
Side Channel Analysis

CR

Chester Rebeiro

IIT Madras

Modern ciphers designed with

very strong assumptions

• Kerckhoff’s Principle

– The system is completely known to the attacker. This

includes encryption & decryption algorithms, plaintext

– only the key is secret

CR

• Why do we make this assumption?

– Algorithms can be leaked (secrets never remain secret)

– or reverse engineered

2

Mallory’s task is therefore very difficult….

Security as strong as its weakest link

• Mallory just needs to find

the weakest link in the

system

….there is still hope!!!

CR 3

Alice Bob

message

“Attack at Dawn!!”

untrusted communication link
E D

KE KD

“Attack at Dawn!!”
encryption decryption

#%AR3Xf34^$

(ciphertext)

Side Channels

CR 4

Side Channel Analysis

(the weak links)

Alice Bob

message

untrusted communication link
E D

KE KD

“Attack at Dawn!!”

encryption decryption
#%AR3Xf34($

(ciphertext)

CR 5

message

“Attack at Dawn!!”

Mallory

Side Channels

Eg. Power consumption / radiation

of device, execution time, etc. Gets information about the keys by monitoring

Side channels of the device

Side Channel Analysis

Alice

message

E

00111

encryption

Mallory measures some

Physical parameter of the device

Like radiation, power consumption or

timing

CR 6

Radiation from

Device

0 1 1 1Secret information 0 1

message

“Attack at Dawn!!”

Types of Side Channel Attacks

CR 7source : Elisabeth Oswald, Univ. of Bristol

Timing Attacks

CR 8

Execution Time

What can you tell from the execution time of this function?

CR

• Execution time depends on values of a and b
– Fastest when b=0

– Varies depending a / b

• Thus information can be inferred from execution
time.
– Can we get secret information from the timing?

Finding N/D

9

Measuring Time Accurately

• RDTSC : Read Time Stamp Counter

– 128 bit register that s reset at boot up and increments at every

clock cycle

Usage

CR

Flush Pipeline

T1 = rdtsc()

Flush Pipeline

/// invoke function to be timed

T2 = rdtsc()

Flush pipeline

Usage

10

Flush Pipeline and Read TSC

timestamp()

CR 11

http://arbidprobramming.blogspot.in/2010/05/measuring-timing-accurately-on-intel.html

DIV: Measuring Execution Time
Fr

e
q

u
e

n
cy

.

CR

• For randomly chosen values of a/b

• Note the distribution

340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490

Clock cycles

Fr
e

q
u

e
n

cy
.

12

Timing Attacks on RSA

CR

Timing Attacks on RSA
(breaking real-world implementations)

13

Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and other systems

http://courses.csail.mit.edu/6.857/2006/handouts/TimingAttacks.pdf

Remote Timing Attacks are Practical

https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

Exponentiation with

Square and Multiply

• say, x=45=(101101)2

i c exp

5 1 y

4 0 y2

3 1 y4+1=y5

2 1 y10+1=y11

1 0 Y22

nxy c mod=

CR

1 0 Y22

0 1 y44+1=y45

14

The Attack setup

System

Message (x)

time

nxy c mod=

CR 15

System

Cipher (y)

time

Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and other systems

http://courses.csail.mit.edu/6.857/2006/handouts/TimingAttacks.pdf

Kocher’s Attack to find the bth bit

timeexecutionandmodgettoencryptionantrigger

)0,0,,,(cformS3.

timeexecutionandmodgettoencryptionantrigger.2

randomachoose.1

bitdiscoverTo:

,bitsknowsAttacker:

)0(

121

(0)

121

)0(

≡

=

≡

+−−

+−−

c

bll

c

b

bll

tnxy

ccc

tnxyS

xS

cAim

cccAssumption

L

L

Guess 0

CR 16

'1'

'0'varvar.8

allfromandallfromofonsdistributiCompute.7

 timesseveral1fromRepeat.6

timeexecutionindifferencecompute.5

timeexecutionandmodgettoencryptionantrigger

)0,1,,,(cformS4.

timeexecutionandmodgettoencryptionantrigger

10

1)1(0)0(

1

1

0

0

)1(

121

(1)

)0(

)1(

=

=<

−=−=

≡

=

≡

+−−

b

b

)()(

)()(

)()(

c

bll

c

creturnelse

creturn)(D)(DIfS

dDdDS

SS

ttdttd

S

tnxy

ccc

tnxy

L Guess 1

Adding Distributions

• Consider two random variables G1 and G2 with

mean and variance (m1, v1) and (m2,v2)

• G1 + G2 is a distribution with mean and

variance (m +m , v +v)

CR

variance (m1+m2, v1+v2)

• G1 - G2 is a distribution with mean and

variance (m1 – m2, v1+v2)

17

Assumption

• During the square and multiply execution,

• The time taken to perform a square or a

multiply is independent of all other square

and multiply operations

CR

and multiply operations

18

Execution Time of Square and

Multiply

• Is a Normal Distribution : T with (m, v)

• Each iteration by itself is a distribution

c = (101101)2 Execution Time

CR

Time

0 1 1 0 1

Execution Time

SQMUL

SQMUL

vvv

TTT

53

53

+=

+=

19

4 cases

• Bit cb in secret is 1

– Attacker guessed 1 (correctly)

– Attacker guessed 0 (wrong)

• Bit c in secret is 0

CR

• Bit cb in secret is 0

– Attacker guessed 0 (correctly)

– Attacker guessed 1 (wrong)

what we will see is that when the attacker guess is

wrong, then the variance is higher

20

Case 1.1, when bit cb is 1

Time

0 1 1 0 1
Full

Execution
T(m,v)

and attacker guess is correct
difference

CR

Partial

Execution

guessed correct as 1 here

SQMUL vvvv 11* +=−
Variance Reduces

21

Case 1.2, When cb bit is 1

Time

0 1 1 0 1
Full

Execution
T(m,v)

And attacker guess is wrong
difference

CR

Partial

Execution

Guessed wrong as 0 here

)(32*

SQMULSQMUL vvvvvv +>+=− Variance Increases

22

T*(m*,v*)

Case 2.1, when cb is 0

Time

0 1 0 0 1
Full

Execution

And attacker guess is correct
difference

CR

Partial

Execution

guessed correct as 0 here

SQMUL vvvv 11* +=−
Variance Less

23

Case 2.2, When cb is 0

Time

0 1 0 0 1
Full

Execution

When guess is wrong difference

CR 24

Partial

Execution

guessed wrong as 1 here

SQMUL vvvv 32* +=−
Variance increases

The Iterative Attack

• We start with the MSB and target one bit at a

time till we reach the LSB

CR

What happens if there is an error in a bit?

25

Naïve Countermeasures don’t always work

All operations constant time

Easier said than done!

Practically infeasible

CR

Practically infeasible

Highly dependent on system architecture

26

Naïve Countermeasures don’t always work

Adding noise to timing measurements

– Such as, by random delays

These reduce the Signal-to-noise ratio.

CR

Can be circumvented by taking making more number of

measurements

If the SNR reduces by a factor of n, then number of

measurements increase by a factor of n2

27

Prevention by Blinding

nrxy

nrrandnrcompute

retitkeepandrandomlyrchoose

c

ccc

mod)('

modmod

sec

−

⋅≡

≡

CR 28

nryy

nrxy

c

c

mod'

mod)('

−⋅≡

⋅≡

The blind ‘r’ should be changed before each decryption.

One way is to choose r and compute r2.

For the next encryption compute r2 and (r-1)2

Why does it work?

Since ‘r’ is secret, attackers have no useful knowledge about the input to the

modular exponentiatior.

RSA Decryption in Practice

(OpenSSL crypto-lib uses CRT)

paa

where

nyx
qyx

pyx
a

a

a

≡

≡〈=〉












≡

≡

1

2

1

)(mod

mod
mod

mod

2

1

φ

xis the message

y is the ciphertext

a is the secret key

n = pq

1

2

CR 29

qhxx

pxxqh

pqq

xxx

qaa

⋅+=

−=

≡

≡

−

1

12

1

21

2

mod)('

mod'compute

andfromDerive

).(modφ

Crypto libraries like the OpenSSL implement multiplication using

the Montgomery multiplication

Garner’s formula.

pqqxxxx

pqqqpp

pqqqppEEAfrom

npqqxqppxx

mod)(

mod1mod

1modmod,

mod)modmod(

1

121

11

11

1

2

1

1

−

−−

−−

−−

⋅−+=

⋅−=⋅

=⋅+⋅

⋅⋅+⋅⋅=

3

Preventing Kocher’s Attack with the

Montgomery Ladder

• s=yc mod n

say, c=45=(101101)2

i ci R0 R1

1 y

Input: c, y
Output: yc mod n

exp(x,y){
R0 = 1

cb=0 and cb=1

take the same

time

Modular

multiplications

CR

1 y

0 1 y Y2

1 0 Y2 Y3

2 1 Y5 Y6

3 1 Y11 Y12

4 0 Y22 Y23

5 1 Y45 Y46

R0 = 1
R1 = y
for i=0 to n-1 do

if xi = 0 then
R1 = R0 * R1 mod N
R0 = R0 * R0 mod N

else
R0 = R0 * R1 mod N
R1 = R1 * R1 mod N

return R0
}

multiplications

done with

Montgomery

multiplier

Montgomery Multiplication

• Montgomery multiplication changes mod q operations to mod 2k

– This is much faster (since mod 2k is achieved taking the last k bits)

• Computing c ≡ a*b mod q using Montgomery multiplication

1. For the given q, select R=2k such (R > q) and gcd(R,q) = 1

2. Using Extended Euclidean Algorithm find two integers to compute R-1 and q’

such that R.R-1 – q.q’ = 1

CR

such that R.R-1 – q.q’ = 1

3. Convert multiplicands to their Montgomery domain:

A ≡ aR mod q B ≡ bR mod q

4. Compute abR mod N using the following steps

5. Perform S*R-1 mod q to obtain ab mod q

S = A * B

S = S + (S * q’ mod R) * q / R

If (S > q)

S = S – q

return S

http://www.hackersdelight.org/MontgomeryMultiplication.pdf

Requires 3 integer multiplications

Montgomery Multiplier in the

Montgomery Ladder

Input: c, y
Output: yc mod N

exp(c,y){
R0 = 1 * R mod N
R1 = y * R mod N

Convert to Montgomery domain.

CR 32

R1 = y * R mod N
for i=0 to n-1 do

if ci = 0 then
R1 = R0 * R1
R0 = R0 * R0

else
R0 = R0 * R1
R1 = R1 * R1

return (R0 * R-1)
}

Multiplications in Montgomery domain.

Note. Each result is also in Montgomery

domain.

Return to Original domain

The final ‘if’ in Montgomery

Multiplication

• Observation

– Consider y to be an
integer increasing in value

S = (A * B) R-1 mod q

If (S > q) then S = S - q

Extra reduction step

R

qy

2

mod
]tionExtraReducPr[=

g=y is the ciphertext in the plots

CR

integer increasing in value

– As y approaches q,

Pr[ExtraReduction] increases

– When y is a multiple of q,

Pr[ExtraReduction] drops

– Extra reductions causes

execution time to increase

33

Another timing variation due to Integer

multiplications

• 30-40% of OpenSSL RSA decryption execution time is spent on

integer multiplication

• If multiplicands have the same number of words n,

OpenSSL uses Karatsuba multiplication

• If integers have unequal number of words n and m, OpenSSL

)(
3log2nO

CR

• If integers have unequal number of words n and m, OpenSSL

uses normal multiplication

these further cause timing variations…

34

)(nmO

Summary of Timing Variations

y < q y > q

Montgomery Effect Longer Shorter

Multiplication Effect Shorter Longer

Opposite effects,

but one will always

dominate

CR 35

Retrieving a bit of q

Assume the attacker has the top i-1 bits of q,

High level attack to get the ith bit of q

),0,0,1,,,,(

),0,0,0,,,,(.1

13211

13210

thatnote

qqqqySet

qqqqySet

illll

illll

=

=

−−−−−

−−−−−

LL

LL

CR 36

)(1

)(0largeis||.3

)(:

)(:

.2

,1

,0

10

1001

11

00

10

10

10

qyytoscorrespondqelse

yqytoscorrespondqttIf

yTimeDecryptiont

yTimeDecryptiont

yandyfortimedecryptionSample

qyyqif

yqyqif

thatnote

i

i

i

i

≤<=

<≤=→−

≤<=

<≤=

What’s happening here?

• Case 1 : t1

Assume Montgomery multiplier dominates over Integer multiplication
D

e
cr

yp
ti

o
n

 t
im

e

qyy ≤< 10

y1 case

CR 37

value of ykq

D
e

cr
yp

ti
o

n
 t

im
e

y0 case

What’s happening here?

• Case 2 : t0 Due to Montgomery

D
e

cr
yp

ti
o

n
 t

im
e

10 yqy ≤<

Assume Montgomery multiplier dominates over Integer multiplication

CR 38

value of ykq

D
e

cr
yp

ti
o

n
 t

im
e

y1 case

y0 case

What’s happening here?

• Case 2 : t0 Due to Montgomery

D
e

cr
yp

ti
o

n
 t

im
e

10 yqy ≤<

Assume Montgomery multiplier dominates over Integer multiplication

CR 39

value of ykq

D
e

cr
yp

ti
o

n
 t

im
e

y1 case

y0 case

What happens when integer multiplier dominates or Montgomery multiplier?

How does this work with SSL?

How do we get the server to decrypt our y?

CR 40

How do we get the server to decrypt our y?

Normal SSL Session Startup

Regular Client

USENIX

SSL Server

1. ClientHello

2. ServerHello

(send public key)

CR

3. ClientKeyExchange

(re mod N)

Result: Encrypted with computed shared master secret

Slides from Boneh’s talk 41

Attacking Session Startup

Attack Client

USENIX

SSL Server

1. ClientHello

2. ServerHello

(send public key)

CR

3. Record time tstart

Send guess y0 or y1

4. Alert

5. Record time tend

Compute tstart –tend

42

Timing Attacks on Block Ciphers

CR

Timing Attacks on Block Ciphers

43

Cache Attacks and Countermeasures: the Case of AES

https://eprint.iacr.org/2005/271.pdf

Cache Timing Attacks on AES

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Block Cipher Constructions

• Sboxes typically implemented

with look up tables

• If block cipher is implemented in

a system with cache

CR

a system with cache

memory, then the look up tables

present could lead to timing

attacks

44

Memory Hierarchies in Systems

• Von-Neumann bottleneck

– Due to high speed of processors and relatively low speed of RAM

• Goal of Memory Hierarchy

– Low latency, high bandwidth, high capacity, low cost

CR 45

<2clcocks 10 clcocks

>100 clcocks

Cache Memories

Memory Load Instruction{

If data present in L1 cache (L1 cache hit){

then return data from L1 cache

} else if data not present in L1 cache (L1 cache miss){

if data present in L2 cache (L2 cache hit){

M
e

m
o

ry Lo
a

d
 Sp

e
e

d

CR 46

if data present in L2 cache (L2 cache hit){

return data from L2 cache and fill L1 cache

}

else if data present in L3 cache (L3 cache hit){

return data from L3 cache and fill L1 and L2 caches

}

else{

read data from RAM and fill in all caches

}

}

M
e

m
o

ry Lo
a

d
 Sp

e
e

d

Address Mapping of Cache Memories

• Memory divided into blocks

One block typically 64 bytes

• Cache memory divided into lines.

Line size = block size.

• There is a mapping from blocks in

CR

• There is a mapping from blocks in

memory to lines in the cache

– Example direct mapped cache.

• If the cahe size contains 4 lines, then every

4-th block gets mapped to the same cache

line

47

Address Mapping of Cache Memories

• Cache Details:

– Let the number of words in a cache line be 2δ

– Let the number of lines in the cache be 2b

– The number of words in the cache is therefore 2b+ δ

• How to compute the mapping?

CR

• How to compute the mapping?

48

δ bits

(Word

Address)

b bits

(Line

Address)

32 – (b+δ)

(Tag bits)

Mapping a 32 bit address

Organization of a Direct Mapped

Cache

T0 address is 0x804af60

CR 49

Access Driven Attacks

• Assumptions

– The attacker shares the same hardware as the

victim. For instance, cloud infrastructure.

– The attacker manipulates the system in such a

way as to track execution patterns of a victim

process

CR

process

– These execution patterns are used to infer

sensitive data about the victim

50

S-boxes and Cache Memories

Table

P0

K0

S-boxes generally implemented as lookup tables.

CR 51

S-boxes generally implemented as lookup tables.

Arrays stored in memory.

When accessed, a part of the table gets loaded

into the cache memory.

Subsequent accesses to the part of the table

results in cache hits (unless evicted).

S-boxes and Cache Memories

(getting information)

Table

P0

K0

If I know the index into the table (I)

I0

CR 52

If I know the index into the table (I0)

and I know P0 then P0 xor K0 = I0

Thus, P0 xor I0 = K0

We will see how few bits of I0 can be recovered

from monitoring the execution time of the

cipher

Cache State when a cipher is executed

Cipher(Pt,1 Key1)

ca
ch

e
 s

ta
te

Cipher(Pt1 Key2) Cipher(Pt2, Key1)

CR 53

ca
ch

e
 s

ta
te

Cache line filled up by the cipher execution

Cache line not used during the cipher execution

Changing plaintext or key will alter how the cache memory is used

Cache State when a cipher is executed

Cipher(Pt,1 Key1)
ca

ch
e

 s
ta

te
Cipher(Pt,1 Key1) Cipher(Pt3, Key1)

Pt1, Pt2, Pt3 are same in one byte. All other bytes may be different

CR 54

ca
ch

e
 s

ta
te

Cache line filled up by the cipher execution

Cache line not used by the cipher execution

When plaintexts have one byte which is same, then there exists one cache line

that is filled in every encryption

Cache line filled in every encryption

Evict+Time Attack

• Note that encryption of P occurs twice. So the second
encryption will predominantly result in cache hits.

1. P is a randomly chosen plain text (with one byte say P0 fixed)

2. Invoke encryption of P

3. Evict a random line in the cache (say line L)

4. Invoke encryption of P (again) and time encryption

Repeat

multiple

times

CR

Note that encryption of P occurs twice. So the second
encryption will predominantly result in cache hits.

• If line L is used during the encryption, a cache miss
arises… leading to an increase in execution time of 2nd

encryption

• If line L is not used during the encryption, no additional
cache miss arises …. There may not be a significant
increase in the execution time of 2nd encryption

55

What’s Happening here?
ca

ch
e

 s
ta

te
Three scenarios arise

1. Evicted line L (Red) collides with

the yellow

2. Evicted line (Red) collides with the

brown. But this is unlikely to

happen for every encryption, since

P changes

3. Evicted line (Red) does not collide

with Yellow or Brown. This is also

CR 56

with Yellow or Brown. This is also

unlikely to happen in every

encryption, since P changes.Evicted line,

Picked randomly is

Shown in red

What’s Happening here?
ca

ch
e

 s
ta

te
Three scenarios arise

1. Evicted line L (Red) collides with

the yellow

2. Evicted line (Red) collides with the

brown. But this is unlikely to

happen for every encryption, since

P changes

3. Evicted line (Red) does not collide

with Yellow or Brown. This is also

CR 57

with Yellow or Brown. This is also

unlikely to happen in every

encryption, since P changes.

What can we infer?
In case 1, there is always an additional

Cache miss during the second encryption.

In case 2 or 3, an additional cache miss may or

Occur

Thus avg time in case 1 > avg time in case 2 or 3

Prime+Probe

• Uses a spy program to determine cache

behavior

Microprocessor

Cache Memory
Cache Miss

CR 58

Spy

AES

Memory

Cache Hit

Limitations

• Number of bits recovered is restricted by the

cache line size.

• Solved to certain extent by targeting cache

CR

• Solved to certain extent by targeting cache

hits in the second round of the block cipher

59

Bernstein’s Profiled Time Driven

Cache Attacks

CR

Cache Attacks

60

Time Profiles

Table

P0

K0

CR 61

The table is accessed at location P0 ^ K0.

Each value of (P0 ^ K0) results in a unique

timing distribution

Time Profiles

Table

P0

K0

CR 62

The table is accessed at location P0 ^ K0.

Each value of (P0 ^ K0) results in a unique

timing distribution

Bernstein’s Cache Timing Attack

Put key to all ZEROs and
perform experiment

CR

Repeat experiment with
unknown key

Correlate the two results

Results for the Block Cipher AES

CR 64

Results for the Block Cipher CLEFIA

CR 65

Countermeasures for Timing Attacks

• Requirements for a successful Side Channel Attack

– Perturbations :
• When the cipher executes, some entity in the system must be

disturbed (perturbed)

– Manifestations:

CR

Manifestations:
• These perturbations should be manifested through some channel

(for instance a power glitch)

– Oberservable:
• The manifestations should be observable / measurable in spite of

all the noise

• Preventing any one of these requirements can counter
side channel attacks.

66

Preventing Cache Timing Attacks

• Adding noise during the encryption ….

• Constant time implementations ….. difficult

• Non-cached memory access

• Specialized cache designs
– Partitioned cache

CR

– Partitioned cache

– Random permutation cache

• Specialized Instructions

• Prefetching

• Fuzzing Clocks
– Virtual time stamp counters

67

Fault Attacks

CR

Fault Attacks

68

“Differential Fault Analysis of the Advanced Encryption Standard using a Single Fault”,

Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali

https://eprint.iacr.org/2009/575.pdf

Fault Attacks

• Active Attacks based on induction of faults

• First conceived in 1996 by Boneh, Demillo and Lipton

• E. Biham developed Differential Fault Analysis (DFA) attacker
DES

• Optical fault induction attacks : Ross Anderson, Cambridge

CR

• Optical fault induction attacks : Ross Anderson, Cambridge
University – CHES 2002

69

Illustration of a Fault Attack

ENCRYPTION ENCRYPTION

PLAIN TEXT

CR 70

FAULT FREE

CIPHER TEXT

FAULTY

CIPHER TEXT

ANALYSIS

FAULT

INDUCTION

How to achieve fault injection

CR 71

Laser Clock Glitching

Power Glitching

Temperature???

Fault Injection Using Clock Glitches

CR 72

An Internal state of

The AES on logic

scope

Fault Models

• Bit model : When fault is injected, exactly

one bit in the state is altered

eg. 8823124345 � 8833124345

• Byte model : exactly one byte in the state

is altered

Attack easyness

CR

is altered

eg. 8823124345 � 8836124345

• Multiple byte model : faults affect more

than one byte

eg. 8823124345 � 8836124333

73

Practical

Fault injection is difficult…. The attacker would want to reduce the number of faults to

be injected

Fault Attack on RSA

textplaintheandciphertextthekeyprivatetheiswhere

mod

xya

nyx a=

RSA decryption has the following operation

CR

Suppose, the attacker can inject a fault in the ith bit of a.

Thus she would get two ciphertexts:

The fault free ciphertext

The faulty ciphertext
nyx a mod=
nyx a mod~ ~

=

74

Fault Attack on RSA

Now consider the ratio







=−

=
=−

02

12~

.;1~

i

i

aif

aif
aa

Thusbitithebitexactlybydifferaanda

i

i

th

CR

Now consider the ratio







=

=
=

==

−

−

0

1
~

,

modmod~

2

2

~

~

i

i

aa

a

a

aify

aify

x

x

Thus

nyn
y

y

x

x

i

i

The attacker thus gets 1 bit

of ai. Similar faults on other

bits will reveal more information

about the private key ai

75

What a fault does

to a block cipher?

ENCRYPTION

FAULT FREE

CIPHER TEXT

ENCRYPTION

FAULTY

CIPHER TEXT

PLAIN TEXT

CR

• A fault (generally at the s-box input) creates
a difference wrt the fault free encryption

• This difference is propagated and diffused to
multiple output bytes of the cipher

• The attacker thus has 2 cipertexts :

(1) the fault free ciphertext (C)

(2) the faulty ciphertext (C*)

7676

ANALYSIS

A Simple Fault Attack on AES

• Let’s assume that the attacker has the

capability of resetting a particular line

during the AES round key addition.

(i.e. exactly one bit is reset)

• Attack Procedure

CR

• Attack Procedure

1. Put plaintext to 0s and get ciphertext C

2. Put plaintext to 0s. Inject fault in the ith

bit as shown. Get the ciphertext C*

3. If C=C*, we infer Ki = 1

If C≠C*, we infer Ki = 0

• This techniques requires 128 faults to

be injected.

– difficult,,,, can we do better?
77

Differential Fault Attack on AES

• Differential characteristics of the AES s-box
p P+e

kk

CR

S S

78

DFA on last round of AES

(using a single bit fault)

C0 + C0*= S(p) + S(p+f)

p

p+f
Since it is a single bit fault,

f can take on one of 7 different values:

(00000001), (00000010), (000001000),

CR

S(p)

S(p+f)

C0 = S(p) + K0

C0* =S(p+f) + K0

(00000001), (00000010), (000001000),

(000010000), …. , (10000000)

The above equation on average will

have around 8 different solutions for p.

Each value of p would give a candidate for k.

Thus, there are 8 key candidates.

79

DFA on last round of AES

(using a single bit fault)

• Each bit fault results in 8 potential key values for the

byte

• There are 16 key bytes. Thus 16 faults need to be

injected.

CR

injected.

• In total key space reduces from 2128 to 816 (ie. 248)

– A key space search of 248 do-able in reasonable time

80

DFA on 9th Round of AES

(fault in a byte)

• Fault injected after s-box operation in the

9th round.

• It is a byte level fault, thus, the fault ‘f’ can

take on any of 256 values (0, 1, 2, …. , 255)

• Due to the mix-column, 4 difference

CR

• Due to the mix-column, 4 difference

equations can be derived

81

Solving the Difference Equations

CBA ⊕=Each equation has the form :

where, A, B, C are of 8 bits each.

For a uniformly random choice of A, B, and C,

the probability that the above equation is satisfied is (1/28)

The maximum space of (A,B,C) is 224. Of these values, 216 will satisfy the above equation

CR 82

Solving the Difference Equations

CBA ⊕=Each equation has the form :

where, A, B, C are of 8 bits each.

For a uniformly random choice of A, B, and C,

the probability that the above equation is satisfied is (1/28)

The maximum space of (A,B,C) is 224. Of these values, 216 will satisfy the above equation

CR

In our case, there are 5 unknowns (4 keys and f) and 4 equations.

For uniformly random chosen values of the 5 unknowns, the probability that all 4 equations

are satisfied is p=(1/28)4.

The space reduction for the 5 variables is therefore from p(28)5 = 28(5-4) = 28.

The key space is 232. From the above, it has reduced to just 28.

Each fault reveals 32 bits of the 10th round key.

Thus 4 faults are required to reveal all 128 key bits. The offline search space is 232.

Can we do better?

83

DFA on AES with a single fault

• As mentioned previously, 4 faults

are required in the 9th round to

reveal the entire key

• Instead of the 9th round, suppose

CR

Instead of the 9 round, suppose

we inject the fault in the 8th round

84

DFA on AES in the 8th round

• A single fault injected in the

8th round will spread to 4

bytes in the 9th round.

• This is equivalent to having 4

faults in each of the 4

`

`
`

`

CR

faults in each of the 4

columns.

• A single fault can thus be

used to determine all key

bytes.

• The offline key space is 232 as

before

85

