Weighting Schemes and the NL vs UL Problem

Anant Dhayal
Jayalal Sarma
Saurabh Sawlani

IIT Madras, Chennai.

Indo-UK Workshop on Computational Complexity IMSc, Chennai, Jan 9, 2015.

The Problem

Reach $=\{(G, s, t) \mid \exists$ a directed path from s to t in $G\}$

The Problem

Reach $=\{(G, s, t) \mid \exists$ a directed path from s to t in $G\}$

- Undirected Reachability is in L (Reingold 2004)

The Problem

Reach $=\{(G, s, t) \mid \exists$ a directed path from s to t in $G\}$

- Undirected Reachability is in L (Reingold 2004)
- Directed Reachability is NL-complete. Even for layered DAGs.

The Problem

REACH $=\{(G, s, t) \mid \exists$ a directed path from s to t in $G\}$

- Undirected Reachability is in L (Reingold 2004)
- Directed Reachability is NL-complete. Even for layered DAGs.
- UL - Problems solvable by logspace NTM having at most one accepting path for each input.

The Problem

REACH $=\{(G, s, t) \mid \exists$ a directed path from s to t in $G\}$

- Undirected Reachability is in L (Reingold 2004)
- Directed Reachability is NL-complete. Even for layered DAGs.
- UL - Problems solvable by logspace NTM having at most one accepting path for each input.

Structural question: Can space bounded non-determinism be made unambiguous?

Weighting Schemes

- For each graph $G(V, E)$, weighing scheme defines a function $w: E \rightarrow \mathbb{N}$.
- Polynomially bounded and log-space computable.
- Weight of a path is the sum of the weights in edges in it.

Weighting Schemes

- For each graph $G(V, E)$, weighing scheme defines a function $w: E \rightarrow \mathbb{N}$.
- Polynomially bounded and log-space computable.
- Weight of a path is the sum of the weights in edges in it.
- A weighting scheme that maps ($w: E \rightarrow \mathbb{N}$) such that there is a unique minimum-weight path from s to any vertex v in the graph is called a Min-unique weighting scheme.

Weighting Schemes

- For each graph $G(V, E)$, weighing scheme defines a function $w: E \rightarrow \mathbb{N}$.
- Polynomially bounded and log-space computable.
- Weight of a path is the sum of the weights in edges in it.
- A weighting scheme that maps ($w: E \rightarrow \mathbb{N}$) such that there is a unique minimum-weight path from s to any vertex v in the graph is called a Min-unique weighting scheme.
- Testing reachability in a graph G augmented with a Min-unique weighting scheme is in UL (Allender and Reinhardt - 2000).

Implications?

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.
- With a polynomial sized advice, we can produce a set of n^{2} graphs preserving reachability and with the guarantee that at least one of them is a min-unique graph. (Allender and Reinhardt, 2000)

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.
- With a polynomial sized advice, we can produce a set of n^{2} graphs preserving reachability and with the guarantee that at least one of them is a min-unique graph. (Allender and Reinhardt, 2000)
NL/poly = UL/poly

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.
- With a polynomial sized advice, we can produce a set of n^{2} graphs preserving reachability and with the guarantee that at least one of them is a min-unique graph. (Allender and Reinhardt, 2000)
NL/poly = UL/poly
- If deterministic linear space has functions that are not computable by circuits of size $2^{\epsilon n}$, then NL $=U L$.

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.
- With a polynomial sized advice, we can produce a set of n^{2} graphs preserving reachability and with the guarantee that at least one of them is a min-unique graph. (Allender and Reinhardt, 2000)
NL/poly = UL/poly
- If deterministic linear space has functions that are not computable by circuits of size $2^{\epsilon n}$, then NL = UL.
- A natural question: Can we design such weighing schemes for restricted classes of graphs?

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.
- With a polynomial sized advice, we can produce a set of n^{2} graphs preserving reachability and with the guarantee that at least one of them is a min-unique graph. (Allender and Reinhardt, 2000)
NL/poly = UL/poly
- If deterministic linear space has functions that are not computable by circuits of size $2^{\epsilon n}$, then NL = UL.
- A natural question: Can we design such weighing schemes for restricted classes of graphs?
- Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).

Implications?

- For showing NL $=$ UL, it suffices to come up with a min-unique weighting scheme that is computable in log-space.
- With a polynomial sized advice, we can produce a set of n^{2} graphs preserving reachability and with the guarantee that at least one of them is a min-unique graph. (Allender and Reinhardt, 2000)
NL/poly = UL/poly
- If deterministic linear space has functions that are not computable by circuits of size $2^{\epsilon n}$, then NL = UL.
- A natural question: Can we design such weighing schemes for restricted classes of graphs?
- Yes, for planar grid graphs (Bourke, Tewari and Vinodchandran - 2007).
- Planar reachability problem reduces (in log-space) to Grid Graph Reachability (Allender et al 2006). Thus, Planar Reach is in UL.

Is Allender-Reinhardt result tight?

- $\mathrm{NL}=\mathrm{UL} \Longleftarrow$ L-computable Min-Unique Weighing schemes.

Is the converse true?

Is Allender-Reinhardt result tight?

- $\mathrm{NL}=\mathrm{UL} \Longleftarrow$ L-computable Min-UnIQUE Weighing schemes. Is the converse true?
- NL $=$ UL \Longleftrightarrow UL-computable Min-UNIQUE weighing schemes.(Pavan, Tewari, Vinodchandran, 2012).

Is Allender-Reinhardt result tight?

- $\mathrm{NL}=\mathrm{UL} \Longleftarrow$ L-computable Min-Unique Weighing schemes. Is the converse true?
- NL $=$ UL \Longleftrightarrow UL-computable Min-UNIQUE weighing schemes.(Pavan, Tewari, Vinodchandran, 2012).
- A weighting scheme that maps $(w: E \rightarrow \mathbb{N})$ such that there are at most n^{c} (c is known) minimum-weights path from s to any vertex v in the graph is called a Min-POLY weighting scheme.

Is Allender-Reinhardt result tight?

- $\mathrm{NL}=\mathrm{UL} \Longleftarrow$ L-computable Min-UnIQUE Weighing schemes. Is the converse true?
- NL $=$ UL \Longleftrightarrow UL-computable Min-UnIQUE weighing schemes.(Pavan, Tewari, Vinodchandran, 2012).
- A weighting scheme that maps $(w: E \rightarrow \mathbb{N})$ such that there are at most n^{c} (c is known) minimum-weights path from s to any vertex v in the graph is called a Min-POLY weighting scheme.

Questions:

- Can Min-Poly Weighted Reachability be done in UL?
- Does this help in showing NL = UL?

Result 1: Relaxing Min-Unique to Min-Poly.

Theorem (1)
Testing reachability in a layered DAG G augmented with a Min-poly weighting scheme is in UL.

Result 1 : Relaxing Min-UniQue to Min-Poly.

Theorem (1)

Testing reachability in a layered DAG G augmented with a Min-poly weighting scheme is in UL.

Comparison: ReachFewL $=$ ReachUL (Garvin, Stolee, Tewari, Vinodchandran 2011)

The above result talks about graphs with unique/polynomially many paths from s to any vertex v. Our result talks about graphs with unique/polynomially many minimum-weight paths from s to any vertex v. Total $s \rightsquigarrow v$ paths could be exponential in number.

Result 2 : Max-Unique Weighting Schemes

- A weighting scheme that maps ($w: E \rightarrow \mathbb{N}$) such that there is a unique maximum-weight path from s to any vertex v in the graph is called a MAX-UNIQUE weighting scheme.

Result 2 : Max-Unique Weighting Schemes

- A weighting scheme that maps $(w: E \rightarrow \mathbb{N})$ such that there is a unique maximum-weight path from s to any vertex v in the graph is called a MAX-UNIQUE weighting scheme.
- Studied in a related context :
- LongPath $=\{(G, s, t, j) \mid$ a simple directed path from s to t in G of length at least $j\}$.

Result 2 : Max-Unique Weighting Schemes

- A weighting scheme that maps $(w: E \rightarrow \mathbb{N})$ such that there is a unique maximum-weight path from s to any vertex v in the graph is called a MAX-UNIQUE weighting scheme.
- Studied in a related context :
- LongPath $=\{(G, s, t, j) \mid$ a simple directed path from s to t in G of length at least $j\}$.
- Testing LongPath in a DAG G with unique source s augmented with a MAX-UNIQUE weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar - 2009).

Result 2 : Max-Unique Weighting Schemes

- A weighting scheme that maps $(w: E \rightarrow \mathbb{N})$ such that there is a unique maximum-weight path from s to any vertex v in the graph is called a MAX-UNIQUE weighting scheme.
- Studied in a related context :
- LongPath $=\{(G, s, t, j) \mid$ a simple directed path from s to t in G of length at least $j\}$.
- Testing LongPath in a DAG G with unique source s augmented with a MAX-UNIQUE weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar - 2009).
- They use this, along with the weighing schemes for planar grid graphs, to show that the longest path in planar graphs is in UL.

Result 2 : Max-Unique Weighting Schemes

- A weighting scheme that maps $(w: E \rightarrow \mathbb{N})$ such that there is a unique maximum-weight path from s to any vertex v in the graph is called a MAX-UNIQUE weighting scheme.
- Studied in a related context :
- LongPath $=\{(G, s, t, j) \mid$ a simple directed path from s to t in G of length at least $j\}$.
- Testing LongPath in a DAG G with unique source s augmented with a MAX-UNIQUE weighting scheme is in UL (Limaye, Mahajan, and Nimbhorkar - 2009).
- They use this, along with the weighing schemes for planar grid graphs, to show that the longest path in planar graphs is in UL.
- Lemma: Reach on Layered DAGs logspace reduces to LongPath on single source Layered DAGs. In addition, it preserves the max-unique and max-poly property of the graph.
- Max-Unique weighted Reach is in UL.

Result 3: Max-Poly Weighting Schemes

- A weighting scheme that maps ($w: E \rightarrow \mathbb{N}$) such that there are at most n^{c} (c is known) maximum-weight paths from s to any vertex v in the graph is called a MAX-poly weighting scheme.

Theorem (2)

Testing Reachability in a layered DAG G augmented with a Max-poly weighting scheme can be done by a non-deterministic log-space algorithm unambiguously and hence is in the complexity class UL.

The final algorithm is designed for Long Path problem.

Consequences

The following statements are equivalent:

- $\mathrm{NL}=\mathrm{UL}$

Consequences

The following statements are equivalent:

- $\mathrm{NL}=\mathrm{UL}$
- There is a polynomially bounded UL-computable Min-UNIQUE weighting scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).

Consequences

The following statements are equivalent:

- $\mathrm{NL}=\mathrm{UL}$
- There is a polynomially bounded UL-computable Min-Unique weighting scheme for any layered DAG. (Pavan, Tewari, Vinodchandran - 2012).
- There is a polynomially bounded UL-computable MAX-UNIQUE weighting scheme for any layered DAG.
- There is a polynomially bounded UL-computable MIN-POLY weighting scheme for any layered DAG.
- There is a polynomially bounded UL-computable MAX-POLY weighting scheme for any layered DAG.

The rest of the talk ...

We will present :

- Outline Allender-Reinhardt Algorithm.
- Modification to get a special NL algorithm for Min-Poly case.
- UL Algorithm for Min-poly case and proof sketch.
- Reduction from Reach to LongPath.

We will not present :

- UL algorithm for MAX-POLY case.

Notations

- Replace weights with paths of the corresponding length. Now, shortest paths from s to any vertex v in G is unique. All edges go from a lower numbered vertex to a higher numbered vertex.
$-d(v)$: Length of the shortest $s \rightsquigarrow v$ path.

Notations

- Replace weights with paths of the corresponding length. Now, shortest paths from s to any vertex v in G is unique. All edges go from a lower numbered vertex to a higher numbered vertex.
- $d(v)$: Length of the shortest $s \rightsquigarrow v$ path.
- c_{k} : Number of vertices within level- k.
- Σ_{k} : Sum of $d(v)$ s of vertices within level- k.

Idea (Allender, Reinheardt - 2000) : Inductively for $k=0$ to n

- A UL algorithm to check if $d(v) \leq k$ assuming correct values of c_{k}, Σ_{k} are available.
- Use this to compute c_{k+1}, Σ_{k+1} from c_{k} and Σ_{k}

Routine to check if $d(v) \leq k$ unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

Routine to check if $d(v) \leq k$ unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

Values of c_{k} and Σ_{k} are known

For each $x \in V$
\rightarrow Non-deterministically guess if $d(x) \leq k$

Routine to check if $d(v) \leq k$ unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

Values of c_{k} and Σ_{k} are known

For each $x \in V$
\rightarrow Non-deterministically guess if $d(x) \leq k$ If the guess is NO, move to the next x

Routine to check if $d(v) \leq k$ unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

Values of c_{k} and Σ_{k} are known

For each $x \in V$
\rightarrow Non-deterministically guess if $d(x) \leq k$ If the guess is YES,
\rightarrow Guess an integer $1 \leq \ell \leq k$, and an $s \rightsquigarrow x$ path of length ℓ \rightarrow If path is found, count $:=$ count +1, sum $:=$ sum $+\ell$
layer k

Routine to check if $d(v) \leq k$ unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

Routine to check if $d(v) \leq k$ unambiguously (Min-unique case)
[Reinhardt and Allender 2000]

Values of c_{k} and Σ_{k} are known

For each $x \in V$
\rightarrow Non-deterministically guess if $d(x) \leq k$ If the guess is YES,
\rightarrow Guess an integer $1 \leq \ell \leq k$, and an $s \rightsquigarrow x$ path of length ℓ \rightarrow If path is found, count $:=$ count +1, sum $:=$ sum $+\ell$

$$
\begin{gathered}
\text { Final Check: } \\
\text { count }=c_{k} \text { and sum }=\Sigma_{k}
\end{gathered}
$$

Return YES iff v was guessed within level k

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)
[Reinhardt and Allender 2000]

Intitialize $\left(c_{k+1}, \Sigma_{k+1}\right)=\left(c_{k}, \Sigma_{k}\right)$
Call the routine to check if $d(v) \leq k$

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)

[Reinhardt and Allender 2000]

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)
[Reinhardt and Allender 2000]

Intitialize $\left(c_{k+1}, \Sigma_{k+1}\right)=\left(c_{k}, \Sigma_{k}\right)$
Call the routine to check if $d(v) \leq k$ If it returns 0 ,

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)
[Reinhardt and Allender 2000]

Intitialize $\left(c_{k+1}, \Sigma_{k+1}\right)=\left(c_{k}, \Sigma_{k}\right)$
Call the routine to check if $d(v) \leq k$ If it returns 0 , $\forall x \mid(x, v) \in E$, Check $d(x) \leq k$

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)
[Reinhardt and Allender 2000]

Intitialize $\left(c_{k+1}, \Sigma_{k+1}\right)=\left(c_{k}, \Sigma_{k}\right)$
Call the routine to check if $d(v) \leq k$ If it returns 0 , $\forall x \mid(x, v) \in E$, Check $d(x) \leq k$

If all checks output 0
\rightarrow Move to the next v

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)
[Reinhardt and Allender 2000]

Algorithm to calculate c_{k+1} and Σ_{k+1} (Min-unique case)
[Reinhardt and Allender 2000]

In the Min-Poly case :

- Mindblock : $d(v) \leq k$ test is not Unambiguous anymore.
- Solution: Guess the paths too. Keep track of total number of paths that we have seen to v.

In the Min-Poly case :

- Mindblock : $d(v) \leq k$ test is not Unambiguous anymore.
- Solution: Guess the paths too. Keep track of total number of paths that we have seen to v.
- $p(v)$: Number of shortest $s \rightsquigarrow v$ paths.
- p_{k} : Sum of $p(v) s$ of vertices within level- k.

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)
Values of c_{k}, Σ_{k} and p_{k} are known
layer k

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)

Values of c_{k}, Σ_{k} and p_{k} are known
layer k

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)

Values of c_{k}, Σ_{k} and p_{k} are known
\rightarrow Non-deterministically guess if $d(x) \leq k$ If the guess is YES,
\rightarrow Guess an integer $1 \leq \ell \leq k$, and an integer $1 \leq p \leq n^{c}$
\rightarrow Guess $p s \rightsquigarrow x$ paths of length ℓ
\rightarrow If paths are found and in order, count $:=$ count +1 ,sum $:=$ sum $+\ell$ paths $:=$ paths $+p$

> Final Check:
> count $=c_{k}$, sum $=\Sigma_{k}$ and paths $=p_{k}$
layer k

Routine to check if $d(v) \leq k$ unambiguously (Min-poly case)

layer k

Values of c_{k}, Σ_{k} and p_{k} are known
\rightarrow Non-deterministically guess if $d(x) \leq k$ If the guess is YES,
\rightarrow Guess an integer $1 \leq \ell \leq k$, and an integer $1 \leq p \leq n^{c}$
\rightarrow Guess $p s \rightsquigarrow x$ paths of length ℓ
\rightarrow If paths are found and in order, count $:=$ count +1 ,sum $:=$ sum $+\ell$ paths $:=$ paths $+p$

Final Check:
count $=c_{k}$, sum $=\Sigma_{k}$ and paths $=p_{k}$

Return $p(v)$ iff v was guessed within level k

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

$$
\rightarrow \phi(p)=2^{1}+2^{i}+\ldots+2^{j}
$$

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

$$
\rightarrow \phi(p)=2^{1}+2^{i}+\ldots+2^{j}
$$

- $\phi(p)$ is unique for each path.
- However it cannot be represented by logarithmic number of bits.
- So, we need a polynomially bounded m such that $\phi_{m}(p)=\phi(p) \bmod m$ also remains unique.

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

$$
\rightarrow \phi(p)=2^{1}+2^{i}+\ldots+2^{j}
$$

- $\phi(p)$ is unique for each path.
- However it cannot be represented by logarithmic number of bits.
- So, we need a polynomially bounded m such that $\phi_{m}(p)=\phi(p) \bmod m$ also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)
For every constant c there is a constant c^{\prime} so that for every set S of n-bit integers with $|S| \leq n^{c}$ there is a $c^{\prime} \log n$-bit prime number m so that for all $x, y \in S, x \neq y \Longrightarrow x \not \equiv y \bmod m$.

Guessing n^{c} paths in log-space

- In a layered DAG, a path can be represented by a subset of vertices.
- For a path $p:\left(s=v_{1}, v_{i}, \ldots, v_{j}\right)$,

$$
\rightarrow \phi(p)=2^{1}+2^{i}+\ldots+2^{j}
$$

- $\phi(p)$ is unique for each path.
- However it cannot be represented by logarithmic number of bits.
- So, we need a polynomially bounded m such that $\phi_{m}(p)=\phi(p) \bmod m$ also remains unique.

Theorem (Fredman, Komlos, Szemeredi - 1984)
For every constant c there is a constant c^{\prime} so that for every set S of n-bit integers with $|S| \leq n^{c}$ there is a $c^{\prime} \log n$-bit prime number m so that for all $x, y \in S, x \neq y \Longrightarrow x \not \equiv y \bmod m$.

- ReachFewL = ReachUL, Garvin, Stolee, Tewari, Vinodchandran [2011] used a similar ϕ to give weights to edges.

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

$$
\text { Intitialize }\left(c_{k+1}, \Sigma_{k+1}, p_{k+1}\right)=\left(c_{k}, \Sigma_{k}, p_{k}\right)
$$

Call the routine to check if $d(v) \leq k$ If it returns 0 ,

$$
\forall x \mid(x, v) \in E, \text { Call } d(x) \leq k
$$

layer k

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

Algorithm to calculate c_{k+1}, Σ_{k+1} and p_{k+1} (Min-poly case)

- non-deterministically guess m
- $c_{0}=1, \Sigma_{0}=0, p_{0}=1$
- for ($\mathrm{k}=1$ to n) compute $\left[c_{k}, \Sigma_{k}, p_{k}\right.$] from [$c_{k-1}, \Sigma_{k-1}, p_{k-1}$]
- if t was covered, ACCEPT-m

Main

- non-deterministically guess m
- $c_{0}=1, \Sigma_{0}=0, p_{0}=1$
- for ($\mathrm{k}=1$ to n) compute [c_{k}, Σ_{k}, p_{k}] from [$c_{k-1}, \Sigma_{k-1}, p_{k-1}$]
- if t was covered, ACCEPT-m

Analysis:

- If m does not hash appropriately even for one vertex v, the algorithm will fail while guessing $s \rightsquigarrow v$ paths.

Main

- non-deterministically guess m
- $c_{0}=1, \Sigma_{0}=0, p_{0}=1$
- for ($\mathrm{k}=1$ to n) compute [c_{k}, Σ_{k}, p_{k}] from [$c_{k-1}, \Sigma_{k-1}, p_{k-1}$]
- if t was covered, ACCEPT-m

Analysis:

- If m does not hash appropriately even for one vertex v, the algorithm will fail while guessing $s \rightsquigarrow v$ paths.
- If m hashes correctly for all vertices, the algorithm will unambiguously reach the state ACCEPT (or the configuration [ACCEPT,m])

Main

- non-deterministically guess m
- $c_{0}=1, \Sigma_{0}=0, p_{0}=1$
- for ($\mathrm{k}=1$ to n) compute [c_{k}, Σ_{k}, p_{k}] from [$c_{k-1}, \Sigma_{k-1}, p_{k-1}$]
- if t was covered, ACCEPT-m

Analysis:

- If m does not hash appropriately even for one vertex v, the algorithm will fail while guessing $s \rightsquigarrow v$ paths.
- If m hashes correctly for all vertices, the algorithm will unambiguously reach the state ACCEPT
(or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is Min-Poly.

Main

- non-deterministically guess m
- $c_{0}=1, \Sigma_{0}=0, p_{0}=1$
- for ($\mathrm{k}=1$ to n) compute $\left[c_{k}, \Sigma_{k}, p_{k}\right]$ from $\left[c_{k-1}, \Sigma_{k-1}, p_{k-1}\right.$]
- if t was covered, ACCEPT-m

Analysis:

- If m does not hash appropriately even for one vertex v, the algorithm will fail while guessing $s \rightsquigarrow v$ paths.
- If m hashes correctly for all vertices, the algorithm will unambiguously reach the state ACCEPT (or the configuration [ACCEPT,m])
iff t is reachable from s and the graph is Min-Poly.
- Each accept configuration has at most one computational path (FewUL).

Making the algorithm Unambiguous

- Idea : Guess the least m which hashes all the paths distinctly (Call the guessed value as f^{\prime} and the actual value as f).

Making the algorithm Unambiguous

- Idea: Guess the least m which hashes all the paths distinctly (Call the guessed value as f^{\prime} and the actual value as f).
- Run the algorithm using $m=f^{\prime}$. Additionally, run the algorithm for all $m=m^{\prime}<f^{\prime}$, making sure that algorithm finds "badness" of m^{\prime} in a unique computational path.

Making the algorithm Unambiguous

- Idea: Guess the least m which hashes all the paths distinctly (Call the guessed value as f^{\prime} and the actual value as f).
- Run the algorithm using $m=f^{\prime}$. Additionally, run the algorithm for all $m=m^{\prime}<f^{\prime}$, making sure that algorithm finds "badness" of m^{\prime} in a unique computational path.
- If f^{\prime} is less than f, then f^{\prime} is bad anyway and the algorithm will REJECT.
- If f^{\prime} is more than f, then then in some iteration $m^{\prime}=f$ will fail to find a "badness" and hence REJECT.
- IF $f^{\prime}=f$, then attempts to find "badness" of m^{\prime} will all together succeed in exactly one path. Since f is good and unique, the f^{\prime} will make the main algorithm work unambiguously.

Find the "badness" of m^{\prime} unambiguously

For each $m^{\prime}<f^{\prime}$,

- Guess the first level where a vertex v has two paths to it which are not hashed correctly. Guess this as k_{1}^{\prime} (actual one being k_{1}) and search for the v in the lex ordering.

Find the "badness" of m^{\prime} unambiguously

For each $m^{\prime}<f^{\prime}$,

- Guess the first level where a vertex v has two paths to it which are not hashed correctly. Guess this as k_{1}^{\prime} (actual one being k_{1}) and search for the v in the lex ordering.
- For any such vertex v, there must exist $a, b \in V$ such that a, b are in-neighbours of v at distance $k_{1}^{\prime}-1$ from s and there must be two paths, p_{a} through a and p_{b} through b such that $\phi_{m}\left(p_{a}\right)=\phi_{m}\left(p_{b}\right)$. Search through the (a, b) pairs in lex ordering.

Find the "badness" of m^{\prime} unambiguously

For each $m^{\prime}<f^{\prime}$,

- Guess the first level where a vertex v has two paths to it which are not hashed correctly. Guess this as k_{1}^{\prime} (actual one being k_{1}) and search for the v in the lex ordering.
- For any such vertex v, there must exist $a, b \in V$ such that a, b are in-neighbours of v at distance $k_{1}^{\prime}-1$ from s and there must be two paths, p_{a} through a and p_{b} through b such that $\phi_{m}\left(p_{a}\right)=\phi_{m}\left(p_{b}\right)$. Search through the (a, b) pairs in lex ordering.
- For each (a, b) pair, compute $p(a)$ and $p(b)$ respectively. Guess the paths in the strictly increasing order of ϕ_{m} hashes and try all the pair of paths among them for witness for "badness" of m.

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

We can see that

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

We can see that

- G^{\prime} is a single-source DAG

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

We can see that

- G^{\prime} is a single-source DAG
- There is a $\left(s^{\prime} \rightsquigarrow t\right)$ path of length at least $2 n+1$ in G^{\prime} if and only if there was a $(s \rightsquigarrow t)$ path in G.

Reduction from Reach on a DAG to LongPath

$\operatorname{Reach}(G, s, t) \rightarrow \operatorname{LongPath}\left(G^{\prime}, s^{\prime}, t, 2 n+1\right)(n$ is the number of vertices in $G)$

We can see that

- G^{\prime} is a single-source DAG
- There is a $\left(s^{\prime} \rightsquigarrow t\right)$ path of length at least $2 n+1$ in G^{\prime} if and only if there was a ($s \rightsquigarrow t$) path in G.
- G^{\prime} is max-unique (max-poly) if and only if G is max-unique (max-poly).

Open Problems

- In this paper, we designed UL algorithms for REACH in directed graphs augmented with min-poly or max-poly weight assignments.

Open Problems

- In this paper, we designed UL algorithms for Reach in directed graphs augmented with min-poly or max-poly weight assignments.

Open Problems:

- Are min-poly (resp. max-poly) log-space computable weighing schemes easier to design than min-unique (resp. max-unique) log-space computable weighing schemes?

Open Problems

- In this paper, we designed UL algorithms for REACH in directed graphs augmented with min-poly or max-poly weight assignments.

Open Problems:

- Are min-poly (resp. max-poly) log-space computable weighing schemes easier to design than min-unique (resp. max-unique) log-space computable weighing schemes?
- Can we apply any of the above for restricted graph classes? (We know this for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to apply this to "Monotone 3D grid graphs", then NL = UL.

Open Problems

- In this paper, we designed UL algorithms for REACH in directed graphs augmented with min-poly or max-poly weight assignments.

Open Problems:

- Are min-poly (resp. max-poly) log-space computable weighing schemes easier to design than min-unique (resp. max-unique) log-space computable weighing schemes?
- Can we apply any of the above for restricted graph classes? (We know this for grid graphs [Bourke, Tewari, Vinodchandran - 2009]) If we are able to apply this to "Monotone 3D grid graphs", then NL = UL.
- Structural study of weighing schemes and their design complexity?

Thank You

