
On the Complexity of Matroid Isomorphism Problem

Raghavendra Rao B.V.∗

Department of Computer Science,

Saarland University,

Saarbrücken, Germany

bvrr@cs.uni-sb.de

Jayalal Sarma M.N.∗

Institute for Theoretical Computer Science,

Tsinghua University,

Beijing, China.

jayalal@tsinghua.edu.cn

Abstract

We study the complexity of testing if two given matroids are isomorphic. The
problem is easily seen to be in Σ

p
2 . In the case of linear matroids, which are rep-

resented over polynomially growing fields, we note that the problem is unlikely to
be Σ

p
2 -complete and is coNP-hard. We show that when the rank of the matroid is

bounded by a constant, linear matroid isomorphism, and matroid isomorphism are
both polynomial time many-one equivalent to graph isomorphism.

We give a polynomial time Turing reduction from graphic matroid isomorphism
problem to the graph isomorphism problem. Using this, we are able to show that
graphic matroid isomorphism testing for planar graphs can be done in deterministic
polynomial time. We then give a polynomial time many-one reduction from bounded
rank matroid isomorphism problem to graphic matroid isomorphism, thus showing
that all the above problems are polynomial time equivalent.

Further, for linear and graphic matroids, we prove that the automorphism prob-
lems are polynomial time equivalent to the corresponding isomorphism problems.
In addition, we give a polynomial time membership test algorithm for the automor-
phism group of a graphic matroid.

1 Introduction

Isomorphism problems over various mathematical structures have been a source of in-
triguing problems in complexity theory (see [AT05]). The most important problem of this
domain is the well-known graph isomorphism problem. Though the complexity charac-
terization of the general version of this problem is still unknown, there have been various
interesting special cases of the problem which are known to have polynomial time algo-
rithms [BGM82, Luk80]. In this paper we talk about isomorphism problems associated
with matroids.

∗Part of this work was done while the authors were graduate students at the Institute of Mathematical
Sciences, Chennai, India. The second author’s work was also supported in part by the National Natural
Science Foundation of China Grant 60553001, and the National Basic Research Program of China Grant
2007CB807900,2007CB807901.

1



A matroid M is a combinatorial object defined over a finite set S (of size m) called the
ground set, equipped with a non-empty family I of subsets of S (containing the empty
subset) which is closed under taking of subsets and satisfies the exchange axiom : for any
I1, I2 ∈ I such that |I1| > |I2|, ∃x ∈ I1 \ I2, I2 ∪ {x} ∈ I . The sets in I are called
independent sets. A set B ⊆ S is dependent if and only if B /∈ I . The rank of the matroid
is the size of the maximal independent set. This provides useful abstractions of many
concepts in combinatorics and linear algebra [Whi35]. The theory of matroids is a well
studied area of combinatorics [Oxl92]. We study the problem of testing isomorphism
between two given matroids.

Two matroids M1 and M2 are said to be isomorphic if there is a bijection between the
elements of the ground set which maps independent sets to independent sets, (or equiv-
alently circuits to circuits, or bases to bases, see Section 2). Quite naturally, the represen-
tation of the input matroids is important in deciding the complexity of the algorithmic
problem.

There are several equivalent representations of a matroid. For example, enumerat-
ing the maximal independent sets (called bases) or the minimal dependent sets (called
circuits) also defines the matroid. These representations, although can be exponential in
the size of the ground set, indeed exist for every matroid, by definition. With this enu-
merative representation, Mayhew [May08] studied the matroid isomorphism problem,
and showed that the problem is equivalent to the graph isomorphism problem. How-
ever, a natural question is whether the problem is difficult when the representation of the
matroid is more implicit. In a black-box setting, one can also consider the input represen-
tation in the form of an oracle or a black-box, where the oracle answers whether a given
set is independent or not.

More implicit (and efficient) representation of matroids have been studied. One nat-
ural way is to identify the given matroid with matroids defined over combinatorial or
algebraic objects which have implicit descriptions. A general framework in this direc-
tion is the representation of a matroid over a field. A matroid M = (S, I) of rank r is
said to be representable over a field F if there is a map, φ : S → Fr such that, ∀A ⊆ S,
A ∈ I ⇐⇒ φ(A) is linearly independent over Fr as a vector space. However, there
are matroids which do not admit linear representations over any field. (For example, the
Vamós Matroid, See Proposition 6.1.10, [Oxl92].). In contrast, there are matroids (called
regular matroids) which admit linear representations over all fields.

Another natural representation for a matroid is over graphs. For any undirected graph
X, we can associate a matroid M(X) as follows: the set of edges of X is the ground set,
and the acyclic subgraphs of the given graph form the independent sets. A matroid M is
called a graphic matroid (also called polygon matroid or cyclic matroid) if it is isomorphic
to M(X) for some graph X. It is known that graphic matroids are linear. Indeed, the
vertex-edge incidence matrix of the graph will give a representation over F2. There are
linear matroids which are not graphic. (See [Oxl92] for more details.)

The above definitions themselves highlight the importance of testing isomorphism
between two given matroids. We study the isomorphism problem for the case of linear
matroids (Linear Matroid Isomorphism problem (LMI) and graphic matroids (Graphic
Matroid Isomorphism problem (GMI)).

2



From a complexity perspective, the general case black-box of the problem is in Σ
p
2 .

However, it is not even clear a priori if the problem is in NP even in the restricted cases
above where there are implicit representations. But we note that for the case of graphic
matroids the problem admits an NP algorithm. Hence an intriguing question is about the
comparison of this problem to the well studied graph isomorphism problem.

At an intuitive level, the graph isomorphism problem asks for a map between the
vertices that preserves the adjacency relations, whereas the graphic matroid isomorphism
problem asks for maps between the edges such that the set of cycles (or spanning trees)
in the graph are preserved. As an example, in the case of trees, any permutation of the
edges gives an isomorphism of the matroids, whereas testing for the isomorphism of trees
is known to be L-complete. This indicates that the reduction between the problems cannot
be obtained by a local replacement of edges with gadgets, and has to consider the global
structure.

An important result in this direction, due to Whitney (see [Whi32]), says that in the
case of 3-connected graphs, the graphs are isomorphic if and only if the corresponding
matroids are isomorphic (see Section 5). Thus the problem of testing isomorphism of
graphs and the corresponding graphic matroids are equivalent for the case of 3-connected
graphs. Despite this similarity between the problems, to the best of our knowledge, there
has not been a systematic study of GMI and its relationships to graph isomorphism prob-
lem (GI). This immediately gives a motivation to study the isomorphism problem for
3-connected graphs. In particular, from the recent results on graph isomorphism problem
for these classes of graphs [DLN08, TW08], it follows that graphic matroid isomorphism
problem for 3-connected planar graphs is L-complete.

In this context we study the general, linear and graphic matroid isomorphism prob-
lems. Our main contributions in the paper are as follows:

• Black-box matroid isomorphism problem is easily seen to be in Σ
p
2 . In the case of lin-

ear matroids where the field is also a part of the input we observe that the problem
is coNP-hard (Proposition 3.4), and is unlikely to be Σ

p
2 -complete (Proposition 3.2).

We also observe that when the rank of the matroid is bounded, linear matroid iso-
morphism, and matroid isomorphism are both equivalent to GI (Theorem 3.5)1

• We develop tools to handle the coloring of ground set elements in the context of
isomorphism problem. We show that the colored version of the linear matroid iso-
morphism and graphic matroid isomorphism problem are as hard as their general
versions (Lemma 4.2, 4.1). As an immediate application of this, we show that the
automorphism problems for graphic matroids and linear matroids are polynomial
time Turing equivalent to the corresponding isomorphism problems. In this context,
we also give a polynomial time membership test algorithm for the automorphism
group of a graphic matroid (Theorem 7.5).

1Wenote that, although not explicitly stated, the equivalence of bounded rankmatroid isomorphism and
and graph isomorphism also follows from the results of Mayhew [May08]. However, it is not immediately
clear if the GI-hard instances are linearly representable. Our proofs are different and extends this to linear
matroids.

3



• We give a polynomial time Turing reduction from graphic matroid isomorphism
problem to the graph isomorphism problem by developing an edge coloring scheme
which algorithmically uses a decomposition given by [HT73] (and [CE80]) and re-
duce the graphic matroid isomorphism problem to the graph isomorphism prob-
lem (Theorem 5.3). Our reduction also implies efficient algorithms for isomorphism
testing of graphic matroids in special cases such as planar graphs, bounded degree
graphs, bounded genus graphs etc. (Corollary 6.1). In addition, we observe that,
using recent developments in the planar graph isomorphism testing problem, we
can give a log-space algorithm for planar graphic matroid isomorphism.

• Finally, we give a reduction from the bounded rank matroid isomorphism prob-
lem to graphic matroid isomorphism (Theorem 5.9), thus showing that all the above
problems are poly-time Turing equivalent. Since the equivalence is only under a
Turing reduction, we also study the closure properties of the graphic matroid iso-
morphism problem under ∧ and ∨ operations.

Table 1 below summarizes the complexity of matroid isomorphism problem under vari-
ous input representations.

REPRESENTATION OF M1,M2 COMPLEXITY BOUNDS FOR MI

List of Ind. sets GI-complete [May08]
Linear GI-hard, coNP-hard ([Hli07, OW02]).
Linear (bounded rank) GI complete
Graphic Turing equivalent to GI
Planar L-complete

Table 1: Complexity of MI under various input representations

2 Notations and Preliminaries

All the complexity classes used here are standard and we refer the reader to any standard
text book (for e.g. see [Gol08]). Now we collect some basic definitions on matroids (see
also [Oxl92]). Formally, a matroid M is a pair (S, I), where S is a finite set called the
ground set of size m and I is a collection of subsets of S such that: (1) the empty set φ, is
in I . (2) If I1 ∈ I and I2 ⊂ I1, then I2 ∈ I . (3) If I1, I2 ∈ I with |I1| < |I2|, then ∃x ∈ I2 \ I1
such that I1 ∪ {x} is in I . The subsets in I are called independent sets. A set A ⊆ S is
dependent if and only if A /∈ I .

The RANK function of a matroid is a map rank: 2S → N, is defined for a T ⊆ S, as
the maximum size of any element of I that is contained in T. The rank of the matroid
is the maximum value of this function. A basis is a maximal independent set. A circuit
is a minimal dependent set. Spanning sets are subsets of S which contain at least one
basis as its subset. Notice that a set X ⊆ S is spanning if and only if rank(X) = rank(S).

4



Moreover, X is a basis set if and only if it is a minimal spanning set. For any F ⊆ S,
cl(F) = {x ∈ S : rank(F ∪ x) = rank(F)}. A set F ⊆ S is a flat if cl(F) = F. Hyperplanes
are flats which are of rank r− 1, where r = RANK(S). X ⊆ S is a hyperplane if and only
if it is a maximal non-spanning set.

An isomorphism between two matroids M1 and M2 is a bijection φ : S1 → S2 such
that ∀C ⊆ S1 : C ∈ C1 ⇐⇒ φ(C) ∈ C2, where C1 and C2 are the family of circuits of
the matroids M1 and M2 respectively. Now we state the computational problems more
precisely.

Problem 1 (MATROID ISOMORPHISM(MI)). Given two matroids M1 = (S1, I1) and M2 =
(S2, I2) where I1 and I2 are given as black-box oracles, does there exist an isomorphism between
M1 an M2 ?

Given a matrix A over a field F, we can define a matroid M[A] with columns of A
as the ground set and linearly independent columns as the independent sets of M[A].
A matroid M = (E, I) with rank= r is said to be representable over F, if there is a map
Φ : E → Fr such that I ∈ I ⇐⇒ Φ(I) is linearly independent in Fr. Linear matroids
are matroids representable over fields. Without loss of generality we can assume that the
representation is of the form of a matrix where the columns of the matrix correspond to
the ground set elements. We assume that the field on which the matroid is represented
is also a part of the input, also that the field has at least m elements and at most poly(m)
elements, where m = poly(n).

Problem 2 (LINEAR MATROID ISOMORPHISM(LMI)). Given two matrices A and B over a
given field F does there exist an isomorphism between the two linear matroids represented by
them?

As mentioned in the introduction, given a graph X = (V, E) (|V| = n, |E| = m), a
classical way to associate a matroid M(X) with X is to treat E as ground set elements, the
bases of M(X) are spanning forests of X. Equivalently circuits of M(X) are simple cycles
in X. A matroid M is called graphic iff ∃X such that M = M(X).

Evidently, adding vertices to a graph G with no incident edges will not alter the ma-
troid of the graph. Without loss of generality we can assume that G does not have self-
loops.

Problem 3 (GRAPHIC MATROID ISOMORPHISM(GMI)). Given two graphs X1 and X2 does
there exist an isomorphism between M(X1) and M(X2)?.

Another associated terminology in the literature is about 2-isomorphism. Two graphs
X1 and X2 are said to 2-isomorphic (denoted by X1

∼=2 X2) if their corresponding graphic
matroids are isomorphic. Thus the above problem asks to test if two given graphs are
2-isomorphic. Recall that a separating pair in a graph X is a pair of vertices whose deletion
leaves the graph disconnected.

In a rather surprising result, Whitney [Whi33] came up with a combinatorial char-
acterization of 2-isomorphic graphs. We briefly describe it here. Whitney defined the
following operations.

5



• Vertex Identification: Let v and v′ be vertices of distinct components of X. We modify
X by identifying v and v′ as a new vertex v̄.

• Vertex Cleaving: This is the reverse operation of vertex identification so that a graph
can only be cleft at the a cut-vertex or at a vertex incident with a loop.

• Twisting: Suppose that the graph X is obtained from two disjoint graphs X1 and X2

by identifying vertices u1 of X1 and u2 of X2 as the vertex u of X, and identifying
vertices v1 of X1 and v2 of X2 as the vertex v of X. In a twisting of X about {u, v}, we
identify, instead u1 with v2 and u2 with v1 to get a new graph X′. Note that {u, v} is
a separating pair in X′.

Theorem 2.1 (Whitney’s 2-isomorphism theorem). ([Whi33], see also [Oxl92]) Let X1 and
X2 be two graphs having no isolated vertices. Then M(X1) and M(X2) are isomorphic if and
only if X1 can be transformed to a graph isomorphic to X2 by a sequence of operations of vertex
identification, cleaving and/or twisting.

The graphic matroids of planar graphs are called planar matroids. We now define the
corresponding isomorphism problem for graphic matroids,

Problem 4 (PLANAR MATROID ISOMORPHISM(PMI)). Given two planar graphs X1 and X2

does there exist an isomorphism between their graphic matroids ?

As a basic complexity bound, it is easy to see that MI ∈ Σ
p
2 . Indeed, the algorithm

will existentially guess a bijection σ : S1 → S2 and universally verify if for every subset
C ⊆ S1, C ∈ C1 ⇐⇒ σ(C) ∈ C2 using the independent set oracle.

3 Linear Matroid Isomorphism

In this sectionwe present some observations and results on LINEAR MATROID ISOMORPHISM.
Some of these follow easily from the techniques in the literature. We make them explicit
in a form that is relevant to the problem that we are considering.

We first observe that using the arguments similar to that of [KST93] one can show
LMI ∈ BP · ΣP

2 (Notice that an obvious upper bound for this problem is Π2). We include
some details of this here while we observe some points about the proof.

Proposition 3.1. LMI ∈ BP · ΣP

2

Proof. Let M1 and M2 be the given linear matroids having m columns each. We proceed
as in [KST93], for the case of GI. To give a BP.ΣP

2 algorithm for LMI, define the following
set:

N(M1,M2) = {(N, φ) : (N ∼= M1) ∨ (N ∼= M2) ∧ φ ∈ Aut(N)}

where Aut(N) contains all the permutations (bijections) which are isomorphisms of
matroid N to itself. The key property that is used in [KST93] has the following easy
counterpart in our context.

6



For any matroid M on a ground set of size m, if Aut(M) denotes the automorphism
group of M, and #M denotes the number of different matroids isomorphic to M, then
|Aut(M)| ∗ (#M) = |Sm|.

M1
∼= M2 =⇒ |N(M1,M2)| = m!

M1 6∼= M2 =⇒ |N(M1,M2)| = 2 ·m!

As in [KST93], we can amplify this gap and then using a good hash family and utilize
the gap to distinguish between the two cases. In the final protocol (before amplifying)
the verifier chooses a hash function and sends it to the prover, the prover returns a tuple
(N, φ) along with a proof that this belongs to N(M1,M2). (Notice that this will not work
over very large fields, especially over infinite fields.) Verifier checks this claim along with
the hash value of the tuple. This can be done in Σ

p
2 . Hence the entire algorithm gives an

upper bound of BP.∃ · Σ
p
2 = BP · Σ

p
2 , and thus the result follows.

Now, we know that [Sch99], if Π
p
2 ⊆ BP · Σ

p
2 then PH = BP.Σ

p
2 = Σ

p
3 . Thus we get the

following:

Theorem 3.2. LMI ∈ Σ
p
2 . In addition, LMI is ΣP

2 -hard =⇒ PH = ΣP

3 .

We notice that a special case of this is problem already known to be coNP-hard. A ma-
troid of rank k is said to be uniform if all subsets of size at most k are independent. Testing
if a given linear matroid of rank k is uniform is known to be coNP-complete [OW02]. We
denote by Uk,m, the uniform matroid whose ground set is of m elements. Now notice
that the above problem is equivalent to checking if the given linear matroid of rank k is
isomorphic to Uk,m. To complete the argument, we use a folklore result that Uk,m is repre-
sentable over any field F which has at least m non-zero elements. We give some details
here since we have not seen an explicit description of this in the literature.

Claim 3.3. Let |F| > m, Uk,m has a representation over F.

Proof. Let {α1, . . . , αm} be distinct elements of F, and {s1, . . . , sm} be elements of the

ground set of Uk,m Assign the vector (1, αi, α
2
i , . . . , α

k−1
i ) ∈ Fk to the element si. Any k

subset of these vectors forms a Vandermonde matrix, and hence linearly independent.

Any larger set is dependent since the vectors are in Fk.

This gives us the following proposition.

Proposition 3.4. LMI is coNP-hard.

The above proposition also holds when the representation is over infinite fields. In this
case, the proposition also more directly follows from a result of Hlinený [Hli07], where it
is shown that the problem of testing if a spike (a special kind of matroids) represented by
a matrix over Q is the free spike is coNP complete. He also derives a linear representation
for spikes.

Now we look at bounded rank variant of the problem. We denote by LMIb (MIb),
the restriction of LMI (MI) for which the input matrices have rank bounded by b. In the
following we use the following construction due to Babai [Bab78] to prove LMIb ≡

p
m GI.

7



Given a graph X = (V, E) and a number 3 ≤ k ≤ d, where d is the minimum vertex
degree of X, define a matroid M = Stk(X) of rank k with the ground set E as follows:
every subset of E containing k − 1 or less number of edges is independent in M and a
subset A of E with k edges is independent if and only if there is no single vertex that
is part of all the edges in A . Babai [Bab78] proved that Aut(X) ∼= Aut(Stk(X)) and also
gave a linear representation for Stk(X) (Lemma 2.1 in [Bab78]) for all k in the above range.

Theorem 3.5. For any constant b ≥ 3, LMIb ≡
p
m GI.

Proof. GI ≤
p
m LMIb : Let X1 = (V1, E1) and X2 = (V2, E2) be the given GI instance. We

can assume that the minimum degree of the graph is at least 3 since otherwise we can
attach cliques of size n+ 1 at every vertex. We note that from Babai’s proof we can derive
the following stronger conclusion.

Lemma 3.6. X1
∼= X2 ⇐⇒ ∀ k ∈ [3, d] Stk(X1) ∼= Stk(X2).

Proof. Suppose X1
∼= X2 via a bijection π : V1 → V2. (The following proof works for any

k ∈ [3, d].) Let σ : E1 → E2 be the map induced by π. That is σ({u, v}) = {π(u),π(v)}.
Consider an independent set I ⊆ E1 in Stk(X1). If |I| ≤ k − 1 then |σ(I)| ≤ k − 1 and
hence σ(I) is independent in Stk(X2). If |I| = k, and let σ(I) be dependent. This means
that the edges in σ(I) share a common vertex w in X2. Since π is an isomorphism which
induces σ, π−1(w) must be shared by all edges in I. Thus I is independent if and only if
σ(I) is independent.

Suppose Stk(X1) ∼= Stk(X2) via a bijection σ : E1 → E2. By definition, any subset
H ⊆ E1 is a hyperplane of Stk(X1) if and only if σ(H) is a hyperplane of Stk(X2). Now
we use the following claim which follows from [Bab78].

Claim 3.7 ([Bab78]). For any graph X, any dependent hyperplane in Stk(X) is a maximal set
of edges which share a common vertex (forms a star) in X, and these are the only dependent
hyperplanes.

Now we define the graph isomorphism π : V1 → V2 as follows. For any vertex v,
look at the star E1(v) rooted at v, we know that σ(E1(v)) = E2(v

′) for some v′. Now set
π(v) = v′. From the above claim, π is an isomorphism.

It remains to show that representation for Stk(X) (X = (V, E)) can be computed in
polynomial time. We choose k = 3. (by the above proof, the universal quantifier in the
Lemma 3.6 is equivalent to an existential quantification.) Now we show that the repre-
sentation of Stk(X) given in [Bab78] is computable in polynomial time. The representa-
tion of Stk(X) is over a field F such that |F| ≥ |V|2k−1. For e = {u, v} ∈ E assign a

vector be = [1, (xu + xv), (xuxv), ye,1, . . . , ye,k−3] ∈ Fk, where xu, xv and ye,i are distinct
unknowns. To represent Stk(X) we need to ensure that the k-subsets of the columns cor-
responding to a basis form a linearly independent set, and all the remaining k-subsets
form a dependent set. Babai [Bab78] showed that by the above careful choice of be, it will
be sufficient to ensure only the independence condition. He also proved the existence of
a choice of values for the variables which achieves this if |F| ≥ |V|2k−1.

We make this constructive. As k is a constant, the number of bases in Stk(X) is
bounded by poly(m). We can greedily choose the value for each variable at every step,

8



such that on assigning this value, the resulting set of constant (k × k) size matrices are
non-singular. Since there exists a solution, this algorithm will always find one. Thus we
can compute a representation for Stk(X) in polynomial time.

LMIb ≤
p
m GI: Let Ak×m and Bk×m be two matrices of rank b at the input. Now define

the following bipartite graph XA = (UA,VA, EA) (similarly for XB), whereUA has a vertex
for each column of A, and VA has a vertex for each maximal independent set of A (Notice
that there are at most (mb ) = O(mb) of them) and ∀i ∈ UA, I ∈ VA, {i, I} ∈ EA ⇐⇒ i ∈ I.
Now we claim that M(A) ∼= M(B) ⇐⇒ XA

∼= XB where the isomorphism maps VA to
VB, and which is reducible to GI. It is easy to see that the matroid isomorphism can be
recovered from the map between the sets.

Observe that the reduction LMIb ≤
p
m GI can be done even if the input representation

is an independent set oracle. This gives the following corollary.

Corollary 3.8. LMIb ≡
p
m MIb ≡

p
m GI.

4 Isomorphism Problem of Colored Matroids

Vertex or edge coloring is a classical tool used extensively in proving various results in
graph isomorphism problem. We develop similar techniques for matroid isomorphism
problems too.

An edge-k-coloring of a graph X = (V, E) is a function f : E → {1, . . . , k}. Given two
colored graphs X1 = (V1, E1, f1) and X2 = (V2, E2, f2), the COLORED-GMI asks for an
isomorphism between the corresponding graphic matroids which preserves the colors of
the edges. Not surprisingly, we can prove the following.

Lemma 4.1. COLORED-GMI is AC0 many-one reducible to GMI.

Proof. Let X1 = (V1, E1, f1) and X2 = (V2, E2, f2), be the two k-colored graphs at the input,
with n = |V1| = |V2|. For every edge e = (u, v) ∈ E1 (respectively E2), add a path Pe =
{(u, ve,1), (ve,1, ve,2), . . . , (ve,n+ f1(e)

, v)} of length n + f1(e) (respectively n + f2(e)), where

ve,1, . . . ve,n+ f1(e)
are new vertices. Let X′

1 and X′
2 be the two new graphs thus obtained. By

definition, any 2-isomorphism between X′
1 and X′

2 can only map cycles of equal length to
themselves. There are no simple cycles of lengthmore than n in the original graphs. Thus,
given any 2-isomorphism between X′

1 and X′
2, we can recover a 2-isomorphism between

X1 and X2 which preserves the coloring and vice versa.

Now we generalize the above construction to the case of linear matroid isomorphism.
COLORED-LMI denotes the variant of LMI where the inputs are the linear matroids M1

and M2 along with color functions ci : {1, . . . ,m} → N, i ∈ {1, 2}. The problem is to test
if there is an isomorphism between M1 and M2 which preserves the colors of the column
indices. We have,

Lemma 4.2. COLORED-LMI is AC0 many-one reducible to LMI.

9



Proof. Let M1 and M2 be two colored linear matroids represented over a field F. First we
illustrate the reduction where only one column index of M1 (resp. M2) is colored. Without
loss of generality, we assume that there are no two vectors in M1 (resp.M2) which are
scalar multiples of each other. Otherwise, if V is a subset of vectors such that every pair
of vectors in V are scalar multiples of each other, we replace the set of columns in V by a
single representative vector with suitable color. This assumption also implies that there
is no all-zeroes vectors in M1 and M2.

We transform M1 and M2 to get two matroids M′
1 and M′

2. In the transformation,
we add more columns to the matrix (vectors to the ground set) and create dependency
relations in such a way that any isomorphism between the matroids must map these new
vectors in M1 to the corresponding ones M2.

We describe this transformation in a generic way for a matroid M. Let {e1, . . . , em} be
the column vectors of M, where ei ∈ Fn. Let e = e1 be the colored vector in M.

Choose m′ > m, we construct ℓ = m + m′ vectors f1, . . . fℓ ∈ Fn+m′
as the columns of

the following (m + m′) × ℓ matrix. The ith column of the matrix represents fi.

































e11 e21 . . . em1 e11 0 . . . 0 0 . . . 0
e12 e22 . . . em2 0 e12 . . . 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

e1m e2m . . . emm 0 0 . . . e1m 0 . . . 0
0 0 . . . 0 1 −1 0 0 . . . . . . 0
...

... . . .
... 0 1 −1 0 . . . . . . 0

...
... . . .

...
...

...
. . . . . . . . . . . .

...
0 0 . . . 0 0 0 . . . 0 1 −1
0 0 . . . 0 −1 0 . . . 0 0 1

































where −1 denotes the additive inverse of 1 in F. Denote the above matrix as M′ =
(

A B
C D

)

, where the sub-matrices A, B,C, and D of M′ are defined as indicated by the

lines in the definition of M′. Let S = { fm+1, . . . , fm+m′}. We observe the following:

1. Columns of B generate e1. Since C is a 0-matrix f1 ∈ Span(S).

2. Columns of D are minimal dependent. Any proper subset of columns of Dwill split
the 1, −1 pair in at least a row and hence will be independent.

3. S is linearly independent. Suppose not. Let ∑
m+m′

i=m αi fi = 0. Restricting this to the
columns of B gives that αj = 0 for first j such that e1j 6= 0. Thus this gives a linearly
dependent proper subset of columns of B, and contradicts observation 2.

4. If for any f /∈ S, f = ∑ fi∈S
αi fi, then αm+1 = . . . = αm+m′ .

Now we claim that the newly added columns respect the circuit structure involving
e1. Let C and C ′ denote the set of circuits of M and M′ respectively.

10



Claim 4.3.

{

e1, ei2 , . . . , eik
}

∈ C ⇐⇒
{

f1, fi2 . . . , fik
}

∈ C ′ and
{

fi2 , . . . , fik , fm+1, . . . , fm+m′

}

∈ C ′

Proof. Suppose c = {e1, ei2 , . . . , eik} is a circuit in M. Then clearly { f1, fi2 , . . . , fik} is a
circuit, since they are nothing but vectors in c extended with 0s. Since { fi2 , . . . , fik} and
{ fm+1, . . . , fm+m′} both generate f1, the set F = { fi2 , . . . , fik , fm+1, . . . , fm+m′} is a linearly
dependent set. Now we argue that F is a minimal dependent set, and hence is a circuit.
Let G = { fi2 , . . . , fik}.

Suppose that F is not a minimal independent set and let F′ ⊂ F be linearly dependent.
Since S is linearly independent (property 3 above), we have that F′ 6⊆ { fm+1, . . . , fm+m′}.
Therefore, fij ∈ F′ for some 0 ≤ j ≤ k. Since F′ is dependent, express fij in terms of the

other elements in F′:
fij = ∑

g∈G−{ fij}

γgg + ∑
s∈S

δss

Since G is linearly independent, at least one of the δs should be non-zero. Restrict this to
the matrices C and D. This gives a non-trivial dependent proper subset of D and hence a
contradiction.

From Claim 4.3 and the fact that there is no other column in M which is a multiple
of e, the set f (e) = { f1, fm+1, . . . , fm+m′} is a unique circuit of length m′ + 1 > m in M′,
where e is the column which is colored.

Now we argue about the isomorphism between M′
1 and M′

2 obtained from the above
operation. Since there is a unique circuit of length m′ + 1 > m in both M′

1 and M′
2 cor-

responding to two vectors e ∈ M1 and e′ ∈ M2, any matroid isomorphism between M′
1

and M′
2 should map these circuits to each other. From such an isomorphism, we can re-

cover the a matroid isomorphism between M1 and M2 that maps between e and e′, thus
preserving the colors. Indeed, if there is a matroid isomorphism between M1 and M2, it
can easily be extended to M′

1 and M′
2.

For the general case, let k be the number of different color classes and ci denote the
size of the ith color class. Then for each vector e in the color class i, we add li = m+m′ + i
many new vectors, which also increases the dimension of the space by li. Thus the total
number of vectors in the new matroid is ∑ ci(li) ≤ m3. Similarly, the dimension of the
space is bounded by m3. Rest of the proof is analogous.

We can further generalize the above idea to matroids given in the form of independent
set oracles. We define COLORED-MI as the variant of MI where the inputs are matroids
M1 = (S1, I1) and M2 = (S2, I2) given as independent set oracles along with color func-
tions ci : {1, . . . ,m} → {1, . . . ,m}, i ∈ {1, 2}. (Here m = |S1| = |S2|.) We assume that
the color functions are part of the input and not in the oracle. The problem is to test if
there is an isomorphism between M1 and M2 which preserves the colors of the ground
set elements. We have,

11



Lemma 4.4. COLORED-MI is polynomial time many-one reducible to MI

Proof. Let M1 = (S1, I1) and (S2, I2) be the givenmatroids, c1 and c2 be their color classes.
Let m = |S1| = |S2|. We demonstrate coloring for a singleton color class. Suppose c1(e) =
i. Let m′ = m + i. As in lemma 4.1, we need to introduce a large enough new circuit C
that contains e. We construct matroid M′

1 (resp. M
′
2) as follows.

1. Let F1 = { f1, . . . , fm′} be new ground set elements. Let S′1 = S1 ∪ F1.

2. All circuits of M1 remain to be so in M′
1.

3. Let { f1, . . . , fm′ , e} be a circuit in M′
1.

4. If C is a circuit in M1 containing e, then (C \ {e}) ∪ F1 is a circuit in M′
1

To see that M′
1 is a matroid, we need a circuit based characterization of matroids. A

set C of subsets of S defines circuits of a matroid on S if and only if it satisfies the circuit
elimination axioms, which are:

• ∅ /∈ C;

• If A ∈ C then for all B ⊂ A, B /∈ C; and

• For all C1 6= C2 ∈ C and e ∈ C1 ∩ C2, the set (C1 ∪ C2) \ {e} contains a circuit.

It is known that the set of circuits uniquely defines a matroid. (See [Oxl92] for more
details.) Now by doing a case analysis it is not hard to see that the sets of circuits of
M′

1 defined above satisfy the above properties. Hence M′
1 is a matroid. We construct M′

2
analogously. Now using the arguments from Lemma 4.1 it follows that M′

1 and M′
2 satisfy

the required property: M′
1
∼= M′

2 ⇐⇒ there is a color-preserving isomorphism between
M1 and M2. However we need to show how to implement independent set oracles for
M′

1 and M′
2 in polynomial time using access to those of M1 and M2 respectively. This

essentially involves a case analysis depending on whether F1 is contained in the input
set A to be tested for independence. This can be done by the following algorithm (this is
shown for M′

1, the case of M
′
2 can be handled analogously):

Input: A ⊆ S′1
Output: YES if and only if A is independent in M′

1

1. If A ⊆ S1, then return YES if and only if A ∈ I1.

2. If F1 ∪ {e} ⊆ A, then return NO,

3. If F1 ⊆ A but e /∈ A, then return YES if and only if (A \ F1) ∪ {e} ∈ I1.

4. If F1 ∩ A 6= ∅ and F1 is not contained in A, then return YES if and only if (A \ F1) ∈
I1.

12



5 Graphic Matroid Isomorphism

In this section we study GMI. Unlike in the case of the graph isomorphism problem, an
NP upper bound is not so obvious for GMI. We start with the discussion of an NP upper
bound for GMI.

As stated in Theorem 2.1, Whitney gave an exact characterization of when two graphs
are 2-isomorphic, in terms of three operations; twisting, cleaving and identification. Note
that it is sufficient to find 2-isomorphisms between 2-connected components of X1 and
X2. In fact, any matching between the sets of 2-connected components identifying the
2-isomorphic components will serve the purpose. This is because, any 2-isomorphism
preserves simple cycles, and any simple cycle of a graph is always within a 2-connected
component. Hence we can assume that both the input graphs are 2-connected and in the
case of 2-connected graphs, twist is the only possible operation.

The set of separating pairs does not change under a twist operation. Despite the fact
that the twist operations need not commute, Truemper [Tru80] gave the following bound.

Lemma 5.1 ([Tru80]). Let X be a 2-connected graph of n vertices, and let Y be a graph 2-
isomorphic to X, then: X can be transformed to graph X′ isomorphic to Y through a sequence
at most n− 2 twists.

Using this lemma we get an NP upper bound for GMI. Given two graphs, X1 and
X2, the NP machine just guesses the sequence of n− 2 separating pairs corresponding to
the 2-isomorphism. For each pair, guess the cut w.r.t which the twist operation is to be
done, and apply each of them in sequence to the graph X1 to obtain a graph X′

1. Now ask
if X′

1
∼= X2. For the converse, by Whitney’s theorem, if X1 and X2 are not 2-isomorphic

then for any sequence of twist operations, X′
1 is not isomorphic to X2. This gives an upper

bound of ∃.GI ⊆ NP. Thus we have,

Proposition 5.2. GMI is in NP.

This can also be seen as an NP-reduction from GMI to GI. Now we will give a de-
terministic reduction from GMI to GI. Although, this does not improve the NP upper
bound, it implies that it is unlikely that GMI is hard for NP (Using methods similar to
that of Proposition 3.2, one can also directly prove that if GMI is NP-hard, then PH col-
lapses to the second level).
Now we state the main result of the paper:

Theorem 5.3. GMI ≤
p
T GI

Also, in another seminal paper [Whi32], Whitney showed that in the case of 3-connected
graphs the notion of isomorphism and 2-isomorphism coincide. First let us recall a few
definitions: A separating pair is a pair of vertices whose deletion leaves the graph discon-
nected. A 3-connected graph is a connected graph which does not have any separating
pairs. In the following, we state the theorem of Whitney ([Whi32]).

Theorem 5.4 (Whitney, [Whi32]). Let X1 and X2 be 3-connected graphs. Then X1
∼=2 X2 ⇐⇒

X1
∼= X2.

Before giving a formal proof of Theorem 5.3, we describe the idea roughly here:

13



Basic Idea: Let X1 and X2 be the given graphs. From the above discussion, we can
assume that they are 2-connected.

In [HT73], Hopcroft and Tarjan proved that every 2-connected graph can be decom-
posed uniquely into a tree of 3-connected components, bonds or polygons.2 Moreover,
[HT73] showed that this decomposition can be computed in polynomial time. The idea
is to then find the isomorphism classes of these 3-connected components using queries to
GI (see Theorem 5.4), and then color the tree nodes with the corresponding isomorphism
class, and then compute a colored tree isomorphism between the two trees produced from
the two graphs.

A first mind block is that these isomorphisms between the 3-connected components
need not map separating pairs to separating pairs. We overcome this by coloring the
separating pairs (in fact the edge between them), with a canonical label of the two sub-
trees which the corresponding edge connects. To support this, we observe the following.
There may be many isomorphisms between two 3-connected components which preserve
the colors of the separating pairs. However, the order in which the vertices are mapped
within a separating pair is irrelevant, since any order will be canonical up to a twist oper-
ation with respect to the separating pair.

So with the new coloring, the isomorphism between 3-connected components maps a
separating pair to a separating pair, if and only if the two pairs of sub-trees are isomor-
phic. However, even if this is the case, the colored sub-trees need not be isomorphic. This
creates a simultaneity problem of coloring of the 3-connected components and the tree
nodes and thus a second mind block.

We overcome this by coloring again using the code for colored sub-trees, and then
finding the new isomorphism classes between the 3-connected components. This process
is iterated till the colors stabilize on the tree as well as on the individual separating pairs
(since there are only linear number of 3-connected components). Once this is ensured, we
can recover the 2-isomorphism of the original graph by weaving the isomorphism of the
3-connected components guided by the tree adjacency relationship. In addition, if two
3-connected components are indeed isomorphic in the correctly aligned way, the above
coloring scheme, at any point, does not distinguish between them.

Now we convert this idea into an algorithm and a formal proof.

Breaking into Tree of 3-connected components: We use the algorithm of Hopcroft and
Tarjan [HT73] to compute the set of 3-connected components of a 2-connected graph in
polynomial time. We will now describe some details of the algorithm which we will
exploit.

Let X = (V, E) be a 2-connected graph. Let Y be a connected component of X \ {a, b},
where {a, b} is a separating pair in X. Y is an excisable component with respect to {a, b} if
X \Y has at least 2 edges and is 2-connected. The operation of excisingY from X results in
two graphs: C1 = X \ Y plus a virtual edge joining (a, b), and C2 = the induced subgraph

2Cunningham et al. [CE80] shows that any graphic matroid M(X) is isomorphic to M(X1) ⊕
M(X2) . . .⊕ M(Xk)/{e1, e2, . . . , ek}, where M(X1), . . . ,M(Xk) are 3-connected components, bonds or poly-
gons of M(X) and e1, . . . , ek are the virtual edges. However, it is unclear if this can be turned into a reduction
from GMI to GI using edge/vertex coloring.

14



on Y ∪ {a, b} plus a virtual edge joining (a, b). This operation may introduce multiple
edges.

The decomposition of X into its 3-connected components is achieved by the repeated
application of the excising operation (we call the corresponding separating pairs as excised
pairs) until all the resulting graphs are free of excisable components. This decomposition
is represented by a graph GX with the 3-connected components of X as its vertices and
two components are adjacent in GX if and only if they share a virtual edge.

In the above construction, the graph GX need not be a tree as the components which
share a separating pair will form a clique. To make it a tree TX, [HT73] introduces new
nodes in the graph GX corresponding to every virtual edge e, which is adjacent to all 3-
connected components containing e. However, these new vertices do not correspond to
any 3-connected components of X. We construct a new graph X′, such that TX = GX′

and hence there is a 1-1 correspondence between the vertices of GX′ and 3-connected
components of X′. Formally, the graph X′ is obtained by simply adding an edge between
every pair of vertices which are excised while obtaining GX. The properties of TX listed
here essentially follow from the arguments in [HT73]. (1) For every node t ∈ TX, there
is exactly one 3-connected component in X′. We denote this by ct. (2) For every edge
e = (u, v) ∈ TX, there are exactly two virtual edges, one in each of the 3-connected
components cu and cv. We call these virtual edges the twin edges of each other. (3) For any
given graph X, TX is unique up to isomorphism (since GX is unique [HT73]). In addition,
TX can be obtained from GX in polynomial time.

In the following claim, we prove preserves the 2-isomorphism property.

Claim 5.5. X1
∼=2 X2 ⇐⇒ X′

1
∼=2 X′

2.

Proof. Suppose X1
∼=2 X2, via a bijection φ : E1 → E2. This induces a map ψ between

the sets of 3-connected components of X1 and X2. By Theorem 5.4, for every 3-connected
component c of X1, c ∼= ψ(c) (via say τc; when c is clear from the context we refer to it as
τ).

We claim that ψ is an isomorphism between G1 and G2. To see this, consider an edge
e = (u, v) ∈ T1. This corresponds to two 3-connected components cu and cv of X1 which
share a separating pair s1. The 3-connected components ψ(cu) and ψ(cv) must share a
separating pair say s2; otherwise, the cycles spanning across cu and cv will not be pre-
served by φ which contradicts the fact that φ is a 2-isomorphism. Hence (ψ(cu),ψ(cv))
corresponds to an edge in G2. Therefore, ψ is an isomorphism between G1 and G2. In fact,
this also gives an isomorphism between T1 and T2, which in turn gives a map between the
excised pairs of X1 and X2. To define the 2-isomorphism between X′

1 and X′
2, we extend

the map ψ to the excised edges.
To argue the reverse direction, let X′

1
∼=2 X′

2 via ψ. In a very similar way, this gives an
isomorphism between T1 and T2. The edge map of this isomorphism gives the map be-
tween the excised pairs. Restricting ψ to the edges of X1 gives the required 2-isomorphism
between X1 and X2. This is because, the cycles of X1(X2) are anyway contained in X′

1 (X
′
2),

and the excised pairs do not interfere in the mapping.

Thus it is sufficient to give an algorithm to test if X′
1
∼=2 X′

2, which we describe as
follows.

15



INPUT: 2-connected graphs X′
1 and X′

2 and their trees of 3-connected components T1 and T2 respec-
tively.
OUTPUT: YES if X′

1
∼=2 X

′
2, and NO otherwise.

ALGORITHM:
Notation: CODE(T) denotes the canonical label3 for a tree T by applying the algorithm of [Lin92].

1. Initialize T′
1 = T1, T

′
2 = T2.

2. REPEAT

(a) Set T1 = T′
1, T2 = T′

2.

(b) For each edge e = (u, v) ∈ Ti, i ∈ {1, 2}:

Let Ti(e, u) and Ti(e, v) be sub-trees of Ti obtained by deleting the edge e, containing u
and v respectively.

Color virtual edges corresponding to the separating pairs in the components cu and
cv with the set {CODE(Ti(e, u)), CODE(Ti(e, v))}. From now on, ct denotes the colored
3-connected component corresponding to node t ∈ T1 ∪ T2.

(c) Let S1 and S2 be the set of colored 3-connected components of X′
1 and X′

2 and let S =
S1 ∪ S2. Using queries to GI (see observation 5.8) find out the isomorphism classes in
S. Let C1, . . . ,Cq denote the isomorphism classes.

(d) Color each node t ∈ Ti, i ∈ {1, 2}, with color ℓ if ct ∈ Cℓ. (This gives two colored trees
T′
1 and T′

2.)

UNTIL (CODE(Ti) 6= CODE(T′
i ), ∀i ∈ {1, 2})

3. Check if T′
1
∼= T′

2 preserving the colors. Answer YES if T′
1
∼= T′

2, and NO otherwise.

First we prove that the algorithm terminates after linear number of iterations of the
repeat-until loop. Let qi denote the number of isomorphism classes of the set of the col-
ored 3-connected components after the ith iteration. We claim that, if the termination
condition is not satisfied, then |qi| > |qi−1|. To see this, suppose the termination is not
satisfied. This means that the colored tree T′

1 is different from T1. This can happen only
when the color of a 3-connected component cv, v ∈ T1 ∪ T2 changes. In addition, this can
only increase the isomorphism classes. Thus |qi| > |qi−1|. Since q can be at most 2n, this
shows that the algorithm exits the loop after at most 2n steps.

Now we prove the correctness of the algorithm. We follow the notation described in
the algorithm.

Lemma 5.6. X′
1
∼=2 X′

2. ⇐⇒ T′
1
∼= T′

2.

3When T is colored, CODE(T) is the code of the tree obtained after attaching the necessary gadgets to the
colored nodes. Notice that even after coloring, the graph is still a tree. In addition, for any T, CODE(T) can
be computed in L [Lin92].

16



Proof. (⇒) Suppose X′
1
∼=2 X′

2, via a bijection φ : E1 → E2. This induces a map ψ between
the sets of 3-connected components of X′

1 and X′
2. By Theorem 5.4, for every 3-connected

component c of X′
1, c

∼= ψ(c) (via say τc; when c is clear from the context we refer to it as
τ).

We claim that ψ is an isomorphism between T1 and T2. To see this, consider an edge
e = (u, v) ∈ T1. This corresponds to two 3-connected components cu and cv of X

′
1 which

share a separating pair s1. The 3-connected components ψ(cu) and ψ(cv) must share a
separating pair say s2; otherwise, the cycles spanning across cu and cv will not be pre-
served by φ which contradicts the fact that φ is a 2-isomorphism. Hence (ψ(cu),ψ(cv))
correspond to an edge in T2. Therefore, ψ is an isomorphism between T1 and T2. So in
what follows, we interchangeably use ψ to be a map between the set of 3-connected com-
ponents as well as between the vertices of the tree. Note that ψ also induces (and hence
denotes) a map between the edges of T1 and T2.

Now we prove that ψ preserves the colors attached to T1 and T2 after all iterations of
the repeat-until loop in step 2. To simplify the argument, we do it for the first iteration
and the same can be carried forward for any number of iterations. Let T′

1 and T′
2 be the

colored trees obtained after the first iteration. We argue that ψ itself is an isomorphism
between T′

1 and T′
2.

To this end, we prove that for any vertex u in T1, cu ∼= ψ(cu) even after coloring as in
step 2b. That is, the map preserves the coloring of the virtual edges in step 2b.

Consider any virtual edge f1 in cu, we know that f2 = τ( f1) is a virtual edge in ψ(cu).
Let e1 = (u1, v1) and e2 = (u2, v2) be the tree edges in T1 and T2 corresponding to f1 and
f2 respectively. We know that, e1 = ψ(e2). Since T1 ∼= T2 via ψ, we have

{CODE(T1(e1, u1)), CODE(T1(e1, v1))} = {CODE(T2(e2, u2)), CODE(T2(e2, v2))} .

Thus, in Step 2b, the virtual edges f1 and f2 get the same color. Therefore, cu and ψ(cu)
belong to the same color class after step 2b. Hence ψ is an isomorphism between T′

1 and
T′
2.

(⇐) First, we recall some definitions needed in the proof. A center of a tree T is defined
as a vertex v such that maxu∈T d(u, v) is minimized at v, where d(u, v) is the number of
edges in the unique path from u to v. It is known [Har69] that every tree T has a center
consisting of a single vertex or a pair of adjacent vertices. The minimum achieved at the
center is called the height of the tree, denoted by ht(T).

Claim 5.7. Let ψ be a color preserving isomorphism between T′
1 and T′

2, and let χt be an isomor-
phism between the 3-connected components ct and cψ(t). Then, X

′
1
∼=2 X′

2 via a map σ such that

∀t ∈ T′
1, ∀e ∈ ct ∩ E1 : σ(e) = χt(e) where E1 is the set of edges in X′

1.

Proof. The proof is by induction on height of the trees h = ht(T′
1) = ht(T′

2), where the
height (and center) is computed with respect to the underlying tree ignoring colors on
the vertices.

Base case is when h = 0; that is, T′
1 and T′

2 have just one node (3-connected component)
without any virtual edges. Simply define σ = χ. By Theorem 5.4, this gives the required
2-isomorphism.

17



Suppose that if h = ht(T′
1) = ht(T′

2) < k, the above claim is true. For the induction
step, suppose further that T′

1
∼= T′

2 via ψ, and ht(T′
1) = ht(T′

2) = k. Notice that ψ should
map the center(s) of T1 to that of T2. We consider two cases:

In the first case, T′
1 and T′

2 have unique centers α and β. It is clear that ψ(α) = β. Let c1
and c2 be the corresponding colored (as in step 2b) 3-connected components. Therefore,
there is a color preserving isomorphism χ = χα between cα and cβ. Let f1, . . . fk be the
virtual edges in cα corresponding to the tree edges e1 = (α, v1), . . . , ek = (α, vk) where
v1, . . . , vk are neighbors of α in T′

1. Denote ψ(ei) by e′i, and ψ(vi) by v′i.
Observe that only virtual edges are colored in the 3-connected components in step 2b

while determining their isomorphism classes. Therefore, for each i, χ( fi) will be a virtual
edge in cβ, and in addition, with the same color as fi. That is,

{CODE(T1(ei, α)), CODE(T1(ei, vi))} = {CODE(T2(e′i, β)), CODE(T2(e′i, v
′
i)))}.

Since α and β are the centers of T′
1 and T′

2, it must be the case that in the above set equality,
CODE(T1(ei, vi)) = CODE(T2(e

′
i, v

′
i)). From the termination condition of the algorithm,

this implies that CODE(T′
1(ei, vi)) = CODE(T′

2(e
′
i, v

′
i)). Hence, T′

1(ei, vi)
∼= T′

2(e
′
i, v

′
i). In

addition, ht(vi) = ht(v′i) < k. Let X′
fi
and X′

χ( fi)
denote the subgraphs of X′

1 and X′
2

corresponding to T′
1(ei, vi) and T′

2(e
′
i, v

′
i) respectively. By induction hypothesis, the graphs

X′
fi
and X′

χ( fi)
are 2-isomorphic via σi which agrees with the corresponding χt for t ∈

T′
1(ei, vi). Define πi as a map between the edges, such that it agrees with σi on all edges of

X′
f (i) and with χt (for t ∈ T′

1(ei, vi)) on the colored virtual edges.

We claim that πi must map the twin-edge of fi to twin-edge of τ( fi). Suppose not. By
the property of the coloring, this implies that there is a sub-tree of T′

1(ei, vi) isomorphic to
T′
1 \ T

′
1(ei, vi). This contradicts the assumption that cα is the center of T′

1.
For each edge e ∈ E1, define σ(e) to be χ(e) when e ∈ cα and to be πi(e) when e ∈

E fi (edges of X fi). From the above argument, χ = χα and σi indeed agrees on where it
maps fi to. This ensures that every cycle passing through the separating pairs of cα gets
preserved. Thus σ is a 2-isomorphism between X′

1 and X′
2.

For case 2, let T′
1 and T′

2 have two centers (α1, α2) and (β1, β2) respectively. It is clear
that ψ({α1, α2}) = {β1, β2}. Without loss of generality, we assume that ψ(α1) = β1,
ψ(α2) = β2. Therefore, there are color preserving isomorphisms χ1 from cα1 to cβ1

and χ2

from cα2 and cβ2
. Define χ(e) as follows:

χ(e) =

{

χ1(e) e ∈ cα1
χ2(e) e ∈ cα2

cα = ∪icαi , cβ = ∪icβi

With this notation, we can appeal to the proof in the case 1, and construct the 2-
isomorphism σ between X′

1 and X′
2.

This completes the proof of correctness of the algorithm (Lemma 5.6).

To complete the proof of Theorem 5.3, we need the following observation,

18



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

yi

ui+1
xi

ui

Figure 1: An example of Gc when c is a six-vertex simple cycle.

Observation 5.8. COLORED-GMI for 3-connected graphs reduces to GI.

To complete the equivalence of GI, MIb, LMIb and GMI, we give a polynomial time
many-one reduction from MIb to GMI.

Theorem 5.9. MIb ≤
p
m GMI.

Proof. Let M1 and M2 be two matroids of rank b over the ground set S1 and S2. Let C1 and
C2 respectively denote the set of circuits of M1 and M2. Note that |C1|, |C2| ≤ mb+1.

We define graphs X1 = (V1, E1) (respectively for X2 = (V2, E2)) as follows. For each
circuit c = {s1, . . . , sℓ} ⊆ S1 in M1, let Gc be the undirected graph (Vc, Ec) where Vc =
{ui, xi, yi | 1 ≤ i ≤ ℓ} and

Ec =
ℓ

⋃

i=1

{(ui, u(i+1 mod ℓ)+1), (xi, yi), (ui, xi), (u(i+1 mod ℓ)+1, yi)}

See Figure 1 for an example. We say that xi and yi are the vertices corresponding to si in
Gc. Color the edges (ui, u(i+1 mod ℓ)+1) as BLUE for 1 ≤ i ≤ ℓ. The edges (ui+1 mod ℓ, yi)

and (ui, xi) are colored YELLOW and (xi, yi) are colored GREEN for 1 ≤ i ≤ ℓ. Now,
X1 contains the disjoint union of Gc for all c ∈ C1 and additionally the following edges:
For every s ∈ S1, consider all the circuits c ∈ C1 that contain s. Let xs,c and ys,c denote
the vertices that correspond to s in Gc. Then add all the edges necessary so that the set
{xs,c, ys,c | s is contained in c} is a clique in X1; call this clique Rs. The new edges added
to complete the clique are colored RED.

We list the properties of X1 for further reference:

1. For every circuit c ∈ C1, there is a unique BLUE cycle in X1 that is disjoint from all
other BLUE cycles.

2. All the cliques with at least four vertices in X1 are formed by edges colored RED and
GREEN. Moreover, there is a one-one map from the set of all cliques of size at least
four in X1 to the ground set S1.

19



3. For every circuit c ∈ C1, the union of all the cliques of X1 corresponding to the
elements of c defines a unique blue cycle whose associated GREEN edges are in the
cliques.

Now we claim the following:

Lemma 5.10. M1
∼= M2 if and only if X1

∼=2 X2.

Proof. Suppose M1
∼= M2, via a map φ : S1 → S2.

This gives a map ψ between the BLUE edges of the graphs X1 and X2 which preserves
BLUE cycles. Now it is not hard to see that we can extend this map to include the remain-
ing edges.

Conversely, suppose X1
∼=2 X2 via ψ : E1 → E2. Define φ : S1 → S2 as follows:

For s ∈ S1 let Rs denote the clique in X1 corresponding to s. Rs is either a single GREEN

edge or a clique on at least 4 vertices (in the latter case it is 3-connected). Thus, by the
property 2 of X1 we can see that ψ maps Rs to R′

s′ for some s′ in S2. Define φ(s) = s′.
Now we argue that ψ is an isomorphism between M1 and M2. Let c ⊆ S1 be a circuit

in M1. Now using the property 2 of X1, we have:

c ∈ C1 ⇐⇒
⋃

i

ψ(Rsi) defines a unique BLUE cycle in X1

⇐⇒
⋃

i

ψ(R′
s′i
) defines a unique BLUE cycle in X2

⇐⇒ φ(c) ∈ C2

This completes the proof of Theorem 5.9

The following corollary summarizes the relationship between GMI, GI, LMIb, and
MIb proved so far,

Corollary 5.11. GMI ≤
p
T GI ≡

p
m LMIb ≡

p
m MIb ≤

p
m GMI

6 Improved upper bounds for special cases of GMI

In this section we give improved upper bounds for special cases of GMI such as planar
graphic matroids, matroids of graphs of bounded genus and bounded eigen value.

6.1 Planar Matroids

Recall that a graph is said to be planar if it can be drawn on a plane without any cross-
ings. A matroid is called a planar matroid if it is the graphic matroid of a planar graph.
Let PMI denote the computational problem of isomorphism testing for planar matroid.
Observing that the construction used in the proof of Theorem 5.3 does not use any non-
planar gadgets and the fact that isomorphism testing of planar graphs can be done in P

([HW74]), we get the following.

20



Corollary 6.1. PMI is in P.

Using the recent developments on the planar graph isomorphism problem, we im-
prove the above bound to show that PMI ∈ L. We adapt the log-space canonization
procedure of [DLN+09] to the setting of planar matroids to obtain a log-space algorithm
for PMI. The idea used in [DLN+09] is to build the canonization using the 3-connected
component decomposition of the given 2-connected planar graph. We briefly describe the
modifications to this procedure.

Theorem 6.2. PMI ∈ L. Moreover, a canonical encoding for planar matroids can be obtained in
log-space.

Proof. As observed in Section 5, it is sufficient to consider the case of 2-connected graphs.
Let X1 = (V1, E1) and X2 = (G2,V2) be the given 2-connected planar graphs. Let T1 and
T2 be the unique decompositions of X1 and X2 into 3-connected components respectively.
(This can be done in log- space [DLN+09]). Suppose T1 (resp. T2) is rooted at r1 (resp. r2).
We proceed as in [DLN+09], the only difference being that we ignore the orientations of
the virtual edges.

The modified definition of ordering of the 3-connected component tree is as follows:
T1 <T T2 if one of the following holds,
1) |T1| < |T2|
2) |T1| = |T2| and # of sub-trees of r1 is less than that of r2 or
3) |T1| = |T2| and # of sub-trees of r1 is equal to that of r2 and (T1,1, . . . , T1,l) <

(T2,1, . . . , T2,l) where T1,1 ≤T . . . ≤T T1,l (resp. T2,1 ≤T . . . ≤T T2,l) are sub-trees of of
T1 (resp. T2) rooted at the children of r1 (resp. r2). Here < refers to the lexicographic
order.

Here is an outline of the algorithm:
1) Compute T1 (resp. T2) rooted at r1 (resp. r2).
2) Check if T1 =T T2 using the algorithm of [DLN+09].
By Whitney’s theorem (see Theorem 2.1), twist operations on G do not change the

underlying matroid, and so we get the required correctness of the algorithm. The space
complexity bound follows from the arguments in [DLN+09].

The canonization of planar matroids can also done in a similar fashion following
[DLN+09].

6.2 Matroids of bounded genus and bounded degree graphs

The genus of a graph is the minimum number k of handles that are required so that the
graph can be drawn on a plane with k handles without any crossings of the edges. If
we are given the guarantee that the input instances of GMI are graphs of bounded genus
(resp. bounded degree), then in the decomposition of the graphs into 3-connected compo-
nents the components obtained are themselves graphs of bounded genus (resp. bounded
degree). Hence the queries made to GI are that of bounded genus (resp. bounded de-
gree) instances which are known to be in P (see [Luk80, Mil80]). Thus, as a corollary of
Theorem 5.3, we have:

21



Corollary 6.3. Isomorphism testing of matroids of graphs of bounded genus/degree can be done
in P

7 Matroid Automorphism Problem

With any isomorphism problem, there is an associated automorphism problem i.e, to find
a generating set for the automorphism group of the underlying object. Relating the iso-
morphism problem to the corresponding automorphism problem gives access to alge-
braic tools associated with the automorphism groups. In the case of graphs, studying
automorphism problem has been fruitful. (e.g. see [Luk80, BGM82, AK02].) In this sec-
tion we turn our attention to the matroid automorphism problem.

An automorphism of a matroid M = (S, C) (where S is the ground set and C is the set
of circuits) is a permutation φ of elements of S such that ∀C ⊆ S, C ∈ C ⇐⇒ φ(C) ∈ C.
Aut(M) denotes the group of automorphisms of the matroid M. When the matroid is
graphic we denote by Aut(X) and Aut(MX) the automorphism group of the graph and
the graphic matroid respectively.

To begin with, we note that given a graph X, and a permutation π ∈ Sm, it is not clear
a priori how to check if π ∈ Aut(MX) efficiently. This is because we need to ensure that π
preserves all the simple cycles, and there could be exponentially many of them. Note that
such amembership test (given a π ∈ Sn) for Aut(X) can easily be done by testing whether
π preserves all the edges. We provide an efficient algorithm for testing if π ∈ Aut(MX).

We use the notion of a cycle basis of X. A cycle basis of a graph X is a minimal set of
cycles B of X such that every cycle in X can be written as a linear combination (viewing
every cycle as a vector in Fm

2 ) of the cycles in B. Let B denote the set of all cycle bases of
the graph X.

Lemma 7.1. Let π ∈ Sn. Then ∃B ∈ B : π(B) ∈ B =⇒ ∀B ∈ B : π(B) ∈ B.

Proof. Let B = {b1, . . . bℓ} ∈ B such that π(B) = {π(b1), . . . ,π(bℓ)} is a cycle basis. Now
consider any other cycle basis B′ = {b′1, . . . , b

′
k} ∈ B. Thus, bi = ∑j αjb

′
j. This implies,

π(bi) = ∑
j

αjπ(b′j).

Thus, π(B′) = {π(b′1), . . . ,π(b′
ℓ
)} forms a cycle basis.

Lemma 7.2. Let π ∈ Sm, and let B ∈ B, then π ∈ Aut(MX) ⇐⇒ π(B) ∈ B.

Proof. Let B = {b1, . . . , bℓ} be the given cycle basis.
For the forward direction, suppose π ∈ Aut(MX). That is, C ⊆ E is a cycle in X if

and only if π(C) is also a cycle in X. Let C be any cycle in X, and let D = π−1(C). Since
B ∈ B, we can write, D = ∑i αibi, and hence C = ∑i αiπ(bi). Hence π(B) forms a cycle
basis for X.

For the reverse direction, suppose π(B) is a cycle basis of X. Let C be any cycle in X.
We can write C = ∑i αibi. Hence, π(C) = ∑i αiπ(bi). As π is a bijection, we have π(bi ∩
bj) = π(bi) ∩ π(bj). Thus π(C) is also a cycle in X. Since π extends to a permutation on
the set of cycles, we get that C is a cycle if and only if π(C) is a cycle.

22



Using Lemmas 7.1 and 7.2 it follows that, given a permutation π, to test if π ∈
Aut(MX) it suffices to check if for a cycle basis B of X, π(B) is also a cycle basis. Given
a graph X a cycle basis B can be computed in polynomial time (see e.g, [Hor87]). Now it
suffices to show:

Lemma 7.3. Given a permutation π ∈ Sm, and a cycle basis B ∈ B, testing whether π(B) is a
cycle basis, can be done in polynomial time.

Proof. To check if π(B) is a cycle basis, it is sufficient to verify that every cycle in B =
{b1, . . . , bℓ} can be written as a F2-linear combination of the cycles in B′ = {b′1, . . . , b

′
ℓ
} =

π(B). This can be done as follows.
For bi ∈ B, let π(bi) = b′i . View bi and b′i as vectors in Fm

2 . Let bij (resp. b′ij) denote

the jth component of bi (resp. b
′
i). Construct the set of linear equations, b′ij = ∑bk∈B

xikbkj
where xik are unknowns. There are exactly ℓ b′is and each of them gives rise to exactly

m equations like this. This gives a system I of ℓm linear equations in ℓ2 unknowns such
that, π(B) is a cycle basis if and only if I has a non-trivial solution. This test can indeed
be done in polynomial time.

This gives us the following:

Theorem 7.4. Given any π ∈ Sm, the membership test for π in Aut(MX) is in P.

Notice that similar arguments can also give another proof of Proposition 5.2. As in the
case of graphs, we can define automorphism problems for matroids.

MATROID AUTOMORPHISM(MA): Given a matroid M as independent set oracle, compute
a generating set for Aut(M).

We define GMA and LMA as the corresponding automorphism problems for graphic
and linearmatroids, when the input is a graph andmatrix respectively. Using the coloring
techniques from Section 4, we prove the following equivalence.

Theorem 7.5. LMI ≡
p
T LMA, and GMI ≡

p
T GMA.

Proof. This proof follows a standard idea due to Luks [Luk93]. We argue the forward
direction as follows. Given two matrices M1 and M2, form the new matrix M as,

M =

[

M1 0
0 M2

]

Now using queries to LMA construct the generating set of Aut(M). Check if at least
one of the generators maps the columns in M corresponding to columns of M1 to those
corresponding to the columns of M2.

To see the other direction, we use the coloring idea, and the rest of the details are
standard. The idea is to find the orbits of each element of the ground set as follows: For
every element of e ∈ S, for each f ∈ S, color e and f by the same color to obtain colored
matroids M1 and M2. Now by asking queries to LMI we can check if f is in the orbit of
e. Thus we can construct the orbit structure of Aut(M) and hence compute a generating
set.

Using similar methods we can prove GMI ≡
p
T GMA.

23



8 Closure Properties

In this section we consider taking and-function and or-functions of polynomial many
instances of GMI. Following [KST93], we formally define and-functions and or-functions
as follows:

Definition 8.1. (see [KST93, LT92]) Let A be any language in {0, 1}∗. An or-function for A is
a function f : {0, 1}∗ → {0, 1}∗ such that for every sequence x1, . . . , xℓ ∈ {0, 1}∗ we have,

f (x1, . . . , xℓ) ∈ A ⇐⇒ ∃i ∈ [ℓ], xi ∈ A

Similarly, an and-function for A is a function g : {0, 1}∗ → {0, 1}∗ such that for all
x1, . . . , xℓ ∈ {0, 1}∗ the following holds:

g(x1, . . . , xℓ) ∈ A ⇐⇒ ∀i ∈ [ℓ], xi ∈ A

We show that GMI restricted to 2-connected graphs has these closure properties.

Theorem 8.2. GMI restricted to 2-connected graphs has polynomial time computable and-functions
and or-functions.

Proof. Our proof follows closely the proof of closure properties of and/or-functions for
GI given in [KST93].

AND-function: Let (G1,H1), . . . , (Gℓ,Hℓ) be ℓ different instances of GMI where all the
graphs are 2-connected. We first demonstrate the construction for ℓ = 2.

Let G1 = (V1, E1),G2 = (V2, E2),H1 = (V′
1, E

′
1),H2 = (V′

2, E
′
2), |V1| = |V′

1| = n1,
|V2| = |V′

2| = n2 and |E1| = |E′
1| = m1, |E2| = |E′

2| = m2. We construct two graphs
G = 〈G1,G2〉 and H = 〈H1,H2〉 such that G ∼=2 H ⇐⇒ (G1

∼=2 H1 and G2
∼=2 H2).

The vertex set V of G consists of V1 and V2 with four additional vertices u1, u2, v1, v2.
Add (u1, u2) and (v1, v2) as edges. Now for every edge e = (a, b) ∈ E1, add new edges
so that the subgraph induced by {u1, u2, a, b} is a 4-vertex clique. Similarly for every
e = (a, b) ∈ E1 ∪ E2, add new edges to G so that the subgraph induced by {v1, v2, a, b}
forms a 4-vertex clique.

Define G = (V, E) as follows;

V = V1 ∪V2 ∪ {u1, u2, v1, v2}

E = E1 ∪ E2 ∪ {(u1, u2), (v1, v2)}

∪{(ui, a), (ui, b) | (a, b) ∈ E1, i ∈ {1, 2}}

∪{(vi, a), (vi, b) | (a, b) ∈ E1 ∪ E2, i ∈ {1, 2}}

We define H in a similar fashion using H1 and H2 instead of G1 and G2 respectively. We
denote the four new vertices thus introduced in H by ū1, ū2, v̄1, v̄2.

Now the following claim completes the proof for the and-function:

24



Claim 8.3. (G1
∼=2 H1 and G2

∼= H2) ⇐⇒ G ∼=2 H

Proof of the claim. The forward direction is easy to see. To prove the converse, suppose
G ∼=2 H via a bijection φ : E → E′. Let em+1 = (u1, u2), em+2 = (v1, v2) and ēm+1 =
(ū1, ū2), em+2 = (v̄1, v̄2). Now, as em+1 (resp. ēm+1) is the unique edge in G that intersects
with n1 many 4-vertex cliques, we have φ(em+1) = ēm+1. Similarly we can argue that
φ(em+2) = ēm+2. Also, all the newly introduced edges of G get mapped to those of H.
Thus we can recover the required 2-isomorphisms between G1, H1 and G2, H2 respec-
tively.

Note that we introduced only 8 new vertices, 4 for each of G and H. In the case of ℓ > 2
we do the above process iteratively. At each iteration we add 8 new vertices, hence the
final graphs will have number of vertices bounded by n+ 8ℓ (where n is the total number
of vertices in the graphs we began with). As the graphs obtained are always simple, the
number of edges is bounded by O((n + 8ℓ)2). Also, it is straightforward to see that the
computation of the resulting graphs can be done in polynomial time.

OR-FUNCTION: Let (G1,H1) and (G2,H2) be two instances of GMI. Now define the
function f as:

f ((G1,H1), (G2,H2)) = (〈G1,G2〉 ∪ 〈H1,H2〉, 〈G1,H2〉 ∪ 〈H1,G2〉)

From the arguments in the above paragraphs, it is easy to see that f represents the or-
function of (G1,H1) and (G2,H2). However, extending this directly for polynomial many
instances will cause an exponential blow up in size. We use the divide and conquer ap-
proach as done in Theorem 1.42 of [KST93].

Let xi = (Gi,Hi), 1 ≤ i ≤ ℓ be the given sequence of instances of GMI. We define the
function f̄ as follows:

f̄ (x1, . . . , xℓ) =

{

x1 i f ℓ = 1

f ( f̄ (x1, . . . , x⌈ℓ/2⌉), f̄ (x⌈ℓ/2⌉+1, . . . , xℓ)) otherwise

From the definition, the depth of recursion is O(log ℓ). At each step the application of f
blows up the size by a constant factor. Thus the size of the graph f̄ (x1, . . . , xℓ) is bounded
by poly(ℓ). Now using the arguments similar to the one in the proof of Theorem 1.42 of
[KST93] we get the desired result.

Remark 1. Note that the Theorem 8.2 cannot be directly applied to graphs that are not 2-connected.
This is mainly because our reduction from the connected GMI instance to 2-connected instance is
a Turing reduction and not a many-one reduction. (See discussions preceding lemma 5.1.)

9 Conclusion and Open Problems

We studied the matroid isomorphism problem under various input representations and
restriction on the rank of the matroid. We proved that graph isomorphism, graphic ma-
troid isomorphism and bounded rank version of matroid isomorphism are all polynomial
time equivalent.

25



In addition, we find it interesting that in the bounded rank case, MIb and LMIb are
equivalent, though there exist matroids of bounded rankwhich are not representable over
any field. Some of the open questions that we see are as follows:

• Our results provide new possibilities to attack the graph isomorphism problem. For
example, it will be interesting to prove a coNP upper bound for LMIb. Note that
this will imply that GI ∈ NP∩ coNP. Similarly, are there special cases of GMI (other
than what is translated from the bounds for GI) which can be solved in polynomial
time?

• The representations of the matroid in the definition of LMI is over fields of size at
least m and at most poly(m), where m is the size of the ground set of the matroid.
This is critically needed for the observation of coNP-hardness. One could ask if the
problem is easier over fixed finite fields independent on the input. However, we
note that, by our results, it follows that this problem over F2 is already hard for GI.
It will still be interesting to give a better (than the trivial Σ2) upper bound for linear
matroids represented over fixed finite fields (even for F2).

• Can we use the coloring technique of linear matroid isomorphism to reduce the
general instances of linear matroid isomorphism to isomorphism testing of “simpler
components” of the matroid?

• Can we make the reduction from GMI to GI many-one? Can we improve the com-
plexity of this reduction in the general case?

10 Acknowledgements

We thank V. Arvind and Meena Mahajan for providing us with useful inputs and many
insightful discussions, James Oxley for sharing his thoughts while responding to our
queries about matroid isomorphism. We also thank the anonymous referees for providing
us many useful pointers to the literature.

References

[AK02] Vikraman Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. In
FOCS, pages 743–750, 2002.

[AT05] Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and
open problems. Bulletin of the EATCS, 86:66–84, 2005.

[Bab78] Làszlò Babai. Vector Representable Matroids of Given Rank with Given Au-
tomorphism Group. Discrete Math., 24:119–125, 1978.

[BGM82] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In STOC, pages 310–324, 1982.

26



[CE80] William H Cunningham and Jack Edmonds. A Combinatorial Decomposition
Theory. Canadian Journal of Mathematics, 17:734–765, 1980.

[DLN08] Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. 3-connected planar
graph isomorphism is in log-space. In FSTCS, 2008. To appear.

[DLN+09] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and
Fabian Wagner. Planar graph isomorphism is in log-space. In IEEE Confer-
ence on Computational Complexity, pages 203–214, 2009.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[Har69] F. Harary. Graph theory. Addison Wesley, 1969.

[Hli07] Petr Hlinený. Some hard problems on matroid spikes. Theory of Computing
Systems, 41(3):551–562, 2007.

[Hor87] Joseph Douglas Horton. A polynomial-time algorithm to find the shortest
cycle basis of a graph. SIAM Journal of Computing, 16(2):358–366, 1987.

[HT73] J.E. Hopcroft and R.E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal of Computing, 2(3):135–158, 1973.

[HW74] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of pla-
nar graphs (preliminary report). In STOC ’74: Proceedings of the sixth annual
ACM symposium on Theory of computing, pages 172–184, New York, NY, USA,
1974. ACM.

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Birkhauser Verlag, Basel, Switzerland,
Switzerland, 1993.

[Lin92] Steven Lindell. A logspace algorithm for tree canonization (extended ab-
stract). In STOC, pages 400–404, 1992.

[LT92] Antoni Lozano and Jacobo Torán. On the nonuniform complexity of the graph
isomorphism problem. In Structure in Complexity Theory Conference, pages 118–
129, 1992.

[Luk80] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. In FOCS, pages 42–49, 1980.

[Luk93] Eugene.M Luks. Permutation groups and polynomial-time computation, vol-
ume 11 of DIMACS, pages 139–175. 1993.

[May08] Dillon Mayhew. Matroid complexity and nonsuccinct descriptions. SIAM
Journal of Discrete Mathematics, 22(2):455–466, 2008.

27



[Mil80] Gary L. Miller. Isomorphism testing for graphs of bounded genus. In STOC,
pages 225–235, 1980.

[OW02] James Oxley andDominicWelsh. Chromatic, flow and reliability polynomials:
The complexity of their coefficients. Combinatorics, Probability and Computing,
11:403–426, 2002.

[Oxl92] James G. Oxley. Matroid theory. Oxford University Press, New York, 1992.

[Sch99] U. Schöning. Probablistic Complexity Classes and Lowness. JCSS, 39:84–100,
1999.

[Tru80] Klaus Truemper. OnWhitney’s 2-isomorphism theorem for graphs. Jl. of Graph
Theory, pages 43–49, 1980.

[TW08] Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar
3-connected graphs is in unambiguous logspace. In STACS, pages 633–644,
2008.

[Whi32] Hassler Whitney. Congruent graphs and connectivity of graphs. American
Journal of Mathematics, 54(1):150–168, 1932.

[Whi33] Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics,
55:245–254, 1933.

[Whi35] Hassler Whitney. On the abstract properties of linear dependence. American
Journal of Mathematics, 57(3):509–533, 1935.

28


