Weighting Schemes and the NL vs UL Problem

Anant Dhayal Jayalal Sarma Saurabh Sawlani

IIT Madras, Chennai.

Indo-UK Workshop on Computational Complexity
IMSc, Chennai, Jan 9, 2015.

The Problem

REACH = {(G,s, t) | 3 a directed path from s to t in G}

The Problem

REACH = {(G,s, t) | 3 a directed path from s to t in G}

» Undirected Reachability is in L (Reingold 2004)

The Problem

REACH = {(G,s, t) | 3 a directed path from s to t in G}

» Undirected Reachability is in L (Reingold 2004)
> Directed Reachability is NL-complete. Even for layered DAGs.

The Problem

REACH = {(G,s, t) | 3 a directed path from s to t in G}

» Undirected Reachability is in L (Reingold 2004)
> Directed Reachability is NL-complete. Even for layered DAGs.

» UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

The Problem

REACH = {(G,s, t) | 3 a directed path from s to t in G}

» Undirected Reachability is in L (Reingold 2004)
> Directed Reachability is NL-complete. Even for layered DAGs.

> UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

Structural question : Can space bounded non-determinism be made
unambiguous?

Weighting Schemes

» For each graph G(V, E), weighing scheme defines a function w : E — N.
» Polynomially bounded and log-space computable.

> Weight of a path is the sum of the weights in edges in it.

Weighting Schemes

» For each graph G(V, E), weighing scheme defines a function w : E — N.

v

Polynomially bounded and log-space computable.

v

Weight of a path is the sum of the weights in edges in it.

v

A weighting scheme that maps (w : E — N) such that there is a unique
minimum-weight path from s to any vertex v in the graph is called a
MIN-UNIQUE weighting scheme.

Weighting Schemes

» For each graph G(V, E), weighing scheme defines a function w : E — N.
» Polynomially bounded and log-space computable.
> Weight of a path is the sum of the weights in edges in it.

> A weighting scheme that maps (w : E — N) such that there is a unique
minimum-weight path from s to any vertex v in the graph is called a
MIN-UNIQUE weighting scheme.

» Testing reachability in a graph G augmented with a MIN-UNIQUE
weighting scheme is in UL (Allender and Reinhardt - 2000).

Implications?

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

» With a polynomial sized advice, we can produce a set of n? graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

» With a polynomial sized advice, we can produce a set of n? graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

» With a polynomial sized advice, we can produce a set of n? graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

> If deterministic linear space has functions that are not computable by
circuits of size 2°”, then NL = UL.

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

» With a polynomial sized advice, we can produce a set of n? graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

> If deterministic linear space has functions that are not computable by
circuits of size 2°”, then NL = UL.

» A natural question : Can we design such weighing schemes for restricted
classes of graphs?

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

» With a polynomial sized advice, we can produce a set of n? graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

> If deterministic linear space has functions that are not computable by
circuits of size 2°”, then NL = UL.

» A natural question : Can we design such weighing schemes for restricted
classes of graphs?

> Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

Implications?

> For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

» With a polynomial sized advice, we can produce a set of n? graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

> If deterministic linear space has functions that are not computable by
circuits of size 2°”, then NL = UL.

» A natural question : Can we design such weighing schemes for restricted
classes of graphs?

> Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

» Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Is Allender-Reinhardt result tight?

» NL = UL <= L-computable MIN-UNIQUE Weighing schemes.
Is the converse true?

Is Allender-Reinhardt result tight?

» NL = UL <= L-computable MIN-UNIQUE Weighing schemes.
Is the converse true?

» NL = UL <= UL-computable MIN-UNIQUE weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

Is Allender-Reinhardt result tight?

» NL = UL <= L-computable MIN-UNIQUE Weighing schemes.
Is the converse true?

» NL = UL <= UL-computable MIN-UNIQUE weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

> A weighting scheme that maps (w : E — N) such that there are at most
n® (c is known) minimum-weights path from s to any vertex v in the
graph is called a MIN-POLY weighting scheme.

Is Allender-Reinhardt result tight?

» NL = UL <= L-computable MIN-UNIQUE Weighing schemes.
Is the converse true?

» NL = UL <= UL-computable MIN-UNIQUE weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

> A weighting scheme that maps (w : E — N) such that there are at most
n® (c is known) minimum-weights path from s to any vertex v in the
graph is called a MIN-POLY weighting scheme.

Questions:
> Can MIN-PoOLY Weighted Reachability be done in UL?
> Does this help in showing NL = UL?

Result 1 : Relaxing MIN-UNIQUE to MIN-PoOLY.

Theorem (1)

Testing reachability in a layered DAG G augmented with a MIN-POLY
weighting scheme is in UL.

Result 1 : Relaxing MIN-UNIQUE to MIN-PoOLY.

Theorem (1)

Testing reachability in a layered DAG G augmented with a MIN-POLY
weighting scheme is in UL.

Comparison: ReachFewL = ReachUL (Garvin, Stolee, Tewari, Vinodchandran -
2011)

The above result talks about graphs with unique/polynomially many paths
from s to any vertex v. Our result talks about graphs with unique/polynomially
many minimum-weight paths from s to any vertex v. Total s ~» v paths could
be exponential in number.

Result 2 : MAX-UNIQUE Weighting Schemes

> A weighting scheme that maps (w : E — N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
MAX-UNIQUE weighting scheme.

Result 2 : MAX-UNIQUE Weighting Schemes

> A weighting scheme that maps (w : E — N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
MAX-UNIQUE weighting scheme.

» Studied in a related context :

> LoNGPATH = {(G,s, t,j) | a simple directed path from s to t in G of
length at least j}.

Result 2 : MAX-UNIQUE Weighting Schemes

> A weighting scheme that maps (w : E — N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
MAX-UNIQUE weighting scheme.

» Studied in a related context :

> LoNGPATH = {(G,s, t,j) | a simple directed path from s to t in G of
length at least j}.
> Testing LONGPATH in a DAG G with unique source s augmented with a

MAX-UNIQUE weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

Result 2 : MAX-UNIQUE Weighting Schemes

> A weighting scheme that maps (w : E — N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
MAX-UNIQUE weighting scheme.

» Studied in a related context :

> LoNGPATH = {(G,s, t,j) | a simple directed path from s to t in G of
length at least j}.

> Testing LONGPATH in a DAG G with unique source s augmented with a
MAX-UNIQUE weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

> They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

Result 2 : MAX-UNIQUE Weighting Schemes

v

A weighting scheme that maps (w : E — N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
MAX-UNIQUE weighting scheme.

Studied in a related context :

> LoNGPATH = {(G,s, t,j) | a simple directed path from s to t in G of
length at least j}.

> Testing LONGPATH in a DAG G with unique source s augmented with a
MAX-UNIQUE weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

> They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

Lemma: REACH on Layered DAGs logspace reduces to LONGPATH on
single source Layered DAGs. In addition, it preserves the max-unique and
max-poly property of the graph.

MAaX-UNIQUE weighted REACH is in UL.

Result 3: MAX-Pory Weighting Schemes

> A weighting scheme that maps (w : E — N) such that there are at most
n° (¢ is known) maximum-weight paths from s to any vertex v in the
graph is called a MAX-POLY weighting scheme.

Theorem (2)

Testing Reachability in a layered DAG G augmented with a MAX-POLY
weighting scheme can be done by a non-deterministic log-space algorithm
unambiguously and hence is in the complexity class UL.

The final algorithm is designed for LONG PATH problem.

Consequences

The following statements are equivalent :
» NL = UL

Consequences

The following statements are equivalent :
» NL = UL

> There is a polynomially bounded UL-computable MIN-UNIQUE weighting
scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).

Consequences

The following statements are equivalent :
» NL = UL

> There is a polynomially bounded UL-computable MIN-UNIQUE weighting
scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).

> There is a polynomially bounded UL-computable MAX-UNIQUE weighting
scheme for any layered DAG.

> There is a polynomially bounded UL-computable MIN-POLY weighting
scheme for any layered DAG.

> There is a polynomially bounded UL-computable MAX-POLY weighting
scheme for any layered DAG.

The rest of the talk ...

We will present :
» Outline Allender-Reinhardt Algorithm.
» Modification to get a special NL algorithm for MIN-POLY case.
» UL Algorithm for MIN-POLY case and proof sketch.
> Reduction from REACH to LONGPATH.

We will not present :

» UL algorithm for MAX-POLY case.

Notations

> Replace weights with paths of the corresponding length. Now, shortest
paths from s to any vertex v in G is unique. All edges go from a lower
numbered vertex to a higher numbered vertex.

» d(v): Length of the shortest s ~» v path.

Notations

\4

Replace weights with paths of the corresponding length. Now, shortest
paths from s to any vertex v in G is unique. All edges go from a lower
numbered vertex to a higher numbered vertex.

v

d(v): Length of the shortest s ~» v path.

> cx: Number of vertices within level-k.

v

Y : Sum of d(v)s of vertices within level-k.

Idea (Allender, Reinheardt - 2000) : Inductively for k =0 to n

» A UL algorithm to check if d(v) < k assuming correct values of ¢k, X are
available.

» Use this to compute cx+1, Lk4+1 from ¢, and Xy

Routine to check if d(v) < k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

N ’Values of cx and X are known ‘

Routine to check if d(v) < k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

N ’Values of cx and X are known ‘

. For each x € V
— Non-deterministically guess if d(x) < k

Routine to check if d(v) < k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

N ’Values of cx and X are known ‘

. For each x € V
\ @ — Non-deterministically guess if d(x) < k

: If the guess is NO, move to the next x

Routine to check if d(v) < k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

N ’Values of cx and X are known ‘

. For each x € V
@ \ — Non-deterministically guess if d(x) < k
¢ : If the guess is YES,
E \ — Guess an integer 1 < ¢ < k,

| and an s ~ x path of length ¢
@I | @ — If path is found,

count := count + 1,sum := sum + ¢
1

Routine to check if d(v) < k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

N ’Values of cx and X are known ‘

. For each x € V
@ \ — Non-deterministically guess if d(x) < k
: If the guess is YES,
E \ — Guess an integer 1 < ¢ < k,

. and an s ~» x path of length ¢
@I | @ — If path is found,

count := count + 1,sum := sum + ¢
1

, Final Check:

, count = ¢, and sum = X,

Routine to check if d(v) < k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

N ’Values of cx and X are known ‘

. For each x € V
@ \ — Non-deterministically guess if d(x) < k
: If the guess is YES,
E \ — Guess an integer 1 < ¢ < k,

. and an s ~» x path of length ¢
@I | @ — If path is found,

count := count + 1,sum := sum + ¢
1

, Final Check:

, count = ¢, and sum = X,

Return YES iff v was guessed within level k

Algorithm to calculate cx41 and X1 (Min-unique case)

[Reinhardt and Allender 2000]

] Intitialize (cxs1, Txs1) = (Ck, Tk) \

\ Call the routine to check if d(v) < k

Algorithm to calculate cx41 and X1 (Min-unique case)
[Reinhardt and Allender 2000]

.] Intitialize (cxs1, Txs1) = (Ck, Tk) \

(v) \ Call the routine to check if d(v) < k

\
N If it does not return 0, move on to the next choice of v

Algorithm to calculate cx41 and X1 (Min-unique case)
[Reinhardt and Allender 2000]

.] Intitialize (cxs1, Txs1) = (Ck, Tk) \

(V) Call the routine to check if d(v) < k

: If it returns 0O,

Algorithm to calculate cx41 and X1 (Min-unique case)
[Reinhardt and Allender 2000]

.] Intitialize (cxs1, Txs1) = (Ck, Tk) \

@ﬁ@ Call the routine to check if d(v) < k

' If it returns 0O,

\ Vx | (x,v) € E, Check d(x) < k

® SN0

Algorithm to calculate cx41 and X1 (Min-unique case)
[Reinhardt and Allender 2000]

.] Intitialize (cxs1, Txs1) = (Ck, Tk) \

@ﬁ@ Call the routine to check if d(v) < k

! If it returns 0,
\ Vx | (x,v) € E, Check d(x) < k
! If all checks output 0

1
@ : @ — Move to the next v
|

Algorithm to calculate cx41 and X1 (Min-unique case)
[Reinhardt and Allender 2000]

.] Intitialize (cxs1, Txs1) = (Ck, Tk) \

@ﬁ@ Call the routine to check if d(v) < k

: If it returns 0O,
\ Vx | (x,v) € E, Check d(x) < k
'I If all checks output 0
@ : @ — Move to the next v
: If 3 x' # x with d(x’) < k and (x,v) € E

‘ — Not Min-unique ‘

Algorithm to calculate cx41 and X1 (Min-unique case)
[Reinhardt and Allender 2000]

.] Intitialize (cxs1, Txs1) = (Ck, Tk) \

@ﬁ@ Call the routine to check if d(v) < k

: If it returns 0O,
| Vx | (x,v) € E, Check d(x) < k
| If all checks output 0
@ : @ — Move to the next v
: If 3 x' # x with d(x’) < k and (x,v) € E
| ‘ — Not Min-unique ‘

/ Else

/ Ckt1 = Cky1+ 1
K Y=L+ k41

In the MIN-POLY case :

» Mindblock : d(v) < k test is not Unambiguous anymore.

» Solution : Guess the paths too. Keep track of total number of paths that
we have seen to v.

In the MIN-POLY case :

v

Mindblock : d(v) < k test is not Unambiguous anymore.

Solution : Guess the paths too. Keep track of total number of paths that
we have seen to v.

v

v

p(v): Number of shortest s ~» v paths.

pr: Sum of p(v)s of vertices within level-k.

v

Routine to check if d(v) < k unambiguously (Min-poly case)

. ‘Values of ¢k, Xk and px are known
N

Routine to check if d(v) < k unambiguously (Min-poly case)

. ’Values of ¢k, Xk and px are known ‘

. For each x € V
— Non-deterministically guess if d(x) < k
\

Routine to check if d(v) < k unambiguously (Min-poly case)

N ’Values of ¢k, Xk and px are known ‘

\ For each x € V
\ @ —+ Non-deterministically guess if d(x) < k

) If the guess is NO, move to the next x

Routine to check if d(v) < k unambiguously (Min-poly case)

. ’Values of ¢k, Xk and px are known ‘
\\\ For each x € V
.>® Y — Non-deterministically guess if d(x) < k
\
s] 4 \ If the guess is YES,
" p paths

\ — Guess an integer 1 < /¢ < k,
and an integer 1 < p < n°
|
e ! — Guess p s ~» x paths of length ¢
® - ©®

Routine to check if d(v) < k unambiguously (Min-poly case)

N ’Values of ¢k, Xk and px are known ‘
\\\ For each x € V
.,® \ — Non-deterministically guess if d(x) < k
\
- 4 | If the guess is YES,
P paths \

— Guess an integer 1 < /¢ < k,
\I and an integer 1 < p < n°
@ e | @ — Guess p s ~» x paths of length ¢
I — If paths are found and in order,
II count := count + 1,sum := sum + £

paths := paths + p
/

Routine to check if d(v) < k unambiguously (Min-poly case)

N ’Values of ¢k, Xk and px are known ‘
\\\ For each x € V
.,® \ — Non-deterministically guess if d(x) < k
\
- 4 | If the guess is YES,
P paths \

— Guess an integer 1 < /¢ < k,
\I and an integer 1 < p < n°
@ . | @ — Guess p s ~» x paths of length ¢
I — If paths are found and in order,
II count := count + 1,sum := sum + £

paths := paths + p
/

, Final Check:

count = ¢k, sum = ¥, and paths = py

Routine to check if d(v) < k unambiguously (Min-poly case)

N ’Values of ¢k, Xk and px are known ‘
\\\ For each x € V
.,® \ — Non-deterministically guess if d(x) < k
\
- 4 | If the guess is YES,
P paths \

— Guess an integer 1 < /¢ < k,
\I and an integer 1 < p < n°
@ . | @ — Guess p s ~» x paths of length ¢
I — If paths are found and in order,
II count := count + 1,sum := sum + £

paths := paths + p
/

, Final Check:

count = ¢k, sum = ¥, and paths = py

’Return p(v) iff v was guessed within level k

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),

D@~

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),

D@~

10001 0--01

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),

D@~

10001001 |5¢(p)=2"+2+.. +2

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),
10001001 |5¢(p)=2"+2+.. +2

> &(p) is unique for each path.
» However it cannot be represented by logarithmic number of bits.

> So, we need a polynomially bounded m such that ¢m(p) = ¢(p) mod m
also remains unique.

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),
10001001 |5¢(p)=2"+2+.. +2

> &(p) is unique for each path.
» However it cannot be represented by logarithmic number of bits.

> So, we need a polynomially bounded m such that ¢m(p) = ¢(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant ¢’ so that for every set S of n-bit
integers with |S| < n there is a ¢’ log n-bit prime number m so that for all
X,y €S, x#y = x#y mod m.

Guessing n¢ paths in log-space

> In a layered DAG, a path can be represented by a subset of vertices.

» For a path p: (s =w,v;,..., V),
10001001 |5¢(p)=2"+2+.. +2

> &(p) is unique for each path.
» However it cannot be represented by logarithmic number of bits.

> So, we need a polynomially bounded m such that ¢m(p) = ¢(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant ¢’ so that for every set S of n-bit
integers with |S| < n there is a ¢’ log n-bit prime number m so that for all
X,y €S, x#y = x#y mod m.

» ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar ¢ to give weights to edges.

Algorithm to calculate cx41,2 k41

and px+1 (Min-poly case)

’ Intitialize (ckt1, Xkr1, Prr1) = (k> Lk, Pi) ‘

Call the routine to check if d(v) < k

Algorithm to calculate cx+1,Xk+1 and pxy1 (Min-poly case)

\ ’ Intitialize (ckt1, Xkr1, Prr1) = (k> Lk, Pi) ‘

(v) \ Call the routine to check if d(v) < k

\
\ If it does not return 0, move on to the next choice of v

Algorithm to calculate cx+1,Xk+1 and pxy1 (Min-poly case)

| ’ Intitialize (cxr1, Zht1, Prr1) = (Ck, Tk, Px) ‘

N0 Call the routine to check if d(v) < k

\ If it returns O,

Algorithm to calculate cx+1,Xk+1 and pxy1 (Min-poly case)

\\\ ’ Intitialize (ckt1, Xkr1, Prr1) = (k> Lk, Pi) ‘
Cor=(v) Call the routine to check if d(v) < k
\ If it returns O,

| Vx| (x,v) € E, Call d(x) < k

Algorithm to calculate cx+1,Xk+1 and pxy1 (Min-poly case)

\ ’ Intitialize (ckt1, Xkr1, Prr1) = (k> Lk, Pi) ‘

Cor=(v) Call the routine to check if d(v) < k

' If it returns O,
| Vx| (x,v) € E, Call d(x) < k
! If all calls output 0

1
@ : @ — Move to the next v
I

Algorithm to calculate cx+1,Xk+1 and pxy1 (Min-poly case)

\ ’ Intitialize (ckt1, Xkr1, Prr1) = (k> Lk, Pi) ‘

Cor=(v) Call the routine to check if d(v) < k

' If it returns O,
| Vx| (x,v) € E, Call d(x) < k
! If all calls output 0

1
@ : @ — Move to the next v
I

| If p(v) > n°

! — Not Min-poly

Algorithm to calculate cx+1,Xk+1 and pxy1 (Min-poly case)

\ ’ Intitialize (ckt1, Xkr1, Prr1) = (k> Lk, Pi) ‘

Cor=(v) Call the routine to check if d(v) < k

' If it returns O,
| Vx| (x,v) € E, Call d(x) < k
! If all calls output 0

1
@ : @ — Move to the next v
I

| If p(v) > n°

! — Not Min-poly

li Else

/ Ckt1 := Cky1 + 1
/ i1 = k1 Hk+1
/ Pr+1 1= prr1 + p(v)

Main

> non-deterministically guess m

ao=1,%=0,p=1

for (k = 1 to n) compute [ck, Xk, px] from [ck—1, Xk—1, Pr—1]
> if t was covered, ACCEPT-m

v

v

Main

> non-deterministically guess m

ao=1,%=0,p=1

for (k = 1 to n) compute [ck, Xk, px] from [ck—1, Xk—1, Pr—1]
> if t was covered, ACCEPT-m

v

v

Analysis:

> If m does not hash appropriately even for one vertex v, the algorithm will
fail while guessing s ~» v paths.

Main

> non-deterministically guess m

ao=1,%=0,p=1

for (k = 1 to n) compute [ck, Xk, px] from [ck—1, Xk—1, Pr—1]
> if t was covered, ACCEPT-m

v

v

Analysis:
> If m does not hash appropriately even for one vertex v, the algorithm will
fail while guessing s ~» v paths.

> If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])

Main

> non-deterministically guess m

ao=1,%=0,p=1

for (k = 1 to n) compute [ck, Xk, px] from [ck—1, Xk—1, Pr—1]
> if t was covered, ACCEPT-m

v

v

Analysis:

> If m does not hash appropriately even for one vertex v, the algorithm will
fail while guessing s ~» v paths.

> If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is MIN-PoOLY.

Main

> non-deterministically guess m

ao=1,%=0,p=1

for (k = 1 to n) compute [ck, Xk, px] from [ck—1, Xk—1, Pr—1]
> if t was covered, ACCEPT-m

v

v

Analysis:
> If m does not hash appropriately even for one vertex v, the algorithm will
fail while guessing s ~» v paths.

> If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is MIN-PoOLY.

» Each accept configuration has at most one computational path (FewUL).

Making the algorithm Unambiguous

> Idea : Guess the least m which hashes all the paths distinctly (Call the
guessed value as f’ and the actual value as f).

Making the algorithm Unambiguous

> ldea : Guess the least m which hashes all the paths distinctly (Call the
guessed value as f’ and the actual value as f).

» Run the algorithm using m = f’. Additionally, run the algorithm for all

m = m’ < f’, making sure that algorithm finds "badness” of m’ in a
unique computational path.

Making the algorithm Unambiguous

> ldea : Guess the least m which hashes all the paths distinctly (Call the
guessed value as f’ and the actual value as f).

» Run the algorithm using m = f’. Additionally, run the algorithm for all
m = m’ < f’, making sure that algorithm finds "badness” of m’ in a
unique computational path.

> If ' is less than f, then f’ is bad anyway and the algorithm will REJECT.

> If f' is more than f, then then in some iteration m’ = f will fail to find a
"badness” and hence REJECT.

» IF f' = f, then attempts to find "badness” of m’ will all together succeed
in exactly one path. Since f is good and unique, the ' will make the main
algorithm work unambiguously.

Find the "badness” of m’ unambiguously

For each m’ < f/,

» Guess the first level where a vertex v has two paths to it which are not
hashed correctly. Guess this as k; (actual one being k1) and search for the
v in the lex ordering.

Find the "badness” of m’ unambiguously

For each m’ < f/,

» Guess the first level where a vertex v has two paths to it which are not
hashed correctly. Guess this as k; (actual one being k1) and search for the
v in the lex ordering.

» For any such vertex v, there must exist a, b € V such that a, b are
in-neighbours of v at distance ki — 1 from s and there must be two paths,
pa through a and p, through b such that ¢m(ps) = dm(ps). Search
through the (a, b) pairs in lex ordering.

Find the "badness” of m’ unambiguously

For each m’ < f/,

» Guess the first level where a vertex v has two paths to it which are not
hashed correctly. Guess this as k; (actual one being k1) and search for the
v in the lex ordering.

» For any such vertex v, there must exist a, b € V such that a, b are
in-neighbours of v at distance k; — 1 from s and there must be two paths,
pa through a and p, through b such that ¢m(ps) = dm(ps). Search
through the (a, b) pairs in lex ordering.

» For each (a, b) pair, compute p(a) and p(b) respectively. Guess the paths

in the strictly increasing order of ¢, hashes and try all the pair of paths
among them for witness for " badness” of m.

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

We can see that

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

We can see that

» G’ is a single-source DAG

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

We can see that

» G’ is a single-source DAG

> There is a (s’ ~ t) path of length at least 2n+ 1 in G’ if and only if there
was a (s ~ t) path in G.

Reduction from REACH on a DAG to LONGPATH

Reach(G,s,t) — LongPath(G’,s’, t,2n+ 1) (n is the number of vertices in G)

We can see that

» G’ is a single-source DAG

> There is a (s’ ~ t) path of length at least 2n+ 1 in G’ if and only if there
was a (s ~ t) path in G.

» G’ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Open Problems

> In this paper, we designed UL algorithms for REACH in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems

> In this paper, we designed UL algorithms for REACH in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

> Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

Open Problems

> In this paper, we designed UL algorithms for REACH in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

> Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

» Can we apply any of the above for restricted graph classes? (We know this
for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to
apply this to “Monotone 3D grid graphs”, then NL = UL.

Open Problems

> In this paper, we designed UL algorithms for REACH in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

> Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

» Can we apply any of the above for restricted graph classes? (We know this
for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to
apply this to “Monotone 3D grid graphs”, then NL = UL.

» Structural study of weighing schemes and their design complexity?

Thank You

