
Weighting Schemes and the NL vs UL Problem

Anant Dhayal Jayalal Sarma Saurabh Sawlani

IIT Madras, Chennai.

Indo-UK Workshop on Computational Complexity
IMSc, Chennai, Jan 9, 2015.

The Problem

Reach = {(G , s, t) | ∃ a directed path from s to t in G}

I Undirected Reachability is in L (Reingold 2004)

I Directed Reachability is NL-complete. Even for layered DAGs.

I UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

Structural question : Can space bounded non-determinism be made
unambiguous?

The Problem

Reach = {(G , s, t) | ∃ a directed path from s to t in G}

I Undirected Reachability is in L (Reingold 2004)

I Directed Reachability is NL-complete. Even for layered DAGs.

I UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

Structural question : Can space bounded non-determinism be made
unambiguous?

The Problem

Reach = {(G , s, t) | ∃ a directed path from s to t in G}

I Undirected Reachability is in L (Reingold 2004)

I Directed Reachability is NL-complete. Even for layered DAGs.

I UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

Structural question : Can space bounded non-determinism be made
unambiguous?

The Problem

Reach = {(G , s, t) | ∃ a directed path from s to t in G}

I Undirected Reachability is in L (Reingold 2004)

I Directed Reachability is NL-complete. Even for layered DAGs.

I UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

Structural question : Can space bounded non-determinism be made
unambiguous?

The Problem

Reach = {(G , s, t) | ∃ a directed path from s to t in G}

I Undirected Reachability is in L (Reingold 2004)

I Directed Reachability is NL-complete. Even for layered DAGs.

I UL - Problems solvable by logspace NTM having at most one accepting
path for each input.

Structural question : Can space bounded non-determinism be made
unambiguous?

Weighting Schemes

I For each graph G(V ,E), weighing scheme defines a function w : E → N.

I Polynomially bounded and log-space computable.

I Weight of a path is the sum of the weights in edges in it.

I A weighting scheme that maps (w : E → N) such that there is a unique
minimum-weight path from s to any vertex v in the graph is called a
Min-unique weighting scheme.

I Testing reachability in a graph G augmented with a Min-unique
weighting scheme is in UL (Allender and Reinhardt - 2000).

Weighting Schemes

I For each graph G(V ,E), weighing scheme defines a function w : E → N.

I Polynomially bounded and log-space computable.

I Weight of a path is the sum of the weights in edges in it.

I A weighting scheme that maps (w : E → N) such that there is a unique
minimum-weight path from s to any vertex v in the graph is called a
Min-unique weighting scheme.

I Testing reachability in a graph G augmented with a Min-unique
weighting scheme is in UL (Allender and Reinhardt - 2000).

Weighting Schemes

I For each graph G(V ,E), weighing scheme defines a function w : E → N.

I Polynomially bounded and log-space computable.

I Weight of a path is the sum of the weights in edges in it.

I A weighting scheme that maps (w : E → N) such that there is a unique
minimum-weight path from s to any vertex v in the graph is called a
Min-unique weighting scheme.

I Testing reachability in a graph G augmented with a Min-unique
weighting scheme is in UL (Allender and Reinhardt - 2000).

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Implications?

I For showing NL = UL, it suffices to come up with a min-unique weighting
scheme that is computable in log-space.

I With a polynomial sized advice, we can produce a set of n2 graphs
preserving reachability and with the guarantee that at least one of them is
a min-unique graph. (Allender and Reinhardt, 2000)

NL/poly = UL/poly

I If deterministic linear space has functions that are not computable by
circuits of size 2εn, then NL = UL.

I A natural question : Can we design such weighing schemes for restricted
classes of graphs?

I Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

I Planar reachability problem reduces (in log-space) to Grid Graph
Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Is Allender-Reinhardt result tight?

I NL = UL ⇐= L-computable Min-unique Weighing schemes.
Is the converse true?

I NL = UL ⇐⇒ UL-computable Min-unique weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

I A weighting scheme that maps (w : E → N) such that there are at most
nc (c is known) minimum-weights path from s to any vertex v in the
graph is called a Min-poly weighting scheme.

Questions:

I Can Min-Poly Weighted Reachability be done in UL?

I Does this help in showing NL = UL?

Is Allender-Reinhardt result tight?

I NL = UL ⇐= L-computable Min-unique Weighing schemes.
Is the converse true?

I NL = UL ⇐⇒ UL-computable Min-unique weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

I A weighting scheme that maps (w : E → N) such that there are at most
nc (c is known) minimum-weights path from s to any vertex v in the
graph is called a Min-poly weighting scheme.

Questions:

I Can Min-Poly Weighted Reachability be done in UL?

I Does this help in showing NL = UL?

Is Allender-Reinhardt result tight?

I NL = UL ⇐= L-computable Min-unique Weighing schemes.
Is the converse true?

I NL = UL ⇐⇒ UL-computable Min-unique weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

I A weighting scheme that maps (w : E → N) such that there are at most
nc (c is known) minimum-weights path from s to any vertex v in the
graph is called a Min-poly weighting scheme.

Questions:

I Can Min-Poly Weighted Reachability be done in UL?

I Does this help in showing NL = UL?

Is Allender-Reinhardt result tight?

I NL = UL ⇐= L-computable Min-unique Weighing schemes.
Is the converse true?

I NL = UL ⇐⇒ UL-computable Min-unique weighing schemes.(Pavan,
Tewari, Vinodchandran, 2012).

I A weighting scheme that maps (w : E → N) such that there are at most
nc (c is known) minimum-weights path from s to any vertex v in the
graph is called a Min-poly weighting scheme.

Questions:

I Can Min-Poly Weighted Reachability be done in UL?

I Does this help in showing NL = UL?

Result 1 : Relaxing Min-Unique to Min-Poly.

Theorem (1)

Testing reachability in a layered DAG G augmented with a Min-poly
weighting scheme is in UL.

Comparison: ReachFewL = ReachUL (Garvin, Stolee, Tewari, Vinodchandran -
2011)

The above result talks about graphs with unique/polynomially many paths
from s to any vertex v . Our result talks about graphs with unique/polynomially
many minimum-weight paths from s to any vertex v . Total s v paths could
be exponential in number.

Result 1 : Relaxing Min-Unique to Min-Poly.

Theorem (1)

Testing reachability in a layered DAG G augmented with a Min-poly
weighting scheme is in UL.

Comparison: ReachFewL = ReachUL (Garvin, Stolee, Tewari, Vinodchandran -
2011)

The above result talks about graphs with unique/polynomially many paths
from s to any vertex v . Our result talks about graphs with unique/polynomially
many minimum-weight paths from s to any vertex v . Total s v paths could
be exponential in number.

Result 2 : Max-Unique Weighting Schemes

I A weighting scheme that maps (w : E → N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
Max-unique weighting scheme.

I Studied in a related context :

I LongPath = {(G , s, t, j) | a simple directed path from s to t in G of
length at least j}.

I Testing LongPath in a DAG G with unique source s augmented with a
Max-unique weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

I They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

I Lemma: Reach on Layered DAGs logspace reduces to LongPath on
single source Layered DAGs. In addition, it preserves the max-unique and
max-poly property of the graph.

I Max-Unique weighted Reach is in UL.

Result 2 : Max-Unique Weighting Schemes

I A weighting scheme that maps (w : E → N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
Max-unique weighting scheme.

I Studied in a related context :

I LongPath = {(G , s, t, j) | a simple directed path from s to t in G of
length at least j}.

I Testing LongPath in a DAG G with unique source s augmented with a
Max-unique weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

I They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

I Lemma: Reach on Layered DAGs logspace reduces to LongPath on
single source Layered DAGs. In addition, it preserves the max-unique and
max-poly property of the graph.

I Max-Unique weighted Reach is in UL.

Result 2 : Max-Unique Weighting Schemes

I A weighting scheme that maps (w : E → N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
Max-unique weighting scheme.

I Studied in a related context :

I LongPath = {(G , s, t, j) | a simple directed path from s to t in G of
length at least j}.

I Testing LongPath in a DAG G with unique source s augmented with a
Max-unique weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

I They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

I Lemma: Reach on Layered DAGs logspace reduces to LongPath on
single source Layered DAGs. In addition, it preserves the max-unique and
max-poly property of the graph.

I Max-Unique weighted Reach is in UL.

Result 2 : Max-Unique Weighting Schemes

I A weighting scheme that maps (w : E → N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
Max-unique weighting scheme.

I Studied in a related context :

I LongPath = {(G , s, t, j) | a simple directed path from s to t in G of
length at least j}.

I Testing LongPath in a DAG G with unique source s augmented with a
Max-unique weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

I They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

I Lemma: Reach on Layered DAGs logspace reduces to LongPath on
single source Layered DAGs. In addition, it preserves the max-unique and
max-poly property of the graph.

I Max-Unique weighted Reach is in UL.

Result 2 : Max-Unique Weighting Schemes

I A weighting scheme that maps (w : E → N) such that there is a unique
maximum-weight path from s to any vertex v in the graph is called a
Max-unique weighting scheme.

I Studied in a related context :

I LongPath = {(G , s, t, j) | a simple directed path from s to t in G of
length at least j}.

I Testing LongPath in a DAG G with unique source s augmented with a
Max-unique weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar
- 2009).

I They use this, along with the weighing schemes for planar grid graphs, to
show that the longest path in planar graphs is in UL.

I Lemma: Reach on Layered DAGs logspace reduces to LongPath on
single source Layered DAGs. In addition, it preserves the max-unique and
max-poly property of the graph.

I Max-Unique weighted Reach is in UL.

Result 3: Max-Poly Weighting Schemes

I A weighting scheme that maps (w : E → N) such that there are at most
nc (c is known) maximum-weight paths from s to any vertex v in the
graph is called a Max-poly weighting scheme.

Theorem (2)

Testing Reachability in a layered DAG G augmented with a Max-poly
weighting scheme can be done by a non-deterministic log-space algorithm
unambiguously and hence is in the complexity class UL.

The final algorithm is designed for Long Path problem.

Consequences

The following statements are equivalent :

I NL = UL

I There is a polynomially bounded UL-computable Min-unique weighting
scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).

I There is a polynomially bounded UL-computable Max-unique weighting
scheme for any layered DAG.

I There is a polynomially bounded UL-computable Min-poly weighting
scheme for any layered DAG.

I There is a polynomially bounded UL-computable Max-poly weighting
scheme for any layered DAG.

Consequences

The following statements are equivalent :

I NL = UL

I There is a polynomially bounded UL-computable Min-unique weighting
scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).

I There is a polynomially bounded UL-computable Max-unique weighting
scheme for any layered DAG.

I There is a polynomially bounded UL-computable Min-poly weighting
scheme for any layered DAG.

I There is a polynomially bounded UL-computable Max-poly weighting
scheme for any layered DAG.

Consequences

The following statements are equivalent :

I NL = UL

I There is a polynomially bounded UL-computable Min-unique weighting
scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).

I There is a polynomially bounded UL-computable Max-unique weighting
scheme for any layered DAG.

I There is a polynomially bounded UL-computable Min-poly weighting
scheme for any layered DAG.

I There is a polynomially bounded UL-computable Max-poly weighting
scheme for any layered DAG.

The rest of the talk ...

We will present :

I Outline Allender-Reinhardt Algorithm.

I Modification to get a special NL algorithm for Min-poly case.

I UL Algorithm for Min-poly case and proof sketch.

I Reduction from Reach to LongPath.

We will not present :

I UL algorithm for Max-poly case.

Notations

I Replace weights with paths of the corresponding length. Now, shortest
paths from s to any vertex v in G is unique. All edges go from a lower
numbered vertex to a higher numbered vertex.

I d(v): Length of the shortest s v path.

I ck : Number of vertices within level-k.

I Σk : Sum of d(v)s of vertices within level-k.

Idea (Allender, Reinheardt - 2000) : Inductively for k = 0 to n

I A UL algorithm to check if d(v) ≤ k assuming correct values of ck , Σk are
available.

I Use this to compute ck+1,Σk+1 from ck and Σk

Notations

I Replace weights with paths of the corresponding length. Now, shortest
paths from s to any vertex v in G is unique. All edges go from a lower
numbered vertex to a higher numbered vertex.

I d(v): Length of the shortest s v path.

I ck : Number of vertices within level-k.

I Σk : Sum of d(v)s of vertices within level-k.

Idea (Allender, Reinheardt - 2000) : Inductively for k = 0 to n

I A UL algorithm to check if d(v) ≤ k assuming correct values of ck , Σk are
available.

I Use this to compute ck+1,Σk+1 from ck and Σk

Routine to check if d(v) ≤ k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Values of ck and Σk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next xIf the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an s x path of length `

x

`

→ If path is found,

count := count + 1,sum := sum + `

Final Check:

count = ck and sum = Σk

Return YES iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Values of ck and Σk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next xIf the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an s x path of length `

x

`

→ If path is found,

count := count + 1,sum := sum + `

Final Check:

count = ck and sum = Σk

Return YES iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Values of ck and Σk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ kx

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an s x path of length `

x

`

→ If path is found,

count := count + 1,sum := sum + `

Final Check:

count = ck and sum = Σk

Return YES iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Values of ck and Σk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an s x path of length `

x

`

→ If path is found,

count := count + 1,sum := sum + `

Final Check:

count = ck and sum = Σk

Return YES iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Values of ck and Σk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an s x path of length `

x

`

→ If path is found,

count := count + 1,sum := sum + `

Final Check:

count = ck and sum = Σk

Return YES iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Values of ck and Σk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an s x path of length `

x

`

→ If path is found,

count := count + 1,sum := sum + `

Final Check:

count = ck and sum = Σk

Return YES iff v was guessed within level k

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

If it does not return 0, move on to the next choice of v

v

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

Algorithm to calculate ck+1 and Σk+1 (Min-unique case)
[Reinhardt and Allender 2000]

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1) = (ck ,Σk)

v

If it returns 0,

∀x | (x , v) ∈ E , Check d(x) ≤ k

x

If all checks output 0

→ Move to the next v

If ∃ x ′ 6= x with d(x ′) ≤ k and (x ′, v) ∈ E

→ Not Min-unique

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1

In the Min-Poly case :

I Mindblock : d(v) ≤ k test is not Unambiguous anymore.

I Solution : Guess the paths too. Keep track of total number of paths that
we have seen to v .

I p(v): Number of shortest s v paths.

I pk : Sum of p(v)s of vertices within level-k.

In the Min-Poly case :

I Mindblock : d(v) ≤ k test is not Unambiguous anymore.

I Solution : Guess the paths too. Keep track of total number of paths that
we have seen to v .

I p(v): Number of shortest s v paths.

I pk : Sum of p(v)s of vertices within level-k.

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next xIf the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next xIf the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ kx

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Routine to check if d(v) ≤ k unambiguously (Min-poly case)

s

layer k

t

Values of ck ,Σk and pk are known

For each x ∈ V

→ Non-deterministically guess if d(x) ≤ k

x

If the guess is NO, move to the next x

If the guess is YES,

→ Guess an integer 1 ≤ ` ≤ k,

and an integer 1 ≤ p ≤ nc

→ Guess p s x paths of length `

x

p paths

→ If paths are found and in order,

count := count + 1,sum := sum + `

paths := paths + p

Final Check:

count = ck , sum = Σk and paths = pk

Return p(v) iff v was guessed within level k

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1

→ φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Guessing nc paths in log-space

I In a layered DAG, a path can be represented by a subset of vertices.

I For a path p : (s = v1, vi , . . . , vj),

v1 vi . . . vj

1 0 0 0 1 0 · · · 0 1 → φ(p) = 21 + 2i + . . .+ 2j

I φ(p) is unique for each path.

I However it cannot be represented by logarithmic number of bits.

I So, we need a polynomially bounded m such that φm(p) = φ(p) mod m
also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)

For every constant c there is a constant c ′ so that for every set S of n-bit
integers with |S | ≤ nc there is a c ′ log n-bit prime number m so that for all
x , y ∈ S, x 6= y =⇒ x 6≡ y mod m.

I ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] -
used a similar φ to give weights to edges.

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

If it does not return 0, move on to the next choice of v

v

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Algorithm to calculate ck+1,Σk+1 and pk+1 (Min-poly case)

s

layer k

t

Call the routine to check if d(v) ≤ k

Intitialize (ck+1,Σk+1, pk+1) = (ck ,Σk , pk)

v

If it returns 0,

∀x | (x , v) ∈ E , Call d(x) ≤ k

x

If all calls output 0

→ Move to the next v

If p(v) > nc

→ Not Min-poly

Else

ck+1 := ck+1 + 1
Σk+1 := Σk+1 + k + 1
pk+1 := pk+1 + p(v)

Main

I non-deterministically guess m

I c0 = 1,Σ0 = 0, p0 = 1

I for (k = 1 to n) compute [ck ,Σk , pk] from [ck−1,Σk−1, pk−1]

I if t was covered, ACCEPT-m

Analysis:

I If m does not hash appropriately even for one vertex v , the algorithm will
fail while guessing s v paths.

I If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is Min-Poly.

I Each accept configuration has at most one computational path (FewUL).

Main

I non-deterministically guess m

I c0 = 1,Σ0 = 0, p0 = 1

I for (k = 1 to n) compute [ck ,Σk , pk] from [ck−1,Σk−1, pk−1]

I if t was covered, ACCEPT-m

Analysis:

I If m does not hash appropriately even for one vertex v , the algorithm will
fail while guessing s v paths.

I If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is Min-Poly.

I Each accept configuration has at most one computational path (FewUL).

Main

I non-deterministically guess m

I c0 = 1,Σ0 = 0, p0 = 1

I for (k = 1 to n) compute [ck ,Σk , pk] from [ck−1,Σk−1, pk−1]

I if t was covered, ACCEPT-m

Analysis:

I If m does not hash appropriately even for one vertex v , the algorithm will
fail while guessing s v paths.

I If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])

iff t is reachable from s and the graph is Min-Poly.

I Each accept configuration has at most one computational path (FewUL).

Main

I non-deterministically guess m

I c0 = 1,Σ0 = 0, p0 = 1

I for (k = 1 to n) compute [ck ,Σk , pk] from [ck−1,Σk−1, pk−1]

I if t was covered, ACCEPT-m

Analysis:

I If m does not hash appropriately even for one vertex v , the algorithm will
fail while guessing s v paths.

I If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is Min-Poly.

I Each accept configuration has at most one computational path (FewUL).

Main

I non-deterministically guess m

I c0 = 1,Σ0 = 0, p0 = 1

I for (k = 1 to n) compute [ck ,Σk , pk] from [ck−1,Σk−1, pk−1]

I if t was covered, ACCEPT-m

Analysis:

I If m does not hash appropriately even for one vertex v , the algorithm will
fail while guessing s v paths.

I If m hashes correctly for all vertices, the algorithm will unambiguously
reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is Min-Poly.

I Each accept configuration has at most one computational path (FewUL).

Making the algorithm Unambiguous

I Idea : Guess the least m which hashes all the paths distinctly (Call the
guessed value as f ′ and the actual value as f).

I Run the algorithm using m = f ′. Additionally, run the algorithm for all
m = m′ < f ′, making sure that algorithm finds ”badness” of m′ in a
unique computational path.

I If f ′ is less than f , then f ′ is bad anyway and the algorithm will REJECT.

I If f ′ is more than f , then then in some iteration m′ = f will fail to find a
”badness” and hence REJECT.

I IF f ′ = f , then attempts to find ”badness” of m′ will all together succeed
in exactly one path. Since f is good and unique, the f ′ will make the main
algorithm work unambiguously.

Making the algorithm Unambiguous

I Idea : Guess the least m which hashes all the paths distinctly (Call the
guessed value as f ′ and the actual value as f).

I Run the algorithm using m = f ′. Additionally, run the algorithm for all
m = m′ < f ′, making sure that algorithm finds ”badness” of m′ in a
unique computational path.

I If f ′ is less than f , then f ′ is bad anyway and the algorithm will REJECT.

I If f ′ is more than f , then then in some iteration m′ = f will fail to find a
”badness” and hence REJECT.

I IF f ′ = f , then attempts to find ”badness” of m′ will all together succeed
in exactly one path. Since f is good and unique, the f ′ will make the main
algorithm work unambiguously.

Making the algorithm Unambiguous

I Idea : Guess the least m which hashes all the paths distinctly (Call the
guessed value as f ′ and the actual value as f).

I Run the algorithm using m = f ′. Additionally, run the algorithm for all
m = m′ < f ′, making sure that algorithm finds ”badness” of m′ in a
unique computational path.

I If f ′ is less than f , then f ′ is bad anyway and the algorithm will REJECT.

I If f ′ is more than f , then then in some iteration m′ = f will fail to find a
”badness” and hence REJECT.

I IF f ′ = f , then attempts to find ”badness” of m′ will all together succeed
in exactly one path. Since f is good and unique, the f ′ will make the main
algorithm work unambiguously.

Find the ”badness” of m′ unambiguously

For each m′ < f ′,

I Guess the first level where a vertex v has two paths to it which are not
hashed correctly. Guess this as k ′1 (actual one being k1) and search for the
v in the lex ordering.

I For any such vertex v , there must exist a, b ∈ V such that a, b are
in-neighbours of v at distance k ′1 − 1 from s and there must be two paths,
pa through a and pb through b such that φm(pa) = φm(pb). Search
through the (a, b) pairs in lex ordering.

I For each (a, b) pair, compute p(a) and p(b) respectively. Guess the paths
in the strictly increasing order of φm hashes and try all the pair of paths
among them for witness for ”badness” of m.

Find the ”badness” of m′ unambiguously

For each m′ < f ′,

I Guess the first level where a vertex v has two paths to it which are not
hashed correctly. Guess this as k ′1 (actual one being k1) and search for the
v in the lex ordering.

I For any such vertex v , there must exist a, b ∈ V such that a, b are
in-neighbours of v at distance k ′1 − 1 from s and there must be two paths,
pa through a and pb through b such that φm(pa) = φm(pb). Search
through the (a, b) pairs in lex ordering.

I For each (a, b) pair, compute p(a) and p(b) respectively. Guess the paths
in the strictly increasing order of φm hashes and try all the pair of paths
among them for witness for ”badness” of m.

Find the ”badness” of m′ unambiguously

For each m′ < f ′,

I Guess the first level where a vertex v has two paths to it which are not
hashed correctly. Guess this as k ′1 (actual one being k1) and search for the
v in the lex ordering.

I For any such vertex v , there must exist a, b ∈ V such that a, b are
in-neighbours of v at distance k ′1 − 1 from s and there must be two paths,
pa through a and pb through b such that φm(pa) = φm(pb). Search
through the (a, b) pairs in lex ordering.

I For each (a, b) pair, compute p(a) and p(b) respectively. Guess the paths
in the strictly increasing order of φm hashes and try all the pair of paths
among them for witness for ”badness” of m.

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vn

s ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vn

s ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vns ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vns ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vns ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vns ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Reduction from Reach on a DAG to LongPath

Reach(G , s, t)→ LongPath(G ′, s ′, t, 2n + 1) (n is the number of vertices in G)

s v2 . . . vi . . . vj . . . vns ′
2n

4

2i
2j

2n

We can see that

I G ′ is a single-source DAG

I There is a (s ′ t) path of length at least 2n + 1 in G ′ if and only if there
was a (s t) path in G .

I G ′ is max-unique (max-poly) if and only if G is max-unique (max-poly).

Open Problems

I In this paper, we designed UL algorithms for Reach in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

I Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

I Can we apply any of the above for restricted graph classes? (We know this
for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to
apply this to “Monotone 3D grid graphs”, then NL = UL.

I Structural study of weighing schemes and their design complexity?

Open Problems

I In this paper, we designed UL algorithms for Reach in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

I Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

I Can we apply any of the above for restricted graph classes? (We know this
for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to
apply this to “Monotone 3D grid graphs”, then NL = UL.

I Structural study of weighing schemes and their design complexity?

Open Problems

I In this paper, we designed UL algorithms for Reach in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

I Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

I Can we apply any of the above for restricted graph classes? (We know this
for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to
apply this to “Monotone 3D grid graphs”, then NL = UL.

I Structural study of weighing schemes and their design complexity?

Open Problems

I In this paper, we designed UL algorithms for Reach in directed graphs
augmented with min-poly or max-poly weight assignments.

Open Problems:

I Are min-poly (resp. max-poly) log-space computable weighing schemes
easier to design than min-unique (resp. max-unique) log-space computable
weighing schemes?

I Can we apply any of the above for restricted graph classes? (We know this
for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to
apply this to “Monotone 3D grid graphs”, then NL = UL.

I Structural study of weighing schemes and their design complexity?

Thank You

