ is a popular dataset on which sketch-based Object Detection
algorithms have been tested in the past. It consists of 255 total images in five
categories: Applelogo, Bottle, Giraffe, Mug and Swan. The objects in the
images are at various scales, illumination and clutter conditions, although
orientation and rotation changes are limited. The standard ETHZ sketches
were used as input models.

6.1.1. Automatic Part-Decomposition using Shape Cues

We first evaluate our proposed automatic part-decomposition scheme
against a closely related approach proposed by Gopalan et al. [42]. In order
to automate the choice for the number of clusters (n), we propose a heuris-
tic formula that uses the number of concave points (nc) to automatically
estimate a value for n. Intuitively, in the best case scenario all the high
curvature points on a shape can be concave in nature, nc. In such cases,
each part originate from a pair of concave points (which we call cut-point
pairs), resulting in nc/2 parts. With such a motivation, the best choice for
n was experimentally found to be max(2, nc/2). Obtained Figure 3(a), the
part-decomposed shapes shown in Figure 12 are intuitively some of the best
part decompositions for each object sketch

As can be seen in the last two rows of Table 1 (showing the comparative
category-wise detection rates at 0.4 FPPI and 0.3 FPPI on the entire ETHZ
dataset), using the part structure extracted by Gopalan et al. [42], the
resulting detection rates remain unaffected in ‘Mug’ and ‘Giraffe’ categories.
However, our proposed part-decomposition strategy reasonably outperforms
[42] for categories like ‘Applelogo’ and ‘swan’ and ‘Bottle’. Some example of
failure cases for [42] are like object instances in 5(e) and 6(e) of Figure 13.
Such improvements are attributed to the fact that the part-segmentations
obtained by Gopalan et al. [42] were not very good for these 3 categories,
while being reasonably good for others.

6.1.2. Coarse-level Detection

This set of experiments attempts to evaluate our proposed Coarse Match-
ing in terms of its accuracy in making an initial guess. The goal is primarily
two-fold. First, a feature level comparative evaluation of our proposed CSP
to a similar contour-based feature k−AS as proposed by Ferrari et al. [50, 9].
Second, comparing the coarse-level detection performance with some of the
other established methods in the literature.
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Figure 12: Part Decomposition results using a modification to the approach proposed by
Gopalan et al. [42] by setting the number of parts ro nc/2, where nc is the number of
concave points on the shape.

In order to perform the feature level comparative study, k−AS is also used
for describing the part-segmented (using our proposed part-decomposition
scheme) sketches. Since our proposed feature CSP was found to be somewhat
similar to k − AS, more specifically for the value k = 2, we replace the
CSPs with 2−AS to represent each object part and repeat the entire search
process in the whole dataset. As can be observed in the Table 2 (displaying
the coarse-level detection rates at 1.0 FPPI), the results deteriorate in all the
categories, However, for objects such as ‘Bottle’, ‘Mug’ and ‘Giraffe’, which
have many long straight line-like segments in their models provided, the
difference was more visible and the CSPs were found to perform considerably
better for those object types. This improvement can be attributed to the fact
that the CSPs can handle local affine transformation and a good amount
of deformation within its structure by means of some flexible joints of its
constituent adjacent sub-segments and segments. On the other hand, 2−AS
was found to be more rigid in nature. It is important to note here that, in
order to handle deformation, Ferrari et al. [50, 9] learnt a good set of shape
variants in terms of a large codebook. Therefore, in absence of an intensive
learning, the performance was affected due to the lack of sufficient model
information.

The coarse-level detection performance of our proposed approach was
compared with some of the established methods [23, 56, 58, 16] in the lit-
erature, which offer an object detection scheme with a similar prefixing ‘hy-
pothesis drawing’ phase. Due to the lack of the results existing for the initial
hypothesis generation (Coarse Matching) stage, we performed the compara-
tive study of the detection rates at 1.0 FPPI, with a smaller number of works
(shown in Table 2), for which the results were available. We follow the trend
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Ref Applelogo Bottle Giraffe Mug Swan Average

Learning-based Model

Maji and Malik [56] 95.0 / 95.0 96.4/92.9 89.6/89.6 96.7/93.6 88.2/88.2 93.2/91.9
Felz et al. [46] 95.0 / 95.0 100/100 72.9/72.9 83.9/83.9 64.7/58.8 83.3/82.1
Ferrari et al. [9] (20%-IoU ) 86.4/84.1 92.7/90.9 70.3/65.9 83.4/80.3 93.9/90.9 89.02/82.42
Ferrari et al. [23] 83.2/77.7 81.6/79.8 44.5/39.9 80.0/75.1 70.5/63.2 85.3/82.4
Gu et al. [57] 90.6/− 94.8/− 79.8/− 83.2/− 86.8/− 87.04/−
Srinivasan et al. [24] 95.0 / 95.0 100.0 / 100.0 89.6/87.2 93.6/93.6 100.0 / 100.0 95.6/95.2
Ma & Latecki [20] 92.0/92.0 97.9/97.9 85.4/85.4 87.5/87.5 100/100 92.6/92.6

Standard Sketches provided with the Dataset

Ferrari et al. [17] (20%-IoU ) 72.7/56.8 90.9/89.1 68.1/62.6 81.8/68.2 93.9/75.8 81.48/70.5
RaviShankar et al. [8] 97.7/95.5 92.7/90.9 93.4/91.2 95.3/93.7 96.9/93.9 95.2/93.0
Lu et. al. [28] 92.5/92 95.8/95.8 92.0/86.2 85.4/83.3 93.8/93.8 85.1/83.6
Zhu et al. [19] 80.0/80.0 92.9/92.9 68.1/68.1 74.2/64.5 82.4/82.4 79.5/77.6
Riemenschneider et al. [16] 93.3/93.3 97.0/97.0 81.9/79.2 86.3/84.6 92.6/92.6 90.5/89.3
Proposed System, Setup-1 97.7/95.0 92.9/91.38 93.4/91.2 96.57/94.2 96.5/93.5 95.41/93.06
Proposed System, Setup-2 93.27/92.0 93.9/92.7 93.4/91.2 97.0/97.0 93.2/93.2 94.05/93.25
Proposed System, Setup-3 97.87/97.87 97.0/97.0 93.4/91.2 97.22/97.22 96.55/96.55 96.4/95.97

Table 1: Comparison of detection rates (in %) at 0.4 FPPI / 0.3 FPPI for the ETHZ
dataset using the original sketches at the PASCAL overlap criterion of 50%.The experi-
mental setups are defined as; Setup-1: (The proposed two-stage search approach and NO
Verification), Setup-2: (Our Full System and PD by Gopalan et al. [42]), Setup-3: (Our
Full System and PD described in Section 3.1)

Ref Applelogo Bottle Giraffe Mug Swan Average

Hough (Ferrari et al. [23]) 43.0 64.4 52.2 45.1 62.0 41.34
M2HT (Maji and Malik [56]) 85.0 67.0 55.0 55.0 42.3 60.86
wac (Ommer and Malik [58]) 80.0 92.4 36.2 47.5 58.8 62.98
Partial Matching (Donoser et al. [16]) 90.4 84.4 50.0 32.3 90.1 51.44
Our Coarse Matching (using 2−AS) 90.0 66.67 54.8 55.0 87.5 70.8
Our Coarse Matching (using CSPs) 92.0 81.6 79.5 85.5 90.8 85.88

Table 2: Comparison of Coarse Matching detection rates (in %) at 1.0 FPPI for the ETHZ
dataset using the original sketches at the PASCAL overlap criterion of 50%.

in the literature to choose the FPPI rate 1.0 at which the detection rates were
available and compared usually. As seen in the Table, the proposed coarse
level detection technique shows a very good average detection rate 70.8%
and 85.88% using 2− AS and CSP respectively as features. Other methods
underperform due to a less flexible approach. For instance, Donoser et al.
[16] uses a pair of three sample points along the contour, which is inherently
rigid.

6.1.3. Evaluation of the Full-System

This final set of experiments aims to evaluate the full multi-stage detec-
tion system (described in Sections 3, 4, 5.1 and 5.2) in terms of identifying the
occurrences of similar object instances in real-life static images. The stan-
dard sketches provided with the ETHZ dataset were used as model inputs.
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As shown in Table 1, the final detection performance of the full system was
compared with several of the state-of-the-art methods[17, 9, 23, 28, 19, 56,
46, 57, 24, 16, 20]. The resulting performance with and without verification
stage (described in section 5.3) is also reported in the table. While one can
observe that the performance without the verification stage is pretty good,
with verification our method outperforms all others, as shown in the last
column in Table 1. In fact, we achieve a very good average detection rate of
95.5% at a low value of 0.2 FPPI, whereas other than a few exceptions (e.g.
[24, 8]), none of the rest could achieve such a high detection rate even at 0.4
FPPI. However, due to the unavailability of the results for other methods at
this FPPI, an explicit comparison was not possible.

Figure 13 shows several pictorial results of our system from the ETHZ
database. As can be seen in this collage, we can reliably handle clutter
(1c, 3e, 4b-e), scale variations (7b, 7e), deformations (1a-3b), pose-changes
(5b-e), intra-class variations (2b-d) and multiple object instances (7b-e). 7a
shows the performance of the system in the presence of a rotated object.
Typical failure cases of our method are shown in 14 The failures are due
to the accidental presence of similar shaped structures in the image. The
problem is exacerbated in 8e due to clutter, while in 8c by the search for
small objects, which is necessarily more error-prone due to the availability of
less data.

Figure 15 shows the ROC curves for several of the methods for which data
was available. In four of the categories (Apple, Mug, Swan and Giraffe), we
achieve the best detection rates reported till date. In the ‘Bottle’ category,
the result declared by Srinivasan et al. [24] are a little better, but this is
due to an extensive learning phase where they use half of the images as
training data for improved performance as opposed to a single sketch in our
approach. For the same problem formulation, that uses the single sketch as
input [17, 28, 19, 16], we do significantly better than most other methods.

6.1.4. Delineating Object Boundaries

Besides Object Detection, one may test the algorithms for exact delin-
eation of the detected object’s boundary. This becomes difficult since we are
dealing with highly deformable objects. For evaluation, we used the coverage
and accuracy measures as defined in Ma and Latecki[20]. The coverage mea-
sures the percentage of foreground contours that are successfully detected
while the precision measures the percentage of detected edge pixels that are
correct. As can be observed in Table 3 comparing the coverage/precision
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Figure 13: Best viewed in Color. Some Pictorial Results are showing the correct results
from the ETHZ dataset. The extracted object boundaries are shown in the best color
possible.
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Figure 14: Best viewed in Color. Some Pictorial Results from the ETHZ dataset show the
failure cases.

Figure 15: Best viewed in color: ROC curves for the ETHZ dataset using the original
sketches provided with the dataset. For methods other than ours, the results from Ma
and Latecki[20] were used.
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Object Type Ma & Latecki [20] Ferrari et al. [23] Our System

Applelogo 0.923/0.948 0.916/0.939 0.951/0.943

Bottle 0.845/0.903 0.836/0.845 0.914/0.875

Giraffe 0.456/0.784 0.685/0.773 0.632/0.817

Mug 0.735/0.803 0.844/0.776 0.929/0.764

Swan 0.848/0.909 0.777/0.772 0.915/0.901

Table 3: The average coverage/precision for Object Boundary Detection over five random
trials, when measured at 0.4 FPPI.

of the object boundary detection with some other methods, our proposed
method was able to achieve superior results for all the five categories. Only
for giraffe, we do not do so well but this is due to the incompleteness of the
model provided for this category (legs are missing).

While the above evaluation is useful, it does not tell us anything about the
performance of a system on the real-world application of Object Detection
using hand-drawn sketches. This is becoming increasingly more important
given the proliferation of touch-based smartphones and tablet devices.

6.1.5. Results using a Hand-drawn Sketch Dataset

Most of the experiments are run using the standard sketches provided
with the dataset, the models are very clean and well-drawn. In a real life
scenario, user-drawn sketches may be more noisy. In order to evaluate the
Object Detection algorithms for this problem, we developed a new dataset of
hand-drawn model sketches consisting of 10 sketches per category for each of
the five object categories in the ETHZ dataset. 10 different users drew these
sketches by hand on a touch-based tablet and these were then cleaned up
using some elementary morphological operations. This dataset is attached
as supplementary material with this paper. Some sketches from this dataset
are shown in the top rows of Figure 16.

We compute detection rates at different FPPI’s for the hand-drawn sketches.
There was considerable variation in the different sketches. For instance, in
Figure 16 (Mug 2), the inner contour of the handle is also drawn by the user
while only the outer contour was drawn in Mug 1. Some sketches were also
quite distorted (Bottle 3, Swan 1). The Average Detection rate (ADR) for
all the 10 sketches of a category was computed and is shown in the last rows
of Figure 16. In most of the cases, when a reasonably complete sketch for
an object category was provided, the performance of our system was good.
Based on the availability of the code, as can be seen in the Figure 16, the
performance was compared with the performance obtained for the method
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Figure 16: First Row: Some real-life hand-drawn model sketches from our dataset. Detec-
tion Rates (DR) are reported as a/b, where a and b represent the detection rates obtained
at 0.4 and 0.3 FPPI respectively. Middle Row: shows the detection rates by the pro-
posed method using the corresponding sketches shown immediately above in the first row.
Last Row: For each sketch category, the first column shows the Average Detection Rate
(ADR) of Ferrari et al. [23] at 0.4/0.3 FPPI and the second column shows the ADR at
0.4/0.3 FPPI achieved by the proposed method using all the 10 hand-drawn sketch models
obtained for that object type.

by Ferrari et al. [23] and our method has significantly out-performed in all of
the five categories, with an average improvement of about 12%. However, the
results deteriorated when the sketches were extremely distorted (Applelogo
2, Bottle 3, Swan 1) or less-detailed (Mug 1). Still, the results may be said
to be acceptable for most of the hand-drawn sketches and gives hope for a
practical sketch-based Object Detection module for touch-based devices.

6.2. Performance on Other Datasets

We also tested our algorithm on the INRIA horse and the Weizmann
horse datasets which show significant intra-class deformation for a single
object categry. For these, no model sketches were available. In order to
evaluate the robustness of our approach in the presence of an arbitrary model
sketch, a random subset of 10 images from the entire set of 20 images of
the Horse category in Part B, MPEG-7 CE-Shape-1 dataset3 was used to
identify a prototype shape. The binary silhouettes of horse side-views were

3http://knight.temple.edu/ shape/MPEG7/datasset.html
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Figure 17: 5 Horse Sketches obtained from the MPEG-7 CE-Shape-1 dataset. These are
used for the INRIA horse and Weizmann horse dataset tests.

pre-processed (also flipped wherever necessary) and represented by the outer
contour only. A simplified Shape Context (SC) based score was used to
compute pair-wise similarity between shapes. An affinity propagation-based
clustering algorithm [20] was adopted to automatically partition the sketches
into clusters. The largest cluster is used as the single model for our system.
The experiment was repeated 5 times with 10 randomly chosen Horse shapes
from the dataset. Figure 17 shows the 5 models thus obtained. The variation
in these 5 sketches may be noted here.

Some results on the INRIA Horse dataset are shown in Figure 18. Table
4 shows the detection rates at 0.4 FPPI averaged over the 5 sketches on
the entire dataset. The depicted detection rate of Ferrari et al. [50], as
mentioned in Table 4, is taken from Ferrari et al. [23]. Apart from such
results at 0.4/0.3 FPPI, we achieved a detection rate of 89.65% at 0.1 FPPI
rate, which is better than the best detection rate 85.27% achieved by Maji
and Malik [56] at the same 0.1 FPPI rate.

Some results on the Weizmann Horse dataset are shown in Figure 19.
Table 5 shows the detection rates using the PASCAL criterion of 0.4 FPPI
averaged over the 5 sketches, where the entire dataset was used for experi-
ments. In this table, the results of previous papers are taken from Yang &
Latecki. [25], where the authors use a strict PASCAL 50%-IOU criteria as the
correctness measure and the background set is taken from Caltech 101 [59].
As shown, we achieved a detection rate of 95.2% at 0.4 FPPI, which is as
good as the best result achieved by the learning-based approach of Shotton
et al. [22]. However, this detection rate was in fact first achieved at a lower
FPPI of 0.33.

A good result obtained on these two datasets using sketches from another
dataset demonstrate that our proposed approach is extremely flexible, robust
to clutter and deformation, and can obtain a reasonably good performance
without any intensive dataset-specific learning.
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Figure 18: Some Results on the INRIA Horse dataset.

Figure 19: Some Results on the Weizmann Horse dataset.

7. Conclusion

In this paper, we have introduced a system for deformable Object Detec-
tion using a single sketch, which may be hand-drawn, computer-assisted or
automatically learnt from training data. The method is extremely flexible
and automatically segments the sketch into parts, allowing for a different
affine transformation for each part during matching. The matching strat-
egy is also quite robust to clutter and missing edges due to its ability to
find image contour paths resembling model contours even in low gradient
regions. To evaluate the application of image search using sketches drawn
on touch-based smart devices, we introduced a hand-drawn sketch model
dataset for the standard ETHZ dataset of images. Promising results com-
paring favourably with state-of-the-art methods were obtained on this as well
as several other commonly used datasets. Future work includes development
of automatic methods for building one or more sketches from training images
for a complete training-testing system using flexible sketch models.
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