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Modern ciphers desighed with
very strong assumptions

e Kerckhoff’s Principle

— The system is completely known to the attacker. This
includes encryption & decryption algorithms, plaintext
— only the key is secret

* Why do we make this assumption?
— Algorithms can be leaked (secrets never remain secret)
— or reverse engineered

Mallory’s task is therefore very difficult....




Security as strong as its weakest link

* Mallory just needs to find
the weakest link in the
system
....there is still hope!!!
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Alice untrusted communication Iink| Bob o
Bf H%AR3XF341S “Attack at Dawn!!”
message encryption (ciphertext) decryption
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Side Channel Analysis
(the weak links)
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Alice funtrusted communication link S B
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message encryption (ciphertext) decryptior (558

“Attack at Dawn

Side Channels
Eg. Power consumption / radiation Mallory
of device, execution time, etc. Gets information about the keys by monitoring

Side channels of the device



Side Channel Analysis

Mallory measures some
Physical parameter of the device
Like radiation, power consumption or

Alice
messa;Bfencryption

“Attack at Dawn!!”

Radiation from |
Device |

Secret information

il




Types of Side Channel Attacks

Passive Attacks Active Attacks
The device is operated largely The device, its inputs, and/or its
or even entirely within its environment are manipulated in
specification order to make the device behave
abnormally

Non-lnvasive Attacks Insert fault in device without

Side-channel attacks:

accessible interfaces exploited, : power glitches, or by
relatively inexpensive BNk SACKS, CRChS Joace changing the temperature
Semi-Invasive Attacks Read out memory of Induce faults in depackaged

Device is depackaged but no direct device without probing or devices with e.g. X-rays,
electrical contact is made tothe  using the normal read-out  electromagnetic fields, or

chip surface, more expensive circuits light
Invasive Attacks Probing depackaged ﬁﬁﬁﬁfﬁﬁﬂ ﬂ?ﬁfﬁé}ﬁf
No limits what is done with the devices but only observe | _ beams. focused ion
device data signals

beams

source : Elisabeth Oswald, Univ. of Bristol



Timing Attacks



Execution Time

What can you tell from the execution time of this function?

3 S

unsigned int Divide (unsigned int a4, unsigned int &) |
if (b==0)
refurn ERROR;
else

return a/b;

. _ Finding N/D
e Execution time depends on values ofaand b while N z D do

N :=N-D
end
return N

— Fastest when b=0
— Varies dependinga /b
* Thus information can be inferred from execution

time.
— Can we get secret information from the timing?




Measuring Time Accurately

« RDTSC : Read Time Stamp Counter

— 128 bit register that s reset at boot up and increments at every
clock cycle

Usage

Flush Pipeline

T1 = rdtsc()

Flush Pipeline

/// invoke function to be timed
T2 = rdtsc()

Flush pipeline




L T N L T ]

L =T - T B -

Flush Pipeline and Read TSC

timestamp()

cpuid
rdtsc
cpuid
mov
load
cpuid
rdtsc
cpuid
sub

Lime,
b,

eax,

eax
(ebp)

time

ensure preceding instructions
read time stamp

ensure preceding instructions
move counter into variable

a load from memory

ensure preceding instructions
read time stamp again

ensure preceding instructions
find the difference

complete

complete

complete

complete

11



DIV: Measuring Execution Time

Frequency.

340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490
Clock cycles

* For randomly chosen values of a/b
* Note the distribution

signed int &) |

12



Timing Attacks on RSA

(breaking real-world implementations)

Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and other systems
http://courses.csail.mit.edu/6.857/2006/handouts/TimingAttacks.pdf

Remote Timing Attacks are Practical
https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
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Exponentiation with

Square and Multiply
HNEEE

y=x“mod n S R
2
* say, x=45=(101101), S
3 1 y4+1=y5
2 1 y10+1=y11
1 0 Y22
0 1 y44+1=y45
Algorithm : SQUARE-AND-MULTIPLY(z, ¢, 1)
21

for: < ¢ — 1 downto (

2 +—z2modn
do iff,‘ = 1

then 2 « (z x ) mod n
return (z)




The Attack setup

y=x"mod n

Message (x)

Algorithm : SQUARE-AND-MULTIPLY(Z, ¢, n)

21
for: «+ ¢ — 1 downto (

2 22 mod n
do ifC,‘ =1

then 2 + (z x ) mod n

return (z)

Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and other systems
http://courses.csail.mit.edu/6.857/2006/handouts/TimingAttacks.pdf
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Kocher’s Attack to find the bth bit

Assumption : Attackerknowsbitsc, ,¢, , ¢,

Aim : Todiscoverbit ¢,

> §'1

S4.

S5.

S6.
S7.
S8.

. choosearandom x
S2.
S3.

trigger an encryption to get y = x° mod n and execution time ¢

0 _
formc™ =(¢, ;,¢,,*,¢,,,,0,0) Guess 0

trigger an encryptionto get y = xc(m mod 7 and execution time ¢

M _
formc*’ =(c, ;,¢, 5, -,¢;,1,1,0) Guess 1

trigger an encryptionto get y = xcm mod n and execution time "

compute differencein execution time
d® =t-t, d"V =t-t,
Repeat from S1several times
Computedistributions of D' fromalld®”’ and D" fromalld‘"
If var(D® ) <var(D'V) return 'c, =0'

else return 'c, =1'

16



Adding Distributions

* Consider two random variables G, and G, with
mean and variance (m,, v,) and (m,,v,)

* G, + G, is a distribution with mean and
variance (m;+m,, v,+v,)

* G, -G, is adistribution with mean and
variance (m; —m,, v,+v,)

17



Assumption

* During the square and multiply execution,

* The time taken to perform a square or a
multiply is independent of all other square
and multiply operations

Algorithm : SQUARE-AND-MULTIPLY(z, ¢, 1)

z e 1
for: < ¢ — 1 downto (

2 +—z2modn
do iff,‘ = 1

then 2 « (z x ) mod n
return (z)

18



Execution Time of Square and
Multiply

* |s a Normal Distribution : T with (m, v)
* Each iteration by itself is a distribution
c =(101101),

Execution Time

0 1 1 0] 1
T = 3Ty, + 5T,

V=3V + v




4 cases

* Bitc,insecretis1
— Attacker guessed 1 (correctly)
— Attacker guessed 0 (wrong)

* Bitc,insecretisO

— Attacker guessed O (correctly)
— Attacker guessed 1 (wrong)

what we will see is that when the attacker guess is
wrong, then the variance is higher

20



Case 1.1, when bit ¢, is 1

and attacker guess is correct

difference

Full
Executic

Partial
Execution |

\ /

- e e - .

guessed correct as 1 here
*
V—VyV = IVMUL + IVSQ
Variance Reduces

21



Case 1.2, When ¢, bitis 1

And attacker guess is wrong

o S difference
N\

Full (mlv)
Execution

* * |,k

porte! | T*(n*,v*)
Execution ]
D I I g — - /

Guessed wrong as 0 here

*
V—Vy = 2VMUL -+ 3VSQ > (VMUL + VSQ) Variance Increases

22



Case 2.1, when ¢, is 0

And attacker guess IS correct
differ\ence

Full
Execution

Execution |
\ /

- e e - .

guessed correct as O here

%k
v—v =1lv,,, + IVSQ |
Variance Less

23



Case 2.2, When ¢, is 0

When guess is wrong

difference
A RN
0 1 0 0 1
Full
Execution
Partial [
Execution '\ [
/
S e e e e e e e o 7

guessed wrong as 1 here

=2
V=V =2V, +3vg, -
Variance increases

24



The Iterative Attack

* We start with the MSB and target one bit at a
time till we reach the LSB

What happens if there is an error in a bit?
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Naive Countermeasures don’t always work

All operations constant time

Easier said than done!
Practically infeasible

Highly dependent on system architecture

26



Naive Countermeasures don’t always work

Adding noise to timing measurements
— Such as, by random delays

These reduce the Signal-to-noise ratio.

Can be circumvented by taking making more number of
measurements

If the SNR reduces by a factor of n, then number of
measurements increase by a factor of n?

27



Prevention by Blinding

choose r randomly and keep it secret

compute r°modn and r° =r"modn

y'=(x-r) " modn

y=y'r “modn

The blind ‘r’ should be changed before each decryption.
One way is to choose r and compute r2.
For the next encryption compute r? and (rt)?

Why does it work?

Since ‘r’ is secret, attackers have no useful knowledge about the input to the
modular exponentiatior.

28



RSA Decryption in Practice
(OpenSSL crypto-lib uses CRT)

0 7 = yal modp ) XI.S the m.essage
(=) x=y“modn y is the ciphertext
X, = y“* mod a is the secret key
n=pq
where
a, =amodg(p)
a, =amod¢(q). Garner’s formula.
Derive x from x, and x, x=(x-p-p modg+x,-q-¢" mod pymodn
\ i from EEA, p-p'modg+q-q ' modp=1
COII’IplltC q9=4 mOdp p-p 'modg=1-¢q-q "' modp
@ -0n-xmod
x=x+h-q

Crypto libraries like the OpenSSL implement multiplication using
the Montgomery multiplication

29



o b~ W N B O

Preventing Kocher’s Attack with the
Montgomery Ladder

* s=y°mod n

c,=0 and ¢, =1
Say, C=45=(101101)2 Input: c, vy Qche same
. Cc 0
Qut put: y°¢ nod n time
exp(Xx, y){ " Modular, )
1 Yy RO = 1 multiplications
2 _ done witkh
= : Fir_i >—/O to n-1 do Monteomery
0 Y? Y3 — multiplier
if xi =0 then N~ /
1 v Yo RL = RO * RL nod N
1 yul y12 RO = RO * RO nopd N
0 y2 y23 el se
RO = RO * RL nod N
I yee RL=RL* Rl nmod N
return RO
}




Montgomery Multiplication

* Montgomery multiplication changes mod q operations to mod 2*
— This is much faster (since mod 2k is achieved taking the last k bits)
 Computing c =a*b mod g using Montgomery multiplication
1. Forthe given q, select R=2" such (R > g) and gcd(R,q) = 1

2. Using Extended Euclidean Algorithm find two integers to compute Rt and g’
such that R.R*-q.q’ =1

3. Convert multiplicands to their Montgomery domain:
A =aR mod q B =bR mod q

4. Compute abR mod N using the following steps

S=A*B

S=S+(S*g modR)*q/R
If(S>q)

Requires 3 integer multiplications

$S=S-¢q
return S

5. Perform S*R* mod ¢ to obtain ab mod q

http://www.hackersdelight.org/MontgomeryMultiplication.pdf



Montgomery Multiplier in the
Montgomery Ladder

| nput: c, vy
Qut put: y¢ nod N

exp(c, y){

RO=1* Rnod N —> Convert to Montgomery domain.
RL =y * R nod N}/

for i=0 to n-1 do
if ci = 0 then

Rl = RO * Rl
- *
RO RO RO Multiplications in Montgomery domain.
el se " Note. Each result is also in Montgomer
RO = RO ™ R domz;nin ° !
Rl = RlL * Rl '
return (RO * R1) —+ Return to Original domain

32



The final ‘if’ in Montgomery
Multiplication

* Observation Extra reductionstep | o _ 45 pt mod g
\|f(s>q)thenS=S-q

Pr[ExtraReduction] = 4 n;;dq

— Consider y to be an
integer increasing in value

— As y approaches q,
Pr[ExtraReduction] increases

— When vy is a multiple of g,
Pr[ExtraReduction] drops

— Extra reductions causes
execution time to increase

g=y is the ciphertext in the plots

disconfinuity when
gmodg=0

discontinuity when
gmodp =

# of extra reductions in Montgery's algorithm

q 2q 3gp 4q 50
values g between 0 and 6q



Another timing variation due to Integer
multiplications

30-40% of OpenSSL RSA decryption execution time is spent on
integer multiplication

If multiplicands have the same number of words n,
OpenSSL uses Karatsuba multiplication O(n'*%*%)

If integers have unequal number of words n and m, OpenSSL
uses normal multiplication O(nm)

these further cause timing variations...

34



Summary of Timing Variations

:
o lvca ly>aq T ——
_ Longer Shorter but one will always

discontinurty when
gmodg=0 :
Decryption
1 Time

!

IMormal

Earatsuba

# of extra reductions in Montgery's algorithm

kg

q 2 qp 4 5q
values g between 0 and 6q



Retrieving a bit of g

Assume the attacker has the top i-1 bits of q,
High level attack to get the it" bit of g

1. Set y, =(q,.1-9,5-9,3>" " 4,_:-1,0,0,0,-+-)
Set ¥, =(q,_1,9,2:9,_3>"" 9_1,1,0,0,- )

notethat
if q,=0, y,<q<y
if q,=1, y,<y<q

2. Sample decryption time for y, and y,
t, : DecryptionTime(y,)
t, © DecryptionTime(y,)

3. If |t,—t,| 1s large — ¢q,=0 (correspondsto y,<q<y,)
else g, =1 (correspondsto y, < y, < q)

36



What’s happening here?

Assume Montgomery multiplier dominates over Integer multiplication

* Casel:t; »v<xn=gq

Decryption time

K V4 >

ka value of y

37



* Case 2:t,

What’s happening here?

Assume Montgomery multiplier dominates over Integer multiplication

Decryption time

Vo <qg=y Due to Montgomery — — — .
/' L4
4 7
4 /
4 /
7 /
o, ’
4 /
yo case / ,
/ /7
/ /
/ /
/ /
/ /
/ /
/7 ’,/
y, case
/
/
/

ka value of y

38



What’s happening here?

Assume Montgomery multiplier dominates over Integer multiplication

e Case 2: tO Yo <g=Y Due to Montgomery — — — .
/' L4
v / ’
= / 7
s 7/ /7
S e ’
— /
T x Yy, case .// 7
> /
e 7/ 7/
g // //
/ /
4 /
/ 7/
/ /
Y ¥ y, case
S 1 ”
7/ 7/
/ /
/ /
|74 V4 .
kq value of y

What happens when integer multiplier dominates or Montgomery multiplier?

39



How does this work with SSL?

How do we get the server to decrypt our y?

40



Normal SSL Session Startup

1. ClientHello USENIX
Regular Client X SSL Server
2. ServerHello
(send public key) - o
« o -
3. ClientKeyExchange - o)
(re mod N) i _________ 18

Result: Encrypted with computed shared master secret

Slides from Boneh'’s talk



Attacking Session Startup

1. ClientHello
. USENIX
Attack Client 2. ServerHello SSL Server
(send public key)
) M
3. Record time t, 5
Send guess y, ory,
> ="=
=---------l
4. Alert

5. Record time t
Compute t

end

t

start ~ “end



Timing Attacks on Block Ciphers

Cache Attacks and Countermeasures: the Case of AES
https://eprint.iacr.org/2005/271.pdf

Cache Timing Attacks on AES
https://cryp.to/antiforgery/cachetiming-20050414.pdf
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Block Cipher Constructions

plaintext oo P

subkey &, mixing

[T ITIT TTTT TTT]
* Sboxes typically implemented

with look up tables t;; t%: t j j : — round

| subkey K. mixing |
. . . . LI T LI [T
* If block cipher is implemented in

a system with cache - round 2
memory, then the look up tables %%%

present could lead to timing LT
attacks i o > ‘ >
: : — round 3
| subkey &, mixing | n
N A e
541 812 513 e

HHI]IIIIII IHI—
T T

[T ciphertext R T




Memory Hierarchies in Systems

Von-Neumann bottleneck
— Due to high speed of processors and relatively low speed of RAM

Goal of Memory Hierarchy
— Low latency, high bandwidth, high capacity, low cost

_~ o
¥ & P N e f=T=
o = M ourlas

I e N Rl ST

AGHz 2 cycles
CPU - —
-ﬂ L2 Cache “

16 KB
<2clcocks 10 clcocks =5 1

Extremealy

Main Memory

(System DRAM)

o

ot | L

st DUSs

>100 clcocks 512 MB
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Cache Memories

Memory Load Instruction{

If data present in L1 cache (L1 cache hit){
then return data from L1 cache

} else if data not present in L1 cache (L1 cache miss){ 2
if data present in L2 cache (L2 cache hit){ g
return data from L2 cache and fill L1 cache 9
} 5
else if data present in L3 cache (L3 cache hit){ S
return data from L3 cache and fill L1 and L2 caches 4
} 2
else{
read data from RAM and fill in all caches
}

46



Address Mapping of Cache Memories

* Memory divided into blocks
One block typically 64 bytes

 Cache memory divided into lines.
Line size = block size.

* There is a mapping from blocks in
memory to lines in the cache
— Example direct mapped cache.

* |f the cahe size contains 4 lines, then every
4-th block gets mapped to the same cache
line

/

\

Lines in Cache Memory

Blocks in Main Memory

47



Address Mapping of Cache Memories

Cache Details:
— Let the number of words in a cache line be 2%
— Let the number of lines in the cache be 2P
— The number of words in the cache is therefore 2°+8

How to compute the mapping?

--. Mapping a 32 bit address
\ \ L
! !

32 - (b+8) b bits 6 bits
(Tag bits) (Line (Word
Address) Address)

48



Organization of a Direct Mapped
Cache

const unsigned char T0[256] = { 0x63, 0X7C, 0x77, 0X7B, ... };

Tag Memory Data Memory

TO address is 0x804af60

A o

-
—_ U

Hit/Mffiss -

Data

Mapping of Table TO to a Direct-Mapped Cache of size 4KB (25 =64 and 27 = 64)

Elements Address line Tag

TO[0] to TO[63] 0xB04af40 to 0x304af7f | 61 | 0x804a
TO[64] to TO[127] | O0xB04af80 to Ox804afbf | 62 | 0x804a
TO[128] to TO[191] Ox804afcd to 0x804blLL 63 (xs04a
T0[192] to TO[255) 0x804b000 to 0x804b03L 1] (xs04b

49



Access Driven Attacks

* Assumptions

— The attacker shares the same hardware as the
victim. For instance, cloud infrastructure.

— The attacker manipulates the system in such a
way as to track execution patterns of a victim
process

— These execution patterns are used to infer
sensitive data about the victim

50



S-boxes and Cache Memories

Io

Ke—>

S-boxes generally implemented as lookup tables.
Arrays stored in memory.

When accessed, a part of the table gets loaded
into the cache memory.

Subsequent accesses to the part of the table
results in cache hits (unless evicted).

p———

Py plaintext oo P
Ao el s . I O I B
| 1 subkey &, mixing |
ll[];ll[lllll[]l
31 [ Siz S13 314

— —
| subkey K, mixing |
|||l|,|, HEEEEE
53 512 513 524
| subkey &, mixing |
HEENEEENEEEEEE
831 RN 833 S34
| subkey &, mixing |
PP PP PIT
Sa1 812 Sa3 Sa4
|] [T ]wlkllll L[] |I
Tt rrrr T
[T ciphertext R T

round |

round 2

round 3

round 4
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S-boxes and Cache Memories

(getting information)

Ke—>

If | know the index into the table (I,)
and | know P, then Py xor K, = |,
Thus, Py xor 1, = K,

We will see how few bits of 10 can be recovered
from monitoring the execution time of the
cipher

Py plaintext oo P
Soion il I B A O B A R I
I | 1 subkey K, mixing I
g LA TITl TIT

|
| 511 [ 812 813 814
\

iz

=

subkey K. mixing

|
HEN

53

[ ]
51 513

[ 1]

o

i

§ \}\ sl
£

subkey K, mixing

832

S33

g

i

subkey &, mixing

Sa1

Sy

Sy

Saq

|HH L

T

NN
|

[ S

s

hkey K, mixin
[T

ciphertext

£
HEEERR

P TS

round |

round 2

round 3

round 4
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Cache State when a cipher is executed

Cipher(Pt,1 Key1) Cipher(Pt1 Key2) Cipher(Pt2, Key1)

cache state

Changing plaintext or key will alter how the cache memory is used

I cache line not used during the cipher execution
B Cache line filled up by the cipher execution

53



Cache State when a cipher is executed

Ptl1, Pt2, Pt3 are same in one byte. All other bytes may be different

Cipher(Pt,1 Keyl) Cipher(Pt,1 Keyl) Cipher(Pt3, Key1)

cache state

When plaintexts have one byte which is same, then there exists one cache line
that is filled in every encryption

Cache line filled in every encryption

I cache line not used by the cipher execution
B Cache line filled up by the cipher execution

54



Evict+Time Attack

Repeat 1. Pisa randomIY chosen plain text (with one byte say PO fixed)
multiple  — 2. In\(oke encrypthn of P |
fimes 3. Evict arandom line in the cache (say line L)

4. Invoke encryption of P (again) and time encryption

—

* Note that encryption of P occurs twice. So the second
encryption will predominantly result in cache hits.

* |fline Lis used during the encryption, a cache miss
arises... leading to an increase in execution time of 2"

encryption

* |Ifline Lis not used during the encryption, no additional
cache miss arises .... There may not be a significant
increase in the execution time of 2" encryption



] Three scenarios arise
What’s Happening here?
1. Evicted line L (Red) collides with
the yellow

2. Evicted line (Red) collides with the
brown. But this is unlikely to
happen for every encryption, since
P changes

cache state

3. Evicted line (Red) does not collide
with Yellow or Brown. This is also
unlikely to happen in every

Evicted line, encryption, since P changes.

Picked randomly is

Shown in red

56



] Three scenarios arise
What’s Happening here?
1. Evicted line L (Red) collides with
the yellow

2. Evicted line (Red) collides with the
brown. But this is unlikely to
happen for every encryption, since
P changes

cache state

3. Evicted line (Red) does not collide
with Yellow or Brown. This is also
unlikely to happen in every
encryption, since P changes.

What can we infer?

In case 1, there is always an additional
Cache miss during the second encryption.

In case 2 or 3, an additional cache miss may or
Occur

Thus avg time in case 1 > avg time in case 2 or 3
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Prime+Probe

* Uses a spy program to determine cache

behavior

Microprocessor

Cache Memory

Cache Miss

Cache Hit

58




Limitations

* Number of bits recovered is restricted by the
cache line size.

* Solved to certain extent by targeting cache
hits in the second round of the block cipher

59



Bernstein’s Profiled Time Driven
Cache Attacks



Time Profiles i

subkey K, mixing

| |
[TTT TTT L I 1111

IDO
An 12 13 514
— round I

Ke—>

| subkey K. mixing I
HEEEEENEEEEEn

53 81 813 a4

— round 2

| subkey K, mixing I
HEENEEENEEEEEE

531 832 S33 S34

The table is accessed at location PO ” KO.

— round 3

Each value of (PO ” KO) results in a unique
timing distribution

subkey K, mixing I

. round 4

341 Sy

|H[I I]_Il RN I[III_

subkey K, mixing
crrrrrrerrrr P

[T ciphertext R T

Sy
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Time Profiles

The table is accessed at location PO ” KO.

Each value of (PO ” KO) results in a unique
tlmlng dlstrlbutlon

4
E

2

1 ‘ ‘

a

l\ Mw H\U"’N [ H\WH\H\ 'HHH \” 'W\U\M UWHHHHWHH'\ H\HHMH\ il

IO R R R R R N N N N N R RPN RN NI NI N R D 2
AN AR T T DN OE M~ OO NEBr N NN T TN OO O~ OO RN D0 - N B0 TS D
=P P e P R R U R e e i i s P R e N PR NN

plaintext

subkey K, mixing

L]

L]

512

13

subkey K. mixing

L]

S

813

subkey &, mixing

Sn2

S33

subkey K, mixing

Sy2

Sa3

Sas

RN

RN

RN
|

subkey K, mixing

ciphertext

. Cig

round 1

round 2

round 3

round 4
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Bernstein’s Cache Timing Attack

result/0_0.log"” using 2:7
FEs 4
3
2
1
L . | | | |
-1 H 4
-3 | 4
S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S A
DO S DO O N I N NS N SN OO DN DN O SN O D DD o
AN AN T T RN e R~ OSSN NN MY T RO O EE NN SR A NN G0 T YT 0
] e e e v v v v v v v v v v e v v e e CW OW CW O OO O OW O CU CJ O
5 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Tresult/16_8.1log” using 2:7
1 _
o Ll I | . . Al
-1 |
- | i
-3 | i
T S S S S S S S S S S S S T S S S S S T S S S S T S S S S S S A S S S S
PO @NOO OO OO OO0 @O0 Q0O NI I N I N DR e U U U e o e
A NN AR T T NN e~ e RS NN AT IO NEEGRR eSS SRS o NN T Y D
= R oL [ e U R e R R e e Rl L B N N PN I R



Results for the Block Cipher AES

key | Correct key Ten most Likely keys for each byte
K 11 de 47 41 da 46 4c 48 45 4 M
kY 22 05 22 ¢ 2f ea 33 el 06 23 o9
o 33 13 38 3b 3a 34 37 39 0 I al
Ky 4 3 8 8 8 4 8 8 46 4b 4a
Ky 55 dl de d@ a8 d0 d3 a a5 abd al
i 66 8 52 3 Ta b S0 1la 23 f6 4a
f-:};: 77 %9 73 78 M TT F& I 75 8 e
g 38 8 & & 80 S« 8 & % H B
e 09 90 30 8 90 ba le T7a af 70 13
kS aa b4 e Tb e8 bl 8@ 53 Ta 79 bb
ko bb 65 ST Sf b2 24 b6 60 25 Se 80
krit{: oc i el ce ca ch o el el 14 o
ki; dd 3 Sb S0 52 49 58 54 51 dl 48
£ ee 7o el 4 98 94 &b e d7 b3 3b
hey £f ea @ M 3a el ad e 03 f ff
ko 00 05 01 06 02 04 08 03 Oa 00 Oc
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Results for the Block Cipher CLEFIA

ey Correct key Ten most ]J'-.h:elj,r kevys for each byte
REU; t 4 e ¢ e 32 18 e 4/ 18 44
RED di di 52 0 dif 46 31 48 4 ¢ d7
REDs ba Ga if o4 92 e@ 48 6¢c 73 a® bo
RElyp £ ca a7l 50 40 54 52 bf 358 51 53
RE1, Th Th. 46 db dl ch cd 52 56 Bf 79
RK1, 91 a1 13 S5a & f2 14 64 a8 fs 3
RK13 il al ab 07 68 c3 ec Oc 78 el 16
RE2g & WEKDg fe fe f8 00 06 ec 14 11 e fb 1b
RE & WED 57 27 51 62 al Sa f7 64 24 el of
RE2> & WED ic Ac ea c3 eb 3d &c be 92 i ec
RE2; & WEKD; §0 a0 51 02 58 57 3c dg &9 10 /M4
REG3p& WK1y 6h 6b b 42 a0 6f a3 36 db id a9
RE3; WKL 40 40 da bl 88 fd a2 16 26 03 13
RE3: & WKl1a 16 16 03 o4 £ 45 6b B9 I3 fa Ge
RE3:; 8 WKl1s 36 36 2 42 aB ad 86 B0 o5 Ib 34
RE4y Te Te el fe e2 01 11 ff 07 lc 12
RE4, 32 al 2 34 26 38 31 i3 if 3e 29
RE4, =0 2 M 00 a0 g1 fll 63 g2 b 03
REd3 el el e 37  de 63 &c cd el 29 77
RESg eh eh b da &5 le /8 3e fo dc 09
RES; 11 11 24 ed ef 33 a3 ed ODe [ LA
RES, 47 47 37 92 8 09 B b 34 B2 352
RE S, as 3= 7 38 H  e] 5 3 el &b ed
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Countermeasures for Timing Attacks

* Requirements for a successful Side Channel Attack

— Perturbations :

 When the cipher executes, some entity in the system must be
disturbed (perturbed)

— Manifestations:

* These perturbations should be manifested through some channel
(for instance a power glitch)

— Oberservable:

* The manifestations should be observable / measurable in spite of
all the noise

* Preventing any one of these requirements can counter
side channel attacks.
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Preventing Cache Timing Attacks

Adding noise during the encryption ....
Constant time implementations ..... difficult
Non-cached memory access

Specialized cache designs
— Partitioned cache
— Random permutation cache

Specialized Instructions
Prefetching

Fuzzing Clocks
— Virtual time stamp counters
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Fault Attacks

“Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault”,
Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali
https://eprint.iacr.org/2009/575.pdf
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Fault Attacks

Active Attacks based on induction of faults
First conceived in 1996 by Boneh, Demillo and Lipton

E. Biham developed Differential Fault Analysis (DFA) attacker
DES

Optical fault induction attacks : Ross Anderson, Cambridge
University — CHES 2002
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lllustration of a Fault Attack

PLAIN TEXT

ENCRYPTION ;

ENCRYPTION

!

FAULT FREE
CIPHER TEXT

™~

FAULT
INDUCTION
FAULTY
CIPHER TEXT

-

ANALYSIS
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How to achieve fault injection

Voltage

Clock glitching

Time

Voltage glitch

Time

Power Glitching

Clock Glitching

Temperature???
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Fault Injection Using Clock Glitches

Plaintext —™

AES
(Iterative)

Faulty
Ciphertext

— Qutput Valid

Key —»
-
Fast Clock — 1
Slow Clock —»{ 0 Clock
Round == 8%

L

Reset

An Internal state of 1

The AES on logic I:|55|:f253'-:l:r41:1|r1 EEEE'-!:IiF?...Idﬂ?bﬁﬂtb;{izgﬁﬂd-!‘dﬂﬂ

scope | I

: — e 4 3
bf 'Hﬁbziamdlﬁa_zsja?mmzrmzu
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Fault Models

Bit model : When fault is injected, exactly
one bit in the state is altered

eg. 8823124345 -> 8833124345

Byte model : exactly one byte in the state
is altered

eg. 8823124345 -> 8836124345

Multiple byte model : faults affect more
than one byte

eg. 8823124345 -> 8836124333

Practical

Fault injection is difficult.... The attacker would want to reduce the number of faults to
be injected

Attack easyness
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Fault Attack on RSA

RSA decryption has the following operation

x=y“modn
where a istheprivatekey y theciphertextand x theplain text

Suppose, the attacker can inject a fault in the it" bit of a.
Thus she would get two ciphertexts:

The fault free ciphertext x = y“ mod n
The faulty ciphertext X = y“ modn
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Fault Attack on RSA

a and a differ by exactly1bit; thei” bit.Thus

a—ﬁz{

2" ifa, =1
~2"ifa, =0

Now consider the ratio

a

X )
x
Thus,

4 21
X
t=<y
X

if a; =1

\y_zi if a, =0

modn=y““ modn

The attacker thus gets 1 bit

of a.. Similar faults on other

bits will reveal more information
about the private key a,
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plaintext R T

What a fault does ‘it litiiin -

[ e TPl LT

to a block cipher? S | N e Y

PLAIN TEXT

subkey K, mixing

| |
HEEEEEEEEEEn

87 812 83 84

ENCRYPTIQ

FAULTY d?2
CIPHER TEXT — round -

v

ANALYSIS

FAULT FREE

subkey K, mixing

|
e Afault (generally at the s-box input) creates LT I TITL [T
a difference wrt the fault free encryption S 5 Sia Ssa

* This difference is propagated and diffused to | round 3
multiple output bytes of the cipher

* The attacker thus has 2 cipertexts :

(1) the fault free ciphertext (C) —
(2) the faulty ciphertext (C*) | otk 1 g I
0 Y A Y N e O
531 Sq2 Sa3 Sa4
sk K, thixige
11

O L. ciphertext R T
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A Simple Fault Attack on AES

FLALNTENT

Let’s assume that the attacker has the
capability of resetting a particular line
during the AES round key addition.

(i.e. exactly one bit is reset)

Attack Procedure
1. Put plaintext to Os and get ciphertext C

2. Put plaintext to Os. Inject fault in the ith
bit as shown. Get the ciphertext C*

3. IfC=C*, weinferK =1
If C2C*, we infer K. =0

This techniques requires 128 faults t
be injected.

— difficult,,,, can we do better?

cie Encryplhon —i-eciicia ciiiainan

Encrvption Raund
2

CEFHERTERT

Last RHounds

M.-1 Rounds
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Differential Fault Attack on AES

* Differential characteristics of the AES s-box
P+e

78



DFA on last round of AES
(using a single bit fault)

*
Co + Co*=S(p) + S(p+f) T
Since it is a single bit fault, E+f+/
f can take on one of 7 different values:
(00000001), (00000010), (000001000), !
(000010000), ...., (10000000) 10 Round | SHIREON

The above equation on average will

S(p) «—

have around 8 different solutions for p. S(p+f)

Each value of p would give a candidate for k.
Thus, there are 8 key candidates.

g
C,=S(p) + KOJ

C,* =S(p+f) + K,
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DFA on last round of AES
(using a single bit fault)
Each bit fault results in 8 potential key values for the
byte

There are 16 key bytes. Thus 16 faults need to be
injected.

In total key space reduces from 2128 to 81° (ie. 249)

— A key space search of 2*2 do-able in reasonable time
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DFA on 9" Round of AES
(fault in a byte)

Fault injected after s-box operation in the " "=
9th round. |
It is a byte level fault, thus, the fault f’ can i
take on any of 256 values (0, 1, 2, ...., 255) i
Due to the mix-column, 4 difference )
equations can be derived |
10** Round

2f =5 (Coa @ Kap) &S (Coo @ KaD)
f:S—]({"!q%ﬂ'ilt-i]?ﬂ_][r?qﬁ?ﬁ:;g}
f=5CroKk%) oS (Cs oKy
3f=5"(Caek)es (G ek))

] — —

e '
=]

a[-[-[&
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Solving the Difference Equations

o 1
Each equation hastheform: 4 =B ® (C 2f=5"(Coo®Kop) &S (C 0B Kop)
i | - o— ¥ 10
where, A, B, C are of 8 bits each. f=SC138K3) 85 (CI39K,3)
f=51CraK) a5 (CLaK)Y)

For a uniformly random choice of A, B, and C, = ;s i z
Y 3f=5"(Cek) 57N ekl)

the probability that the above equation is satisfied is (1/28)
The maximum space of (A,B,C) is 224. Of these values, 21¢ will satisfy the above equation
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Solving the Difference Equations

Each equation hasthe form: 4 = B @ 2f=5"(Coo®Kpp)®S ' (Co0®K50)
where, A, B, C are of 8 bits each. f=S5THCi38K3)8S™ (Cl38K;3)
f=S'G:a0K%) a5 (C,aK)%)

For a uniformly random choice of A, B, and C, = ;
y 3f=S G @k®) eSS k1)

the probability that the above equation is satisfied is (1/28).

The maximum space of (A,B,C) is 224. Of these values, 21¢ will satisfy the above equation

In our case, there are 5 unknowns (4 keys and f) and 4 equations.

For uniformly random chosen values of the 5 unknowns, the probability that all 4 equations
are satisfied is p=(1/28)".

The space reduction for the 5 variables is therefore from p(28)°> = 2864 = 28,

The key space is 232. From the above, it has reduced to just 28.

Each fault reveals 32 bits of the 10t round key.
Thus 4 faults are required to reveal all 128 key bits. The offline search space is 232.
Can we do better?
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DFA on AES with a single fault

* As mentioned previously, 4 faults
are required in the 9t round to
reveal the entire key

* Instead of the 9t" round, suppose
we inject the fault in the 8t round

P — -,

(8" Round
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ﬂh |

A single fault injected in the R

8t round will spread to 4
bytes in the 9t round.

|
|
|
|
|
|
|
|
|
I MixCol
|

This is equivalent to having 4
faults in each of the 4 s Romnd  §
columns.

g

Elwl=|&

A single fault can thus be ,,
used to determine all key i . S
bytes. | \ "

The offline key space is 232 as
before




