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Arithmetic Circuits

Basic Objects : {fn : f (x1, x2, . . . , xn) ∈ F[x1, x2, . . . xn], n ∈ N}

Adversaries : Circuits with +,× as gates computes a polynomial in
F[X ]

Parameters:

• Size: # of gates in the
circuit.

• Depth: Longest path from
any leaf to root.

Two natural Questions :

• Are there polynomials that are ”hard” in terms of size?

• Are there polynomials that are ”hard” in terms of depth?
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A Central Question and Two Fundamental
Polynomials

VP : Set of polynomials of poly
degree computed by polysized
arithmetic circuits.

Det(X ) =
∑
σ∈Sn

sgn(σ)
∏
i∈[n]

xij

Determinant polynomial of the
generic matrix is complete for
VP.

VNP : Set of polynomials of
expressible as an exponential sum
of a polynomial in VP.

Perm(X ) =
∑
σ∈Sn

∏
i∈[n]

xij

Permanent polynomial of the
generic matrix is complete for
VNP.

VP vs VNP Problem. ≡ Permanent vs Determinant Problem.

Are there polynomials in VNP that requires super polynomial size
for any arithmetic circuit computing them?



What is known? - Structurally Limited Circuits

Restriction Bound Reference

Depth-2 circuits 2Ω(n log n) Trivial

Depth-3 circuits 2Ω(n) Grigoriev-Karpinski(1998)
(over finite fields)

Depth-3 circuits Ω(n2) Shpilka-Wigderson (2001)

General circuits Ω(n log n) Baur-Strassen(1983)

General formulas Ω(n3) Kalorkoti(1985)

• We are stuck for the case of constant depth circuits (even for
depth three !).

• What can we assume in general about the depth of the
circuit?
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Depth reductions till 2010

Valiant-Skyum-Berkowitz-Rackoff(1983) If f of
polynomial degree can be computed with a circuit of polynomial
size, then f can be computed in polynomial size and depth
O(log2 n). Thus,

VP = VNC2

Agrawal-Vinay(2008), Koiran(2010): If f can be computed
by polynomial size circuits, then f can be computed in size
2O(
√
n log2 n) by a depth 4 circuit.

Conclusion : For separating VNP from VP, it suffices to show that
there is a polynomial with n variables in VNP which requires size
2ω(
√
n log2 n) for any depth 4 circuit computing it.
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Observations on the Candidate Hard Polynomial - I

They are homogeneous : Each monomial is of the same degree.

Homogeneous circuit : It computes a homogeneous polynomial at
each gate.

Question 1 : Can we prove lower bounds against homogeneous
circuits?
Question 2 : Does non-homogeneity help in super polynomial
size reduction? No, in general, but not known for constant depth.

Agrawal-Vinay(2008), Koiran(2010): If f can be computed
by polynomial size circuits, then f can be computed in size
2O(
√
n log n) by a depth 4 homogeneous circuit.

Conclusion : Suffices to prove lower bounds of the form 2ω(
√
n log n)

against depth 4 homegenous circuits.
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In the Homogeneous World . . .

Iterated Matrix Multiplication (IMM) Given d , n × n
generic matrices, compute the product matrix. Polynomial is the
one computed at (1, 1)-entry of the resulting matrix.
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Nisan-Wigderson (1995): Any depth three homogeneous

circuit computing the IMM polynomial must have size Ω
(
nd−1

d!
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.

Technique : Partial Derivatives Method.

There is a depth two homogeneous circuit computing the IMM
polynomial of size O(nd−1).
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Meanwhile in Bangalore ... Strong Lower Bounds
against Homogeneous depth-4 circuits

Gupta-Kamath-Kayal-Saptarishi (2012): Any
homogeneous depth four arithmetic circuit with bottom fanin
bounded by

√
n computing permanent must of size 2Ω(

√
n log n).

Technique : Shifted Partial Derivatives Method.

Good news : If this size lower bound is quantitatively improved to
2ω(
√
n log2 n), then we separate VP from VNP .

Bad news : Whatever is known, works even for the determinant.
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Observations on the Candidate Hard Polynomial - II

They are multilinear : Each monomial has variables occuring in
individual degree at most 1.
Circuit is multilinear if each gate computes a multilinear
polynomial.

Question 1 : Can we prove lower bounds against multilinear
circuits?
Question 2 : Does non-multilinearity help in super polynomial
size reduction?

Raz 2005 : Multilinear formulas computing determinant and
permanent of n × n matrices require nΩ(log n) size.

Can we extend the above lower bound technique to the case of
non-multilinear circuits?
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Product Dimension

Consider a depth three circuit (ΣΠΣ). Let the top-fanin be k .
∀1 ≤ i ≤ k, di denote the fanin of the i th product gate Qi .

Product Dimension(Qi ) = dim{span{Lij : j ∈ [di ]}}.
Product Dimension(C) = maxi{Product Dimension(Qi )}.

• Product Dimension 1 : Diagonal Circuits - we know lower
bounds against them (Saxena(2008)).

• Product Dimension n : General depth three circuits. Our main
adversary.

• Product Dimension vs Rank of a circuit. The latter is a strong
restriction.
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Our Main Results

We generalize Raz’s method to non-multilinear setting. And apply
it to prove the following results:

Theorem
Any homogeneous depth three circuit computing an entry in the
product of d, n × n matrices has size Ω(n

d−1

2d
).

Theorem
There is an explicit polynomial p(x1, . . . , xn) of degree at most n

2
in VNP such that any ΣΠΣ circuit C of product dimension at
most n

10 computing it has size 2Ω(n).

Extending to product dimension n settles the depth three
lowerbounds question over infinite fields.



Surprise, surprise ... the chasm is at depth three.

Gupta-Kamath-Kayal-Saptarishi (2013): If an n-variate
polynomial of degree d (d = nO(1)) is computable by an arithmetic
circuit of polynomial size then it can also be computed by a depth

three circuit of size 2O(
√

d log(d) log(n)). If d ≤ n, this is

2O(
√
n log

3
2 n).

Tavenas(2013): If an n-variate polynomial of degree d
(d = nO(1)) is computable by an arithmetic circuit of polynomial
size then it can also be computed by a depth three circuit of size

2O(
√
d log(n)). If d ≤ n, this is 2O(

√
n log n).

Revised Goal : Show lower bounds of the kind 2ω(
√
n log n) against

depth three circuits

of product dimension n

.

We will show this for product dimension n
10 .
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Our Results contd.

(s, d)-product-sparse formulas. Each product gate is having one of
the inputs as 2s -sparse, number of non-syntactic-multilinear
violations in any path is at most d .
Syntactic multilinear formulas, and skew formulas are special cases.

Theorem (Generalizing Multilinear Formulas)

Let X be a set of 2n variables and let f ∈ F[X ] be a full max-rank
polynomial. Let Φ be any (s, d)-product-sparse formula of size
nε log n, for a constant ε. If sd = o(n1/8), then f cannot be
computed by Φ.

Theorem (Generalizing Ordered Branching Programs)

Let X be a set of 2n variables and F be a field. For any full
max-rank homogeneous polynomial f of degree n over X and F,
the size of any partitioned ABP computing f must be 2Ω(n).



1 Introduction & Results

2 Techniques & Proofs



Partial Derivative Matrix : from Multilinear World

X = {x1, x2, . . . xn} be the set of variables.
X = Y ∪ Z .

Mf : for any f ∈ F[Y ,Z ]; rows and cols indexed by subsets of Y
and Z resp.

Mf (p, q) = c , where c is the coefficient of the multilinear
monomial pq in f .

Raz (2005): Rank(Mf ) can be used as a complexity measure for
multilinear circuits polynomials.

• For any multilinear formula of polynomials size, there is a
partition such that the polynomial at the output has ”low”
rank for Mf .

• For any partition, the Mf of permanent and determinant has
”large” rank.
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Our Main Tool: Polynomial Coefficient Matrix

X = Y ∪ Z , |Y | = |Z |
Var(h) : Variables appearing in h.

Mf : for any f ∈ F[Y ,Z ]

Mf (p, q) = h, where

• f = h.pq + r

• h, r ∈ F[Y ∪ Z ]

• Var(h) ⊆ Var(pq).

• pq does not divide any monomial
in r with Var(r) ⊆ Var(pq).

y1
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z1 z2

1 + y1

1

0

0

All Subsets of Z

All
Subsets
of Y

f = y1y2z1 + y21z2 + y1z2
= y1y2z1 + y1z2(y1 + 1)

Complexity Measure:

Max-Rank(f ) = max
S :Y∪Z→F

{Rank(Mf |S)}
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Properties of Max-Rank(f )

• Max-Rank(fv ) ≤ 2min{|Yv |,|Zv |}.

• With Addition: h = f + g =⇒ Mh = Mf + Mg

Max-Rank(h) ≤Max-Rank(f ) + Max-Rank(g).

• With Multiplication: h = f × g
• Xf ∩ Xg = φ =⇒ Mh = Mf ⊗Mg .

Max-Rank(h) ≤Max-Rank(f )×Max-Rank(g)

• g ∈ F[Y ], then Max-Rank(h) ≤Max-Rank(f )

• Support(g) ≤ r =⇒ Max-Rank(h) ≤ r ·Max-Rank(f )

• If g is an affine form, Max-Rank(h) ≤ 2 ·Max-Rank(f ).
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Max-Rank(Mfg ) ≤Max-Rank(Mf ).



Lemma

Lemma
If f ∈ F[Y ,Z ] and g ∈ F[Y ], then
Max-Rank(Mfg ) ≤Max-Rank(Mf ).

Proof.

• Consider a simple case. g = y .

• Conider the row of Mf ·y indexed by a monomial p (denote it
by Mf (p)) will either be zero (if y /∈ Var(p)) or will be
expressible as Mfg (p) = y ·Mf (p) + Mf (p/y).

• Under any substitution, rowspace of Mfy |S is contained in
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• Hence Max-Rank(Mfy ) ≤Max-Rank(Mf ).
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First Application : Homogeneous frontier

Theorem
Any homogeneous depth three circuit computing an entry in the
product of d n × n matrices has size Ω(n

d−1

2d
).

Proof.

1 Let C be the depth three circuit with formal degree d and top
fan-in k . Fix and arbitrary partition,

2 C can be written as
∑

i Pi where Pi =
∏deg(Pi )

j=1 `ij where `ij is

a homogeneous linear form. Max-Rank(Pi ) ≤ 2d .

Max-Rank(C ) ≤ k.2d

3 Max-Rank(IMM(d , n)) = nd−1.
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Partition: Y (Z ) as variables in the odd(even) indexed matrices.
Observe : while constructing a path, if we fix the edges from the
odd layers, the edges from the even layers are unique.
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Max-Rank(IMM(d , n)) = nd−1

• The matrix Mf will have only one non-zero entry in the row
chosen, at the column(T) indexed by the corresponding even
indexed variables.

• The same set of edges (the column T) from even indexed
layers will not form a path with any other set of edges from
the odd indexed layers.

• Thus the matrix Mf simply has the identity matrix of size
nd−1 up to permutation.

• Hence rank of Mf is exactly nd−1.



Application 2 : Depth Three circuits with Product
Dimension n

10

Theorem
There is an explicit polynomial P in n variables and degree at most
n
2 such that any ΣΠΣ circuit C of product dimension at most n

10

computing it has size 2Ω(n).

Proof.

1 For a ΣΠΣ circuit C with top-fanin k and product dimension
r , computing a degree d polynomial, for any equipartition,
Max-Rank(C ) ≤ k

(d+r
r

)
(d + 1).

2 There is a polynomial P of degree n
2 such that there is a

partition for which Max-Rank(P) ≥ 2
n
2√
n

.

3 Hence, k ≥ 2Ω(n), if r ≤ n
10 .
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Step 1 : Upper bound from the model.

Lemma
For a ΣΠΣ circuit C with product dimension r , computing a
degree d polynomial, for any equipartition,
Max-Rank(C ) ≤ (top fanin)

(d+r
r

)
(d + 1).

Proof.

• Consider a product gate Q =
∏t

i=1 `i .

• Let `i ’s (for this Q) be spanned by the affine forms m1, . . .mr .

• Difficulty 1 : s could be as large as 2trd .

• Difficulty 2 : Max-Rank(
∏d

i m′ij) can be as large as 2d .
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Step 1 contd

• Observe : Max-Rank(`d) ≤ d + 1. The idea is to express
express a product of linear forms as a sum of product of
powers of linear forms.

• Shpilka (2001): Any monomial of degree d can be written
as the sum of d th powers of 2d linear forms - the linear forms
are
∑

x∈S x for S ⊆ [d ].

• S =
∏d

i=1 `i to S =
∑2d

t=1(Lt)
d .

Each Lt is
∑

i∈[r ] αi`i such that
∑
αi ≤ d .

• Thus, Q =
∑m

q=1 cq · (Lq)d where m =
(d+r

r

)
.
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Step 2: Constructing the hard polynomial

Lemma
There is a polynomial P of degree n

2 and a partition such that

there is a partition for which Max-Rank(P) ≥ 2
n
2√
n

.

Proof.

• Fix Y = {x1, x2, . . . , x n
2
} and Z = {x n

2
+1, . . . , xn}.

• Let S1 . . . S` and T1 . . .T` be canonically ordered subsets of Y
and Z of size exactly n

4 where ` =
(n/2
n/4

)
.

P =
∑̀
i=1

∏
y∈Si

∏
z∈Ti

(yz)

• In the matrix, only the diagonal entries of these corresponding

subsets will be non-zero. Thus, Max-Rank(P) ≥
( n

2
n
4

)
≥ 2

n
2√
n

.
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Choosing the parameters

k ×
(

d + r

r

)
(d + 1) ≥ 2

n
2

√
n

d = n
2 , r = n

10 gives, k ≥ 2cn for some constant c > 0.

Lemma
The polynomial P can be computed by a diagonal circuit (hence
product dimension 1) of size 2n.

Proof.

• Express the polynomial as a sum of monomials.

• Express each monomial as a sum of powers of linear forms.

• Each product gate has product dimension 1.

• The resulting circuit is of depth d and of size 2O(n).
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Concluding remarks

• We showed lower bounds against depth three homogeneous
circuits, depth three circuits of product dimension n

10 .

(Follow up : can be improved to n
4 ).

• So close, yet so far : the techniques so far do not distinguish
between determinant and permanent. What makes them
distinct? Properties?

• Open Problem : Is there a chasm at depth three for finite
fields?

• Open Problem : Is there a depth reduction to depth three
homogeneous circuits?

• Open Problem : Unify our method with the shifted partial
derivatives method of GKKS12.
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so close . . . yet so far . . .

Thanks !

Questions?
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