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Arithmetic Circuits

Basic Objects : {f, : f(x1,X2,...,%n) € F[x1,x2,...x%s], n € N}
Adversaries : Circuits with 4, x as gates computes a polynomial in
FX]

Parameters: (x;j\;)z
o Size: # of gates in the A
circuit. /\E\/
e Depth: OO, Ve D,
pth: Longest path from T/\ A
any leaf to root. \/J

Two natural Questions :
o Are there polynomials that are "hard” in terms of size?
e Are there polynomials that are "hard” in terms of depth?



A Central Question and Two Fundamental
Polynomials

VP : Set of polynomials of poly VNP : Set of polynomials of

degree computed by polysized expressible as an exponential sum
arithmetic circuits. of a polynomial in VP.
Det(X Z sgn(o H Xjj Perm(X) = Z H Xjj
o€S, i€[n] o€Syi€[n]
Determinant polynomial of the Permanent polynomial of the
generic matrix is complete for generic matrix is complete for
VP. VNP.

VP vs VNP Problem. = Permanent vs Determinant Problem.

Are there polynomials in VNP that requires super polynomial size
for any arithmetic circuit computing them?
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Depth-2 circuits 282nlogn) [ Trjvial

Depth-3 circuits | 22() GRIGORIEV-K ARPINSKI(1998)
(over finite fields)
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General circuits Q(nlogn) | BAUR-STRASSEN(1983)

General formulas
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KALORKOTI(1985)
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Depth-2 circuits 282nlogn) [ Trjvial

Depth-3 circuits | 22() GRIGORIEV-K ARPINSKI(1998)
(over finite fields)

Depth-3 circuits | Q(n?) SHPILKA-WIGDERSON (2001)
General circuits Q(nlogn) | BAUR-STRASSEN(1983)
General formulas | Q(n3) KALORKOTI(1985)

e We are stuck for the case of constant depth circuits (even for
depth three !).

e What can we assume in general about the depth of the
circuit?
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Depth reductions till 2010

VALIANT-SKYUM-BERKOWITZ-RACKOFF(1983) If f of
polynomial degree can be computed with a circuit of polynomial
size, then f can be computed in polynomial size and depth
O(log? n). Thus,

VP = VNC?

AGRAWAL-VINAY(2008), KOIRAN(2010): If f can be computed

by polynomial size circuits, then f can be computed in size
2 . .
20(vnlog®n) by 3 depth 4 circuit.

Conclusion : For separating VNP from VP, it suffices to show that
there is a polynomial with n variables in VNP which requires size

2
2@(Vnlog®n) for any depth 4 circuit computing it.
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Observations on the Candidate Hard Polynomial - |

They are homogeneous : Each monomial is of the same degree.

Homogeneous circuit : It computes a homogeneous polynomial at
each gate.

QUESTION 1 : Can we prove lower bounds against homogeneous
circuits?

QUESTION 2 : Does non-homogeneity help in super polynomial
size reduction? No, in general, but not known for constant depth.

AGRAWAL-VINAY(2008), KOIRAN(2010): If f can be computed
by polynomial size circuits, then f can be computed in size
20(Vnlogn) by 3 depth 4 homogeneous circuit.

Conclusion : Suffices to prove lower bounds of the form 2«(vnlogn)
against depth 4 homegenous circuits.



In the Homogeneous World . . .

ITERATED MATRIX MULTIPLICATION (IMM) Given d, n x n
generic matrices, compute the product matrix. Polynomial is the
one computed at (1, 1)-entry of the resulting matrix.

1 1 2 2 d d
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NISAN-WIGDERSON (1995): Any depth three homogeneous
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circuit computing the IMM polynomial must have size 2 ("T)
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ITERATED MATRIX MULTIPLICATION (IMM) Given d, n x n
generic matrices, compute the product matrix. Polynomial is the
one computed at (1, 1)-entry of the resulting matrix.

(xﬁ) S xﬁ)) (xﬁ) e x{i)) (xg) c x}:)j (pn . pl,,)
xﬁ}) L. x,(,},) x,(j) - x,(,%) xl(_li'l) L. x,(,g) Pn1 s Pnn
NISAN-WIGDERSON (1995): Any depth three homogeneous

circuit computing the IMM polynomial must have size 2 (%).

Technique : Partial Derivatives Method.

There is a depth two homogeneous circuit computing the IMM
polynomial of size O(n971).
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Meanwhile in Bangalore ... Strong Lower Bounds
against Homogeneous depth-4 circuits

GUPTA-KAMATH-KAYAL-SAPTARISHI (2012): Any
homogeneous depth four arithmetic circuit with bottom fanin
bounded by /n computing permanent must of size 282y/nlogn)

Technique : Shifted Partial Derivatives Method.

Good news : If this size lower bound is quantitatively improved to
2
2w(Vnlog™n) then we separate VP from VNP .

Bad news : Whatever is known, works even for the determinant.
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Observations on the Candidate Hard Polynomial - Il

They are multilinear : Each monomial has variables occuring in
individual degree at most 1.

Circuit is multilinear if each gate computes a multilinear
polynomial.

QUESTION 1 : Can we prove lower bounds against multilinear
circuits?

QUESTION 2 : Does non-multilinearity help in super polynomial
size reduction?

RaAz 2005 : Multilinear formulas computing determinant and
permanent of n x n matrices require n{1°8") sjze.

Can we extend the above lower bound technique to the case of
non-multilinear circuits?



Product Dimension

Consider a depth three circuit (XMNX). Let the top-fanin be k.
V1 < i < k, d; denote the fanin of the i*" product gate Q;.
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Product Dimension

Consider a depth three circuit (XMNX). Let the top-fanin be k.
V1 < i < k, d; denote the fanin of the i*" product gate Q;.

Product Dimension(Q;) = dim{span{L;; : j € [dj]}}.
Product Dimension(C) = max;{Product Dimension(Q;)}.

e Product Dimension 1 : Diagonal Circuits - we know lower
bounds against them (SAXENA(2008)).

e Product Dimension n : General depth three circuits. Our main
adversary.

e Product Dimension vs Rank of a circuit. The latter is a strong
restriction.



Our Main Results

We generalize Raz's method to non-multilinear setting. And apply
it to prove the following results:

Theorem

Any homogeneous depth three circuit comdputing an entry in the
. . -1

product of d, n X n matrices has size Q("5-).

Theorem

There is an explicit polynomial p(xi, ..., x,) of degree at most §
in VNP such that any X% circuit C of product dimension at
most §5 computing it has size 252(n)

Extending to product dimension n settles the depth three
lowerbounds question over infinite fields.
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Surprise, surprise ... the chasm is at depth three.

GUPTA-KAMATH-KAYAL-SAPTARISHI (2013): If an n-variate
polynomial of degree d (d = n®1)) is computable by an arithmetic
circuit of polynomial size then it can also be computed by a depth
three circuit of size 20(V dlog(d)log(n)) £ 4 < n, this is

zo(ﬁlog% n)

TAVENAS(2013): If an n-variate polynomial of degree d

(d = no(l)) is computable by an arithmetic circuit of polynomial
size then it can also be computed by a depth three circuit of size
20(Vdlog(n) " |f d < n, this is 20(V7log ),

Revised Goal : Show lower bounds of the kind 2¢(V71081) 3g3inst
depth three circuits of product dimension n.

We will show this for product dimension 1.



Our Results contd.

(s, d)-product-sparse formulas. Each product gate is having one of
the inputs as 2°-sparse, number of non-syntactic-multilinear
violations in any path is at most d.

Syntactic multilinear formulas, and skew formulas are special cases.

Theorem (Generalizing Multilinear Formulas)

Let X be a set of 2n variables and let f € F[X] be a full max-rank
polynomial. Let ® be any (s, d)-product-sparse formula of size
nc'%8" for a constant e. If sd = o(n'/8), then f cannot be
computed by .

Theorem (Generalizing Ordered Branching Programs)

Let X be a set of 2n variables and [F be a field. For any full
max-rank homogeneous polynomial f of degree n over X and F,
the size of any partitioned ABP computing f must be 2"



@® Techniques & Proofs
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monomial pg in f.
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Partial Derivative Matrix : from Multilinear World

X = {x1,%2,...%n} be the set of variables.
X=YUZ.

Mg for any f € F[Y, Z]; rows and cols indexed by subsets of Y
and Z resp.

M¢(p, q) = ¢, where c is the coefficient of the multilinear
monomial pg in f.

RAz (2005): RANK(Mfs) can be used as a complexity measure for
multilinear circuits polynomials.

e For any multilinear formula of polynomials size, there is a
partition such that the polynomial at the output has " low”
rank for Mg.

e For any partition, the My of permanent and determinant has
"large” rank.



Our Main Tool: Polynomial Coefficient Matrix

X=YUZ|Y|=|Z|
Var(h) : Variables appearing in h.

Mg for any f € F[Y, Z]
Me¢(p, q) = h, where

hn
o f="hpg+r Al
e hyreF[YUZ] Subset
e Var(h) C Var(pq). Y1y

e pg does not divide any monomial
in r with Var(r) C Var(pq).
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Our Main Tool: Polynomial Coefficient Matrix

X=YUZ|Y|=|Z|
Var(h) : Variables appearing in h.

Mg: for any f € F[Y, Z]
Me¢(p, q) = h, where

Y
e f="hpg+r Al
e hyre F[lYU/Z] Subset
e Var(h) C Var(pq). Y1y

e pq does not divide any monomial
in r with Var(r) C Var(pq).

All Subsets of Z

21 29

0 L+y1

f=wypa +yis +nn
=z + 2y + 1)

f=>_ M(p,q)pq
p.q

. If f is multilinear then M¢ is same as PDM.



Our Main Tool: Polynomial Coefficient Matrix
X=YUZ|Y| =|Z

Var(h) : Variables appearing in h. All Subsets of Z
Mg for any f € F[Y, Z] 2 %
Me¢(p, q) = h, where " ; _

o f="hpg+r All

« h,reF[YUZ] S

e Var(h) C Var(pq). Y1y 1 0

e pg does not divide any monomial

in r with Var(r) C Var(pq). f=yypn +yin+ iz

= yiye21 + Y122(y1 + 1)

Complexity Measure:

MAX-RANK(f) = <. Jnax IF{RANK(M,r\S)}
: —
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Properties of MAX-RANK(f)

o MAX-RANK(f,) < 2min{I¥v,1Z/[}

o With Addition: h=f +g = My, = M+ M,
MAX-RANK(h) < MAX-RANK(f) + MAaX-RANK(g).

o With Multiplication: h=f x g
° XfﬁXg:¢ — Mh:Mf®Mg.
Max-RANK(h) < MAX-RANK(f) x MAX-RANK(g)

e g € F[Y], then MAX-RANK(h) < MAX-RANK(f)
e Support(g) < r = MaX-RaNk(h) < r- MaX-RANK(f)

o If g is an affine form, MAX-RANK(h) < 2 - MAX-RANK(f).



Lemma

Lemma
If f € F[Y,Z] and g € F[Y], then
MAX-RANK(Mpg) < MAX-RANK(Mfs).



Lemma

Lemma
If f € F[Y,Z] and g € F[Y], then
MAX-RANK(Myg) < MAX-RANK(Mf).

Proof.

e Consider a simple case. g = y.

e Conider the row of Ms., indexed by a monomial p (denote it
by M¢(p)) will either be zero (if y ¢ Var(p)) or will be
expressible as Mg (p) =y - Me(p) + M¢(p/y).

e Under any substitution, rowspace of Mg, |s is contained in
rowspace of Mr|s.

e Hence MAX-RANK(Mjp,) < MAX-RANK(My).



Lemma

Lemma
If f € F[Y,Z] and g € F[Y], then
MAX-RANK (M) < MAX-RANK(Mf).

Proof.
e Let g be a monomial. Let T C Y. Let y' denote the
corresponding monomial.

* The row of M,r ¢ indexed by a monomial p will either be zero
(if T & Var(p)) or will be expressible as

My e(p)= >y Me(p/yT)
TICT

e Under any substitution, rowspace of Mfyr\s is contained in
rowspace of Ms|s.

e Hence MAX-RANK(Mg) < MAX-RANK(My).



Lemma

Lemma
If f € F[Y,Z] and g € F[Y], then
MAX-RANK (M) < MAX-RANK(Mf).

Proof.

e Consider g = Z,E[r] m; where r is the number of monomials
ing. Mg = Zie[r] M, -

e Under any substitution, rowspace of Mg|s is contained in
rowspace of Ms|s.

e Hence MAX-RANK(Mg) < MAX-RANK(M).



Lemma

Lemma
If f € F[Y,Z] and g € F[Y], then
MAX-RANK(Myg) < MAX-RANK(Mf).

Corollary
Let f,g € F[Y, Z]:
e If g is a linear form then
MAX-RANK (M) < 2. MAX-RANK(Mf).
o Ifg =) ey &ihi where g; € F[Y] and h; € F[Z], then
MAX-RANK(Myg) < r. MAX-RANK(Mp).
e If g has r monomials, then
MAX-RANK(Mg) < r - MAX-RANK(Mf).
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First Application : Homogeneous frontier

Theorem

Any homogeneous depth three circuit computing an entry in the
. . d—1

product of d n x n matrices has size Q("z-).

Proof.

@ Let C be the depth three circuit with formal degree d and top
fan-in k. Fix and arbitrary partition,

@® C can be written as ) ; P; where P; = H;Ii";(P") jj where {j; is
a homogeneous linear form. MAX-RANK(P;) < 29.

Max-RANK(C) < k.29

© Max-RANK(IMM(d, n)) = n9-1.



(1)

11

(1,0

MaAX-RANK(IMM(d, n) = n?-!

1 2 2 d d
N I NN N N
X,(,%) x,(j) - x,(,%) Xr(waj) L. x,(,‘,j,) Pn1

(1,d)

P1in



MAX-RANK(IMM(d, n) = n9-1

(
w.0) 11 11 *11 (1,d)

Partition: Y(Z) as variables in the odd(even) indexed matrices.
Observe : while constructing a path, if we fix the edges from the
odd layers, the edges from the even layers are unique.



MaX-RANK(IMM(d, n)) = nd-1

The matrix My will have only one non-zero entry in the row
chosen, at the column(T) indexed by the corresponding even
indexed variables.

The same set of edges (the column T) from even indexed
layers will not form a path with any other set of edges from
the odd indexed layers.

Thus the matrix M¢ simply has the identity matrix of size
n?=1 up to permutation.

Hence rank of M is exactly n9—1.



Application 2 : Depth Three circuits with Product

. . N
Dimension 1

Theorem

There is an explicit polynomial P in n variables and degree at most
n

5 such that any Y1¥ circuit C of product dimension at most
computing it has size 21,

Proof.

@ For a XT1X circuit C with top-fanin k and product dimension

r, computing a degree d polynomial, for any equipartition,
MaX-RANK(C) < k(%17)(d +1).
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Application 2 : Depth Three circuits with Product

. . N
Dimension 1

Theorem

There is an explicit polynomial P in n variables and degree at most
n

5 such that any Y1¥ circuit C of product dimension at most
computing it has size 21,

Proof.

@ For a 1% circuit C with top-fanin k and product dimension
r, computing a degree d polynomial, for any equipartition,
d
MAX-RANK(C) < k(7F")(d + 1).
@® There is a polynomial P of degree 5 such that there is a

partition for which MAX-RANK(P) > %
©® Hence, k > 2900 if r < 1—’6.



Step 1 : Upper bound from the model.

Lemma

For a XMX circuit C with product dimension r, computing a
degree d polynomial, for any equipartition,

MaX-RANK(C) < (top fanin)(“1T")(d + 1).

Proof.

o Consider a product gate Q = [[i_; ¢;.
e Let ¢;'s (for this Q) be spanned by the affine forms my, ... m,.
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Step 1 : Upper bound from the model.

Lemma
For a XX circuit C with product dimension r, computing a

degree d polynomial, for any equipartition,
MaX-RANK(C) < (top fanin)(“t")(d + 1).
Proof.

e Consider a product gate Q = Hle l;.
e Let ¢;'s (for this Q) be spanned by the affine forms my, ... m,.

s d
= ! .
Q=2 ¢IIm
j=1 =1

where s could be as large as 2tr9.

e Difficulty 1 : s could be as large as 2tr9.

o Difficulty 2 : MaX-RaNk(]]¢ m/

d
; mj;) can be as large as 2.
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MAX-RANK(C) < k(d + 1) <dj: r)
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Step 2: Constructing the hard polynomial

Lemma
There is a polynomial P of degree 5 and a partition such that

there is a partition for which MAX-RANK(P) > 2—\;5

Proof.

e Fix Y = {X1,X2,...,Xg} and Z = {XgH,...,x,,}.
e Let S;...5pand Ty... T; be canonically ordered subsets of Y
and Z of size exactly § where ( = (Z?i)

P=3" 11 [10»

i=1yeS; zeT;

e In the matrix, only the diagonal entries of these corresponding

subsets will be non-zero. Thus, MAX-RANK(P) > (%) > %
4

U



Choosing the parameters

k x <d+ >(d+1) \f;

d =3, r =g gives, k > 2" for some constant ¢ > 0.
Lemma

The polynomial P can be computed by a diagonal circuit (hence
product dimension 1) of size 2".



Choosing the parameters

k % (dfr>(d+1)2\2/gﬁ

d= g r= % gives, k > 2" for some constant ¢ > 0.
Lemma

The polynomial P can be computed by a diagonal circuit (hence
product dimension 1) of size 2".

Proof.

e Express the polynomial as a sum of monomials.
e Express each monomial as a sum of powers of linear forms.
e Each product gate has product dimension 1.

e The resulting circuit is of depth d and of size 29("),
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Concluding remarks

We showed lower bounds against depth three homogeneous
circuits, depth three circuits of product dimension
(Follow up : can be improved to 7).

n
10°

So close, yet so far : the techniques so far do not distinguish
between determinant and permanent. What makes them
distinct? Properties?

Open Problem : Is there a chasm at depth three for finite
fields?

Open Problem : Is there a depth reduction to depth three
homogeneous circuits?

Open Problem : Unify our method with the shifted partial
derivatives method of GKKS12.



so close ... yet so far ...

Thanks !

Questions?
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