Arithmetic Circuits Lower Bounds via (Polynomial) Partial Derivatives Matrices

Mrinal Kumar Gaurav Maheshwari Jayalal Sarma (Rutgers Univ.) (Goldman Sachs) (IIT Madras)

June 28, 2013
IMSc, Chennai
(1) Introduction \& Results
(2) Techniques \& Proofs

Arithmetic Circuits

Basic Objects : $\left\{f_{n}: f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, x_{2}, \ldots x_{n}\right], n \in \mathbb{N}\right\}$

Arithmetic Circuits

Basic Objects: $\left\{f_{n}: f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, x_{2}, \ldots x_{n}\right], n \in \mathbb{N}\right\}$ Adversaries: Circuits with,$+ \times$ as gates computes a polynomial in $\mathbb{F}[X]$

Parameters:

- Size: \# of gates in the circuit.
- Depth: Longest path from any leaf to root.

Arithmetic Circuits

Basic Objects: $\left\{f_{n}: f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, x_{2}, \ldots x_{n}\right], n \in \mathbb{N}\right\}$ Adversaries: Circuits with,$+ \times$ as gates computes a polynomial in $\mathbb{F}[X]$

Parameters:

- Size: \# of gates in the circuit.
- Depth: Longest path from any leaf to root.

Two natural Questions:

- Are there polynomials that are "hard" in terms of size?
- Are there polynomials that are "hard" in terms of depth?

A Central Question and Two Fundamental
 Polynomials

VP : Set of polynomials of poly degree computed by polysized arithmetic circuits.

$$
\operatorname{Det}(X)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i \in[n]} x_{i j}
$$

Determinant polynomial of the generic matrix is complete for VP.

VP vs VNP Problem. \equiv Permanent vs Determinant Problem.
Are there polynomials in VNP that requires super polynomial size for any arithmetic circuit computing them?

What is known? - Structurally Limited Circuits

Restriction	Bound	Reference
Depth-2 circuits	$2^{\Omega(n \log n)}$	Trivial
Depth-3 circuits (over finite fields)	$2^{\Omega(n)}$	GRIGORIEV-KARPINSKI(1998)
Depth-3 circuits	$\Omega\left(n^{2}\right)$	SHPILKA-WIGDERSON (2001)
General circuits	$\Omega(n \log n)$	BAUR-STRASSEN(1983)
General formulas	$\Omega\left(n^{3}\right)$	KALORKOTI(1985)

What is known? - Structurally Limited Circuits

Restriction	Bound	Reference
Depth-2 circuits	$2^{\Omega(n \log n)}$	Trivial
Depth-3 circuits (over finite fields)	$2^{\Omega(n)}$	GriGORIEV-KARPINSKI(1998)
Depth-3 circuits	$\Omega\left(n^{2}\right)$	ShPILKA-WIGDERSON (2001)
General circuits	$\Omega(n \log n)$	BAUR-STRASSEN(1983)
General formulas	$\Omega\left(n^{3}\right)$	KALORKOTI(1985)

- We are stuck for the case of constant depth circuits (even for depth three!).
- What can we assume in general about the depth of the circuit?

Depth reductions till 2010

Valiant-Skyum-Berkowitz-Rackoff(1983) If f of polynomial degree can be computed with a circuit of polynomial size, then f can be computed in polynomial size and depth $O\left(\log ^{2} n\right)$. Thus,

$$
\mathrm{VP}=\mathrm{VNC}^{2}
$$

Depth reductions till 2010

Valiant-Skyum-Berkowitz-Rackoff(1983) If f of polynomial degree can be computed with a circuit of polynomial size, then f can be computed in polynomial size and depth $O\left(\log ^{2} n\right)$. Thus,

$$
\mathrm{VP}=\mathrm{VNC}^{2}
$$

Agrawal-Vinay(2008), Koiran(2010): If f can be computed by polynomial size circuits, then f can be computed in size $2^{O}\left(\sqrt{n} \log ^{2} n\right)$ by a depth 4 circuit.

Depth reductions till 2010

Valiant-Skyum-Berkowitz-Rackoff(1983) If f of polynomial degree can be computed with a circuit of polynomial size, then f can be computed in polynomial size and depth $O\left(\log ^{2} n\right)$. Thus,

$$
\mathrm{VP}=\mathrm{VNC}^{2}
$$

Agrawal-Vinay(2008), Koiran(2010): If f can be computed by polynomial size circuits, then f can be computed in size $2^{O}\left(\sqrt{n} \log ^{2} n\right)$ by a depth 4 circuit.

Conclusion : For separating VNP from VP, it suffices to show that there is a polynomial with n variables in VNP which requires size $2^{\omega\left(\sqrt{n} \log ^{2} n\right)}$ for any depth 4 circuit computing it.

Observations on the Candidate Hard Polynomial - I

They are homogeneous: Each monomial is of the same degree.
Homogeneous circuit: It computes a homogeneous polynomial at each gate.

Observations on the Candidate Hard Polynomial - I

They are homogeneous : Each monomial is of the same degree.
Homogeneous circuit: It computes a homogeneous polynomial at each gate.
Question 1: Can we prove lower bounds against homogeneous circuits?
Question 2 : Does non-homogeneity help in super polynomial size reduction?

Observations on the Candidate Hard Polynomial - I

They are homogeneous : Each monomial is of the same degree.
Homogeneous circuit: It computes a homogeneous polynomial at each gate.
Question 1: Can we prove lower bounds against homogeneous circuits?
Question 2 : Does non-homogeneity help in super polynomial size reduction? No, in general, but not known for constant depth.

Observations on the Candidate Hard Polynomial - I

They are homogeneous : Each monomial is of the same degree.
Homogeneous circuit: It computes a homogeneous polynomial at each gate.
Question 1: Can we prove lower bounds against homogeneous circuits?
Question 2 : Does non-homogeneity help in super polynomial size reduction? No, in general, but not known for constant depth.
$\operatorname{Agrawal-Vinay}(2008)$, $\operatorname{Koiran}(2010)$: If f can be computed by polynomial size circuits, then f can be computed in size $2^{O(\sqrt{n} \log n)}$ by a depth 4 homogeneous circuit.

Conclusion: Suffices to prove lower bounds of the form $2^{\omega(\sqrt{n} \log n)}$ against depth 4 homegenous circuits.

In the Homogeneous World ...

Iterated Matrix Multiplication (IMM) Given $d, n \times n$ generic matrices, compute the product matrix. Polynomial is the one computed at $(1,1)$-entry of the resulting matrix.

$$
\left(\begin{array}{ccc}
x_{11}^{(1)} & \ldots & x_{1 n}^{(1)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(1)} & \ldots & x_{n n}^{(1)}
\end{array}\right)\left(\begin{array}{ccc}
x_{11}^{(2)} & \ldots & x_{1 n}^{(2)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(2)} & \ldots & x_{n n}^{(2)}
\end{array}\right) \cdots\left(\begin{array}{ccc}
x_{11}^{(d)} & \ldots & x_{1 n}^{(d)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(d)} & \ldots & x_{n n}^{(d)}
\end{array}\right)=\left(\begin{array}{ccc}
p_{11} & \ldots & p_{1 n} \\
\vdots & \vdots & \vdots \\
p_{n 1} & \ldots & p_{n n}
\end{array}\right)
$$

Nisan-Wigderson (1995): Any depth three homogeneous circuit computing the IMM polynomial must have size $\Omega\left(\frac{n^{d-1}}{d!}\right)$.

In the Homogeneous World ...

Iterated Matrix Multiplication (IMM) Given $d, n \times n$ generic matrices, compute the product matrix. Polynomial is the one computed at $(1,1)$-entry of the resulting matrix.

$$
\left(\begin{array}{ccc}
x_{11}^{(1)} & \ldots & x_{1 n}^{(1)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(1)} & \ldots & x_{n n}^{(1)}
\end{array}\right)\left(\begin{array}{ccc}
x_{11}^{(2)} & \ldots & x_{1 n}^{(2)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(2)} & \ldots & x_{n n}^{(2)}
\end{array}\right) \cdots\left(\begin{array}{ccc}
x_{11}^{(d)} & \ldots & x_{1 n}^{(d)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(d)} & \ldots & x_{n n}^{(d)}
\end{array}\right)=\left(\begin{array}{ccc}
p_{11} & \ldots & p_{1 n} \\
\vdots & \vdots & \vdots \\
p_{n 1} & \ldots & p_{n n}
\end{array}\right)
$$

Nisan-Wigderson (1995): Any depth three homogeneous circuit computing the IMM polynomial must have size $\Omega\left(\frac{n^{d-1}}{d!}\right)$.
Technique: Partial Derivatives Method.
There is a depth two homogeneous circuit computing the IMM polynomial of size $O\left(n^{d-1}\right)$.

Meanwhile in Bangalore ... Strong Lower Bounds against Homogeneous depth-4 circuits

Gupta-Kamath-Kayal-Saptarishi (2012): Any homogeneous depth four arithmetic circuit with bottom fanin bounded by \sqrt{n} computing permanent must of size $2^{\Omega(\sqrt{n} \log n)}$.

Meanwhile in Bangalore ... Strong Lower Bounds against Homogeneous depth-4 circuits

Gupta-Kamath-Kayal-Saptarishi (2012): Any homogeneous depth four arithmetic circuit with bottom fanin bounded by \sqrt{n} computing permanent must of size $2^{\Omega(\sqrt{n} \log n)}$.

Technique: Shifted Partial Derivatives Method.
Good news: If this size lower bound is quantitatively improved to $2^{\omega\left(\sqrt{n} \log ^{2} n\right)}$, then we separate VP from VNP.

Meanwhile in Bangalore ... Strong Lower Bounds against Homogeneous depth-4 circuits

Gupta-Kamath-Kayal-Saptarishi (2012): Any homogeneous depth four arithmetic circuit with bottom fanin bounded by \sqrt{n} computing permanent must of size $2^{\Omega(\sqrt{n} \log n)}$.

Technique: Shifted Partial Derivatives Method.
Good news: If this size lower bound is quantitatively improved to $2^{\omega\left(\sqrt{n} \log ^{2} n\right)}$, then we separate VP from VNP.

Bad news: Whatever is known, works even for the determinant.

Observations on the Candidate Hard Polynomial - II

They are multilinear : Each monomial has variables occuring in individual degree at most 1 .
Circuit is multilinear if each gate computes a multilinear polynomial.

Observations on the Candidate Hard Polynomial - II

They are multilinear : Each monomial has variables occuring in individual degree at most 1 .
Circuit is multilinear if each gate computes a multilinear polynomial.

Question 1 : Can we prove lower bounds against multilinear circuits?
Question 2 : Does non-multilinearity help in super polynomial size reduction?

Observations on the Candidate Hard Polynomial - II

They are multilinear : Each monomial has variables occuring in individual degree at most 1 .
Circuit is multilinear if each gate computes a multilinear polynomial.

Question 1: Can we prove lower bounds against multilinear circuits?
Question 2 : Does non-multilinearity help in super polynomial size reduction?

RaZ 2005 : Multilinear formulas computing determinant and permanent of $n \times n$ matrices require $n^{\Omega(\log n)}$ size.

Can we extend the above lower bound technique to the case of non-multilinear circuits?

Product Dimension

Consider a depth three circuit ($\Sigma \Pi \Sigma$). Let the top-fanin be k. $\forall 1 \leq i \leq k, d_{i}$ denote the fanin of the $i^{t h}$ product gate Q_{i}.

> Product Dimension $\left(Q_{i}\right)=\operatorname{dim}\left\{\operatorname{span}\left\{L_{i j}: j \in\left[d_{i}\right]\right\}\right\}$
> Product $\operatorname{Dimension}(\mathrm{C})=\max _{i}\left\{\right.$ Product Dimension $\left.\left(Q_{i}\right)\right\}$

Product Dimension

Consider a depth three circuit ($\Sigma \Pi \Sigma$). Let the top-fanin be k. $\forall 1 \leq i \leq k, d_{i}$ denote the fanin of the $i^{t h}$ product gate Q_{i}.

$$
\begin{aligned}
& \text { Product Dimension }\left(Q_{i}\right)=\operatorname{dim}\left\{\operatorname{span}\left\{L_{i j}: j \in\left[d_{i}\right]\right\}\right\} \\
& \text { Product } \operatorname{Dimension}(\mathrm{C})=\max _{i}\left\{\text { Product Dimension }\left(Q_{i}\right)\right\}
\end{aligned}
$$

- Product Dimension 1: Diagonal Circuits - we know lower bounds against them (SAXENA(2008)).
- Product Dimension n: General depth three circuits. Our main adversary.
- Product Dimension vs Rank of a circuit. The latter is a strong restriction.

Our Main Results

We generalize Raz's method to non-multilinear setting. And apply it to prove the following results:

Theorem
Any homogeneous depth three circuit computing an entry in the product of $d, n \times n$ matrices has size $\Omega\left(\frac{n^{d-1}}{2^{d}}\right)$.

Theorem
There is an explicit polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ of degree at most $\frac{n}{2}$ in VNP such that any $\Sigma \Pi \Sigma$ circuit C of product dimension at most $\frac{n}{10}$ computing it has size $2^{\Omega(n)}$.

Extending to product dimension n settles the depth three lowerbounds question over infinite fields.

Surprise, surprise ... the chasm is at depth three.

Gupta-Kamath-Kayal-Saptarishi (2013): If an n-variate polynomial of degree $d\left(d=n^{O(1)}\right)$ is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d \log (d)} \log (n))}$. If $d \leq n$, this is $2^{O}\left(\sqrt{n} \log ^{\frac{3}{2}} n\right)$.

Surprise, surprise ... the chasm is at depth three.

Gupta-Kamath-Kayal-Saptarishi (2013): If an n-variate polynomial of degree $d\left(d=n^{O(1)}\right)$ is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d \log (d)} \log (n))}$. If $d \leq n$, this is $2^{O}\left(\sqrt{n} \log ^{\frac{3}{2}} n\right)$.

TAVEnas(2013): If an n-variate polynomial of degree d ($d=n^{O(1)}$) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d} \log (n))}$. If $d \leq n$, this is $2^{O(\sqrt{n} \log n) \text {. }}$

Surprise, surprise ... the chasm is at depth three.

Gupta-Kamath-Kayal-Saptarishi (2013): If an n-variate polynomial of degree $d\left(d=n^{O(1)}\right)$ is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d \log (d)} \log (n))}$. If $d \leq n$, this is $2^{O}\left(\sqrt{n} \log ^{\frac{3}{2}} n\right)$.

TAVEnAS(2013): If an n-variate polynomial of degree d ($d=n^{O(1)}$) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d} \log (n))}$. If $d \leq n$, this is $2 O(\sqrt{n} \log n)$.

Revised Goal : Show lower bounds of the kind $2^{\omega(\sqrt{n} \log n)}$ against depth three circuits.

Surprise, surprise ... the chasm is at depth three.

Gupta-Kamath-Kayal-Saptarishi (2013): If an n-variate polynomial of degree $d\left(d=n^{O(1)}\right)$ is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d \log (d)} \log (n))}$. If $d \leq n$, this is $2^{O}\left(\sqrt{n} \log ^{\frac{3}{2}} n\right)$.

TAVENAS (2013): If an n-variate polynomial of degree d ($d=n^{O(1)}$) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth three circuit of size $2^{O(\sqrt{d} \log (n))}$. If $d \leq n$, this is $2 O(\sqrt{n} \log n)$.

Revised Goal : Show lower bounds of the kind $2^{\omega(\sqrt{n} \log n)}$ against depth three circuits of product dimension n.

We will show this for product dimension $\frac{n}{10}$.

Our Results contd.

(s, d)-product-sparse formulas. Each product gate is having one of the inputs as 2^{s}-sparse, number of non-syntactic-multilinear violations in any path is at most d.
Syntactic multilinear formulas, and skew formulas are special cases.
Theorem (Generalizing Multilinear Formulas)
Let X be a set of $2 n$ variables and let $f \in \mathbb{F}[X]$ be a full max-rank polynomial. Let Φ be any (s, d)-product-sparse formula of size $n^{\epsilon \log n}$, for a constant ϵ. If $s d=o\left(n^{1 / 8}\right)$, then f cannot be computed by Φ.

Theorem (Generalizing Ordered Branching Programs)

Let X be a set of $2 n$ variables and \mathbb{F} be a field. For any full max-rank homogeneous polynomial f of degree n over X and \mathbb{F}, the size of any partitioned $A B P$ computing f must be $2^{\Omega(n)}$.

(1) Introduction \& Results

(2) Techniques \& Proofs

Partial Derivative Matrix : from Multilinear World

$X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ be the set of variables.
$X=Y \cup Z$.
M_{f} : for any $f \in \mathbb{F}[Y, Z]$; rows and cols indexed by subsets of Y and Z resp.
$M_{f}(p, q)=c$, where c is the coefficient of the multilinear monomial $p q$ in f.

Partial Derivative Matrix : from Multilinear World

$X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ be the set of variables.
$X=Y \cup Z$.
M_{f} : for any $f \in \mathbb{F}[Y, Z]$; rows and cols indexed by subsets of Y and Z resp.
$M_{f}(p, q)=c$, where c is the coefficient of the multilinear monomial $p q$ in f.
RaZ (2005): Rank(M_{f}) can be used as a complexity measure for multilinear circuits polynomials.

Partial Derivative Matrix : from Multilinear World

$X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ be the set of variables.
$X=Y \cup Z$.
M_{f} : for any $f \in \mathbb{F}[Y, Z]$; rows and cols indexed by subsets of Y and Z resp.
$M_{f}(p, q)=c$, where c is the coefficient of the multilinear monomial $p q$ in f.
Raz (2005): Rank $\left(M_{f}\right)$ can be used as a complexity measure for multilinear circuits polynomials.

- For any multilinear formula of polynomials size, there is a partition such that the polynomial at the output has "low" rank for M_{f}.
- For any partition, the M_{f} of permanent and determinant has "large" rank.

Our Main Tool: Polynomial Coefficient Matrix

$X=Y \cup Z,|Y|=|Z|$
$\operatorname{Var}(h)$: Variables appearing in h.
M_{f} : for any $f \in \mathbb{F}[Y, Z]$
$M_{f}(p, q)=h$, where

- $f=h . p q+r$
- $h, r \in \mathbb{F}[Y \cup Z]$
- $\operatorname{Var}(h) \subseteq \operatorname{Var}(p q)$.
- $p q$ does not divide any monomial in r with $\operatorname{Var}(r) \subseteq \operatorname{Var}(p q)$.

All Subsets of Z

Our Main Tool: Polynomial Coefficient Matrix

$X=Y \cup Z,|Y|=|Z|$
$\operatorname{Var}(h)$: Variables appearing in h.
M_{f} : for any $f \in \mathbb{F}[Y, Z]$
$M_{f}(p, q)=h$, where

- $f=h . p q+r$
- $h, r \in \mathbb{F}[Y \cup Z]$
- $\operatorname{Var}(h) \subseteq \operatorname{Var}(p q)$.
- $p q$ does not divide any monomial in r with $\operatorname{Var}(r) \subseteq \operatorname{Var}(p q)$.

$$
f=\sum_{p, q} M_{f}(p, q) p q
$$

. If f is multilinear then M_{f} is same as PDM.

Our Main Tool: Polynomial Coefficient Matrix

$X=Y \cup Z,|Y|=|Z|$
$\operatorname{Var}(h)$: Variables appearing in h.

All Subsets of Z

Complexity Measure:

$$
\operatorname{Max}-\operatorname{Rank}(f)=\max _{s: Y \cup Z \rightarrow \mathbb{F}}\left\{\operatorname{Rank}\left(M_{f} \mid s\right)\right\}
$$

Properties of Max-Rank(f)

- $\operatorname{Max}-\operatorname{Rank}\left(f_{v}\right) \leq 2^{\min \left\{\left|Y_{v}\right|,\left|Z_{v}\right|\right\}}$.

Properties of Max-Rank(f)

- Max-Rank $\left(f_{v}\right) \leq 2^{\min \left\{\left|Y_{v}\right|,\left|Z_{v}\right|\right\}}$.
- With Addition: $h=f+g \Longrightarrow M_{h}=M_{f}+M_{g}$ $\operatorname{Max}-\operatorname{Rank}(h) \leq \operatorname{Max}-\operatorname{Rank}(f)+\operatorname{Max}-\operatorname{Rank}(g)$.

Properties of Max-Rank (f)

- $\operatorname{Max}-\operatorname{Rank}\left(f_{v}\right) \leq 2^{\min \left\{\left|Y_{v}\right|,\left|Z_{v}\right|\right\}}$.
- With Addition: $h=f+g \Longrightarrow M_{h}=M_{f}+M_{g}$ $\operatorname{Max}-\operatorname{Rank}(h) \leq \operatorname{Max}-\operatorname{Rank}(f)+\operatorname{Max}-\operatorname{Rank}(g)$.
- With Multiplication: $h=f \times g$
- $X_{f} \cap X_{g}=\phi \Longrightarrow M_{h}=M_{f} \otimes M_{g}$. $\operatorname{Max}-\operatorname{Rank}(h) \leq \operatorname{Max}-\operatorname{Rank}(f) \times \operatorname{Max}-\operatorname{Rank}(g)$
- $g \in \mathbb{F}[Y]$, then $\operatorname{Max}-\operatorname{Rank}(h) \leq \operatorname{Max}-\operatorname{Rank}(f)$
- Support $(g) \leq r \Longrightarrow \operatorname{Max}-\operatorname{Rank}(h) \leq r \cdot \operatorname{Max}-\operatorname{Rank}(f)$

Lemma

Lemma
If $f \in \mathbb{F}[Y, Z]$ and $g \in \mathbb{F}[Y]$, then $\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

Lemma

Lemma

If $f \in \mathbb{F}[Y, Z]$ and $g \in \mathbb{F}[Y]$, then $\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

Proof.

- Consider a simple case. $g=y$.
- Conider the row of $M_{f \cdot y}$ indexed by a monomial p (denote it by $M_{f}(p)$) will either be zero (if $y \notin \operatorname{Var}(p)$) or will be expressible as $M_{f g}(p)=y \cdot M_{f}(p)+M_{f}(p / y)$.
- Under any substitution, rowspace of $M_{f y} \mid s$ is contained in rowspace of $M_{f} \mid s$.
- Hence Max-Rank $\left(M_{f y}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

Lemma

Lemma

If $f \in \mathbb{F}[Y, Z]$ and $g \in \mathbb{F}[Y]$, then
$\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.
Proof.

- Let g be a monomial. Let $T \subseteq Y$. Let y^{T} denote the corresponding monomial.
- The row of $M_{y^{\top} . f}$ indexed by a monomial p will either be zero (if $T \nsubseteq \operatorname{Var}(p)$) or will be expressible as

$$
M_{y^{T} . f}(p)=\sum_{T^{\prime} \subseteq T} y^{T \backslash T^{\prime}} M_{f}\left(p / y^{T^{\prime}}\right)
$$

- Under any substitution, rowspace of $\left.M_{f y} T\right|_{S}$ is contained in rowspace of $M_{f} \mid s$.
- Hence Max-Rank $\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

Lemma

Lemma

If $f \in \mathbb{F}[Y, Z]$ and $g \in \mathbb{F}[Y]$, then
$\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.
Proof.

- Consider $g=\sum_{i \in[r]} m_{i}$ where r is the number of monomials in $g . M_{f g}=\sum_{i \in[r]} M_{f m_{i}}$.
- Under any substitution, rowspace of $M_{f g} \mid s$ is contained in rowspace of $M_{f} \mid s$.
- Hence Max-Rank $\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

Lemma

Lemma

If $f \in \mathbb{F}[Y, Z]$ and $g \in \mathbb{F}[Y]$, then $\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

Corollary

Let $f, g \in \mathbb{F}[Y, Z]$:

- If g is a linear form then $\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq 2 \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.
- If $g=\sum_{i \in[r]} g_{i} h_{i}$ where $g_{i} \in \mathbb{F}[Y]$ and $h_{i} \in \mathbb{F}[Z]$, then $\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq r \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.
- If g has r monomials, then $\operatorname{Max}-\operatorname{Rank}\left(M_{f g}\right) \leq r \cdot \operatorname{Max}-\operatorname{Rank}\left(M_{f}\right)$.

First Application: Homogeneous frontier

Theorem
Any homogeneous depth three circuit computing an entry in the product of $d n \times n$ matrices has size $\Omega\left(\frac{n^{d-1}}{2^{d}}\right)$.

First Application: Homogeneous frontier

Theorem
Any homogeneous depth three circuit computing an entry in the product of $d n \times n$ matrices has size $\Omega\left(\frac{n^{d-1}}{2^{d}}\right)$.

Proof.
(1) Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
(2) C can be written as $\sum_{i} P_{i}$ where $P_{i}=\prod_{j=1}^{\operatorname{deg}\left(P_{i}\right)} \ell_{i j}$ where $\ell_{i j}$ is a homogeneous linear form.

First Application: Homogeneous frontier

Theorem
Any homogeneous depth three circuit computing an entry in the product of $d n \times n$ matrices has size $\Omega\left(\frac{n^{d-1}}{2^{d}}\right)$.

Proof.
(1) Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
(2) C can be written as $\sum_{i} P_{i}$ where $P_{i}=\prod_{j=1}^{\operatorname{deg}\left(P_{i}\right)} \ell_{i j}$ where $\ell_{i j}$ is a homogeneous linear form. Max-Rank $\left(P_{i}\right) \leq 2^{d}$.

First Application: Homogeneous frontier

Theorem

Any homogeneous depth three circuit computing an entry in the product of $d n \times n$ matrices has size $\Omega\left(\frac{n^{d-1}}{2^{d}}\right)$.

Proof.
(1) Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
(2) C can be written as $\sum_{i} P_{i}$ where $P_{i}=\prod_{j=1}^{\operatorname{deg}\left(P_{i}\right)} \ell_{i j}$ where $\ell_{i j}$ is a homogeneous linear form. Max-Rank $\left(P_{i}\right) \leq 2^{d}$.

$$
\operatorname{Max}-\operatorname{Rank}(C) \leq k .2^{d}
$$

First Application: Homogeneous frontier

Theorem

Any homogeneous depth three circuit computing an entry in the product of $d n \times n$ matrices has size $\Omega\left(\frac{n^{d-1}}{2^{d}}\right)$.

Proof.
(1) Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
(2) C can be written as $\sum_{i} P_{i}$ where $P_{i}=\prod_{j=1}^{\operatorname{deg}\left(P_{i}\right)} \ell_{i j}$ where $\ell_{i j}$ is a homogeneous linear form. Max-Rank $\left(P_{i}\right) \leq 2^{d}$.

$$
\operatorname{Max}-\operatorname{Rank}(C) \leq k .2^{d}
$$

(3) $\operatorname{Max}-\operatorname{Rank}(I M M(d, n))=n^{d-1}$.

$\operatorname{Max}-\operatorname{Rank}\left(I M M(d, n)=n^{d-1}\right.$

$$
\left.\left(\begin{array}{ccc}
x_{11}^{(1)} & \cdots & x_{1 n}^{(1)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(1)} & \cdots & \cdots \\
x_{n n}^{(1)}
\end{array}\right)\left(\begin{array}{ccc}
x_{11}^{(2)} & \cdots & x_{1 n}^{(2)} \\
\vdots & \vdots & \vdots \\
x_{n 1}^{(2)} & \cdots & \cdots \\
x_{1 n}^{(d)} \\
x_{11}^{(d)} & \cdots & x_{n n}^{(d)}
\end{array}\right) \cdots\left(\begin{array}{cc}
p_{11} & \cdots \\
x_{n 1}^{(d)} & \cdots \\
\vdots & \vdots \\
p_{n 1} & \cdots \\
p_{n n}^{(d)}
\end{array}\right)=\cdots \quad p_{n n}\right)
$$

$\operatorname{MAX}-\operatorname{Rank}\left(I M M(d, n)=n^{d-1}\right.$

Partition: $Y(Z)$ as variables in the odd(even) indexed matrices. Observe : while constructing a path, if we fix the edges from the odd layers, the edges from the even layers are unique.

$\operatorname{Max-RANK}(I M M(d, n))=n^{d-1}$

- The matrix M_{f} will have only one non-zero entry in the row chosen, at the column (T) indexed by the corresponding even indexed variables.
- The same set of edges (the column T) from even indexed layers will not form a path with any other set of edges from the odd indexed layers.
- Thus the matrix M_{f} simply has the identity matrix of size n^{d-1} up to permutation.
- Hence rank of M_{f} is exactly n^{d-1}.

Application 2 : Depth Three circuits with Product Dimension $\frac{n}{10}$

Theorem

There is an explicit polynomial P in n variables and degree at most $\frac{n}{2}$ such that any $\Sigma \Pi \Sigma$ circuit C of product dimension at most $\frac{n}{10}$ computing it has size $2^{\Omega(n)}$.

Proof.
(1) For a $\Sigma \Pi \Sigma$ circuit C with top-fanin k and product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq k\binom{d+r}{r}(d+1)$.

Application 2 : Depth Three circuits with Product Dimension $\frac{n}{10}$

Theorem

There is an explicit polynomial P in n variables and degree at most $\frac{n}{2}$ such that any $\Sigma \Pi \Sigma$ circuit C of product dimension at most $\frac{n}{10}$ computing it has size $2^{\Omega(n)}$.

Proof.
(1) For a $\Sigma \Pi \Sigma$ circuit C with top-fanin k and product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq k\binom{d+r}{r}(d+1)$.
(2) There is a polynomial P of degree $\frac{n}{2}$ such that there is a partition for which $\operatorname{Max}-\operatorname{RaNK}(P) \geq \frac{2 \frac{n}{2}}{\sqrt{n}}$.

Application 2 : Depth Three circuits with Product Dimension $\frac{n}{10}$

Theorem

There is an explicit polynomial P in n variables and degree at most $\frac{n}{2}$ such that any $\Sigma \Pi \Sigma$ circuit C of product dimension at most $\frac{n}{10}$ computing it has size $2^{\Omega(n)}$.

Proof.
(1) For a $\Sigma \Pi \Sigma$ circuit C with top-fanin k and product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq k\binom{d+r}{r}(d+1)$.
(2) There is a polynomial P of degree $\frac{n}{2}$ such that there is a partition for which $\operatorname{Max}-\operatorname{RaNK}(P) \geq \frac{2 \frac{n}{2}}{\sqrt{n}}$.
(3) Hence, $k \geq 2^{\Omega(n)}$, if $r \leq \frac{n}{10}$.

Step 1: Upper bound from the model.

Lemma

For a $\Sigma \Pi \Sigma$ circuit C with product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq($ top fanin $)\binom{d+r}{r}(d+1)$.

Proof.

- Consider a product gate $Q=\prod_{i=1}^{t} \ell_{i}$.
- Let ℓ_{i} 's (for this Q) be spanned by the affine forms $m_{1}, \ldots m_{r}$.

Step 1: Upper bound from the model.

Lemma

For a $\Sigma \Pi \Sigma$ circuit C with product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq($ top fanin $)\binom{d+r}{r}(d+1)$.
Proof.

- Consider a product gate $Q=\prod_{i=1}^{t} \ell_{i}$.
- Let ℓ_{i} 's (for this Q) be spanned by the affine forms $m_{1}, \ldots m_{r}$.

$$
Q=\prod_{i=1}^{t}\left(\ell_{i}^{\prime}+\beta_{i}\right)
$$

where $\ell_{i}^{\prime}=\ell_{i}-\beta_{i}$ is the homog. part of the affine form ℓ_{i}.

- Difficulty $1: s$ could be as large as $2^{t} r^{d}$.
- Difficulty 2 : Max-Rank $\left(\prod_{i}^{d} m_{i j}^{\prime}\right)$ can be as large as 2^{d}.

Step 1: Upper bound from the model.

Lemma

For a $\Sigma \Pi \Sigma$ circuit C with product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq($ top fanin $)\binom{d+r}{r}(d+1)$.
Proof.

- Consider a product gate $Q=\prod_{i=1}^{t} \ell_{i}$.
- Let ℓ_{i} 's (for this Q) be spanned by the affine forms $m_{1}, \ldots m_{r}$.

$$
Q=\sum_{j=1}^{2^{t}} c_{j}\left(\prod_{i=1}^{\leq t} \ell_{i}^{\prime}\right)
$$

where ℓ_{i}^{\prime} is the homog. part of the affine form ℓ_{i}.

- Difficulty 1 : s could be as large as $2^{t} r^{d}$.
- Difficulty 2 : Max-Rank $\left(\prod_{i}^{d} m_{i j}^{\prime}\right)$ can be as large as 2^{d}.

Step 1: Upper bound from the model.

Lemma

For a $\Sigma \Pi \Sigma$ circuit C with product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq($ top fanin $)\binom{d+r}{r}(d+1)$.
Proof.

- Consider a product gate $Q=\prod_{i=1}^{t} \ell_{i}$.
- Let ℓ_{i} 's (for this Q) be spanned by the affine forms $m_{1}, \ldots m_{r}$.

$$
Q=\sum_{j=1}^{2^{t}} c_{j}\left(\prod_{i=1}^{\leq t}\left(\alpha_{i 1} m_{1}^{\prime}+\alpha_{i 2} m_{2}^{\prime}+\ldots+\alpha_{i r} m_{r}^{\prime}\right)\right)
$$

where m_{i}^{\prime} is the homogenous part of the linear form m_{i}.

- Difficulty 1 : s could be as large as $2^{t} r^{d}$.
- Difficulty 2 : Max-Rank $\left(\prod_{i}^{d} m_{i j}^{\prime}\right)$ can be as large as 2^{d}.

Step 1: Upper bound from the model.

Lemma

For a $\Sigma \Pi \Sigma$ circuit C with product dimension r, computing a degree d polynomial, for any equipartition, $\operatorname{Max}-\operatorname{Rank}(C) \leq($ top fanin $)\binom{d+r}{r}(d+1)$.
Proof.

- Consider a product gate $Q=\prod_{i=1}^{t} \ell_{i}$.
- Let ℓ_{i} 's (for this Q) be spanned by the affine forms $m_{1}, \ldots m_{r}$.

$$
Q=\sum_{j=1}^{s} c_{j}^{\prime} \prod_{i=1}^{d} m_{i j}^{\prime}
$$

where s could be as large as $2^{t} r^{d}$.

- Difficulty $1: s$ could be as large as $2^{t} r^{d}$.
- Difficulty 2 : Max-Rank $\left(\prod_{i}^{d} m_{i j}^{\prime}\right)$ can be as large as 2^{d}.

Step 1 contd

- Observe : $\operatorname{Max}-\operatorname{Rank}\left(\ell^{d}\right) \leq d+1$. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.

Step 1 contd

- Observe : Max-Rank $\left(\ell^{d}\right) \leq d+1$. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- Shpilka (2001): Any monomial of degree d can be written as the sum of $d^{\text {th }}$ powers of 2^{d} linear forms - the linear forms are $\sum_{x \in S} x$ for $S \subseteq[d]$.

Step 1 contd

- Observe : Max-Rank $\left(\ell^{d}\right) \leq d+1$. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- Shpilka (2001): Any monomial of degree d can be written as the sum of $d^{\text {th }}$ powers of 2^{d} linear forms - the linear forms are $\sum_{x \in S} x$ for $S \subseteq[d]$.
- $S=\prod_{i=1}^{d} \ell_{i}$ to $S=\sum_{t=1}^{2^{d}}\left(L_{t}\right)^{d}$.

Step 1 contd

- Observe : Max-Rank $\left(\ell^{d}\right) \leq d+1$. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- Shpilka (2001): Any monomial of degree d can be written as the sum of $d^{\text {th }}$ powers of 2^{d} linear forms - the linear forms are $\sum_{x \in S} x$ for $S \subseteq[d]$.
- $S=\prod_{i=1}^{d} \ell_{i}$ to $S=\sum_{t=1}^{2^{d}}\left(L_{t}\right)^{d}$.

Each L_{t} is $\sum_{i \in[r]} \alpha_{i} \ell_{i}$ such that $\sum \alpha_{i} \leq d$.

Step 1 contd

- Observe : $\operatorname{Max}-\operatorname{Rank}\left(\ell^{d}\right) \leq d+1$. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- Shpilka (2001): Any monomial of degree d can be written as the sum of $d^{\text {th }}$ powers of 2^{d} linear forms - the linear forms are $\sum_{x \in S} x$ for $S \subseteq[d]$.
- $S=\prod_{i=1}^{d} \ell_{i}$ to $S=\sum_{t=1}^{2^{d}}\left(L_{t}\right)^{d}$.

Each L_{t} is $\sum_{i \in[r]} \alpha_{i} \ell_{i}$ such that $\sum \alpha_{i} \leq d$.

- Thus, $Q=\sum_{q=1}^{m} c_{q} \cdot\left(L_{q}\right)^{d}$ where $m=\binom{d+r}{r}$.

$$
\operatorname{MAX}-\operatorname{Rank}(Q) \leq(d+1)\binom{d+r}{r}
$$

Step 1 contd

- Observe : $\operatorname{Max}-\operatorname{Rank}\left(\ell^{d}\right) \leq d+1$. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- Shpilka (2001): Any monomial of degree d can be written as the sum of $d^{\text {th }}$ powers of 2^{d} linear forms - the linear forms are $\sum_{x \in S} x$ for $S \subseteq[d]$.
- $S=\prod_{i=1}^{d} \ell_{i}$ to $S=\sum_{t=1}^{2^{d}}\left(L_{t}\right)^{d}$.

Each L_{t} is $\sum_{i \in[r]} \alpha_{i} \ell_{i}$ such that $\sum \alpha_{i} \leq d$.

- Thus, $Q=\sum_{q=1}^{m} c_{q} \cdot\left(L_{q}\right)^{d}$ where $m=\binom{d+r}{r}$.

$$
\operatorname{Max}-\operatorname{Rank}(C) \leq k(d+1)\binom{d+r}{r}
$$

Step 2: Constructing the hard polynomial

Lemma

There is a polynomial P of degree $\frac{n}{2}$ and a partition such that there is a partition for which $\operatorname{Max}-\operatorname{RaNK}(P) \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$.

Proof.

- Fix $Y=\left\{x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}\right\}$ and $Z=\left\{x_{\frac{n}{2}+1}, \ldots, x_{n}\right\}$.
- Let $S_{1} \ldots S_{\ell}$ and $T_{1} \ldots T_{\ell}$ be canonically ordered subsets of Y and Z of size exactly $\frac{n}{4}$ where $\ell=\binom{n / 2}{n / 4}$.

Step 2: Constructing the hard polynomial

Lemma

There is a polynomial P of degree $\frac{n}{2}$ and a partition such that there is a partition for which $\operatorname{Max}-\operatorname{RaNK}(P) \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$.

Proof.

- Fix $Y=\left\{x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}\right\}$ and $Z=\left\{x_{\frac{n}{2}+1}, \ldots, x_{n}\right\}$.
- Let $S_{1} \ldots S_{\ell}$ and $T_{1} \ldots T_{\ell}$ be canonically ordered subsets of Y and Z of size exactly $\frac{n}{4}$ where $\ell=\binom{n / 2}{n / 4}$.

$$
P=\sum_{i=1}^{\ell} \prod_{y \in S_{i}} \prod_{z \in T_{i}}(y z)
$$

Step 2: Constructing the hard polynomial

Lemma

There is a polynomial P of degree $\frac{n}{2}$ and a partition such that there is a partition for which $\operatorname{Max}-\operatorname{RaNK}(P) \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$.

Proof.

- Fix $Y=\left\{x_{1}, x_{2}, \ldots, x_{\frac{n}{2}}\right\}$ and $Z=\left\{x_{\frac{n}{2}+1}, \ldots, x_{n}\right\}$.
- Let $S_{1} \ldots S_{\ell}$ and $T_{1} \ldots T_{\ell}$ be canonically ordered subsets of Y and Z of size exactly $\frac{n}{4}$ where $\ell=\binom{n / 2}{n / 4}$.

$$
P=\sum_{i=1}^{\ell} \prod_{y \in S_{i}} \prod_{z \in T_{i}}(y z)
$$

- In the matrix, only the diagonal entries of these corresponding subsets will be non-zero. Thus, Max-Rank $(P) \geq\binom{\frac{n}{2}}{\frac{n}{4}} \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$.

Choosing the parameters

$$
k \times\binom{ d+r}{r}(d+1) \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}
$$

$d=\frac{n}{2}, r=\frac{n}{10}$ gives, $k \geq 2^{c n}$ for some constant $c>0$.
Lemma
The polynomial P can be computed by a diagonal circuit (hence product dimension 1) of size 2^{n}.

Choosing the parameters

$$
k \times\binom{ d+r}{r}(d+1) \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}
$$

$d=\frac{n}{2}, r=\frac{n}{10}$ gives, $k \geq 2^{c n}$ for some constant $c>0$.

Lemma

The polynomial P can be computed by a diagonal circuit (hence product dimension 1) of size 2^{n}.

Proof.

- Express the polynomial as a sum of monomials.
- Express each monomial as a sum of powers of linear forms.
- Each product gate has product dimension 1 .
- The resulting circuit is of depth d and of size $2^{O(n)}$.

Concluding remarks

- We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension $\frac{n}{10}$.

Concluding remarks

- We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension $\frac{n}{10}$. (Follow up : can be improved to $\frac{n}{4}$).

Concluding remarks

- We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension $\frac{n}{10}$. (Follow up : can be improved to $\frac{n}{4}$).
- So close, yet so far : the techniques so far do not distinguish between determinant and permanent. What makes them distinct? Properties?

Concluding remarks

- We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension $\frac{n}{10}$. (Follow up : can be improved to $\frac{n}{4}$).
- So close, yet so far : the techniques so far do not distinguish between determinant and permanent. What makes them distinct? Properties?
- Open Problem : Is there a chasm at depth three for finite fields?
- Open Problem : Is there a depth reduction to depth three homogeneous circuits?
- Open Problem : Unify our method with the shifted partial derivatives method of GKKS12.

so close ... yet so far ...

Thanks !

Questions?

