Arithmetic Circuits Lower Bounds via (Polynomial) Partial Derivatives Matrices

Mrinal Kumar Gauray Maheshwari (Rutgers Univ.)

(Goldman Sachs)

Jayalal Sarma (IIT Madras)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

June 28, 2013 IMSc. Chennai 1 Introduction & Results

**2** Techniques & Proofs

#### Arithmetic Circuits

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Basic Objects :  $\{f_n : f(x_1, x_2, \dots, x_n) \in \mathbb{F}[x_1, x_2, \dots, x_n], n \in \mathbb{N}\}$ 

#### Arithmetic Circuits

Basic Objects :  $\{f_n : f(x_1, x_2, ..., x_n) \in \mathbb{F}[x_1, x_2, ..., x_n], n \in \mathbb{N}\}$ Adversaries : Circuits with  $+, \times$  as gates computes a polynomial in  $\mathbb{F}[X]$ 

Parameters:

- Size: # of gates in the circuit.
- Depth: Longest path from any leaf to root.



## Arithmetic Circuits

Basic Objects :  $\{f_n : f(x_1, x_2, ..., x_n) \in \mathbb{F}[x_1, x_2, ..., x_n], n \in \mathbb{N}\}$ Adversaries : Circuits with  $+, \times$  as gates computes a polynomial in  $\mathbb{F}[X]$ 

Parameters:

- Size: # of gates in the circuit.
- Depth: Longest path from any leaf to root.



Two natural Questions :

- Are there polynomials that are "hard" in terms of size?
- Are there polynomials that are "hard" in terms of depth?

# A Central Question and Two Fundamental Polynomials

VP : Set of polynomials of poly degree computed by polysized arithmetic circuits.

$$Det(X) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i \in [n]} x_{ij}$$

Determinant polynomial of the generic matrix is complete for VP.

VNP : Set of polynomials of expressible as an exponential sum of a polynomial in VP.

$$Perm(X) = \sum_{\sigma \in S_n} \prod_{i \in [n]} x_{ij}$$

Permanent polynomial of the generic matrix is complete for VNP.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### VP vs VNP Problem. $\equiv$ Permanent vs Determinant Problem.

Are there polynomials in VNP that requires super polynomial size for any arithmetic circuit computing them?

# What is known? - Structurally Limited Circuits

| Restriction          | Bound                  | Reference                 |
|----------------------|------------------------|---------------------------|
| Depth-2 circuits     | $2^{\Omega(n \log n)}$ | Trivial                   |
| Depth-3 circuits     | $2^{\Omega(n)}$        | GRIGORIEV-KARPINSKI(1998) |
| (over finite fields) |                        |                           |
| Depth-3 circuits     | $\Omega(n^2)$          | Shpilka-Wigderson (2001)  |
| General circuits     | $\Omega(n \log n)$     | BAUR-STRASSEN(1983)       |
| General formulas     | $\Omega(n^3)$          | Kalorkoti(1985)           |

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# What is known? - Structurally Limited Circuits

| Restriction          | Bound                  | Reference                 |
|----------------------|------------------------|---------------------------|
| Depth-2 circuits     | $2^{\Omega(n \log n)}$ | Trivial                   |
| Depth-3 circuits     | $2^{\Omega(n)}$        | GRIGORIEV-KARPINSKI(1998) |
| (over finite fields) |                        |                           |
| Depth-3 circuits     | $\Omega(n^2)$          | Shpilka-Wigderson (2001)  |
| General circuits     | $\Omega(n \log n)$     | BAUR-STRASSEN(1983)       |
| General formulas     | $\Omega(n^3)$          | Kalorkoti(1985)           |

• We are stuck for the case of constant depth circuits (even for depth three !).

• What can we assume in general about the depth of the circuit?

### Depth reductions till 2010

VALIANT-SKYUM-BERKOWITZ-RACKOFF(1983) If f of polynomial degree can be computed with a circuit of polynomial size, then f can be computed in polynomial size and depth  $O(\log^2 n)$ . Thus,

 $VP = VNC^2$ 

# Depth reductions till 2010

VALIANT-SKYUM-BERKOWITZ-RACKOFF(1983) If f of polynomial degree can be computed with a circuit of polynomial size, then f can be computed in polynomial size and depth  $O(\log^2 n)$ . Thus,

 $VP = VNC^2$ 

AGRAWAL-VINAY(2008), KOIRAN(2010): If f can be computed by polynomial size circuits, then f can be computed in size  $2^{O(\sqrt{n}\log^2 n)}$  by a depth 4 circuit.

# Depth reductions till 2010

VALIANT-SKYUM-BERKOWITZ-RACKOFF(1983) If f of polynomial degree can be computed with a circuit of polynomial size, then f can be computed in polynomial size and depth  $O(\log^2 n)$ . Thus,

 $\mathrm{VP}=\mathrm{VNC}^2$ 

AGRAWAL-VINAY(2008), KOIRAN(2010): If f can be computed by polynomial size circuits, then f can be computed in size  $2^{O(\sqrt{n}\log^2 n)}$  by a depth 4 circuit.

Conclusion : For separating VNP from VP, it suffices to show that there is a polynomial with *n* variables in VNP which requires size  $2^{\omega(\sqrt{n}\log^2 n)}$  for any depth 4 circuit computing it.

They are *homogeneous* : Each monomial is of the same degree. *Homogeneous circuit* : It computes a homogeneous polynomial at

each gate.

They are *homogeneous* : Each monomial is of the same degree.

*Homogeneous circuit* : It computes a homogeneous polynomial at each gate.

 $\operatorname{QUESTION}\ 1$  : Can we prove lower bounds against homogeneous circuits?

 $\operatorname{QUESTION}\ 2$  : Does non-homogeneity help in super polynomial size reduction?

They are *homogeneous* : Each monomial is of the same degree.

*Homogeneous circuit* : It computes a homogeneous polynomial at each gate.

 $\operatorname{QUESTION}\ 1$  : Can we prove lower bounds against homogeneous circuits?

 $\rm QUESTION~2$  : Does non-homogeneity help in super polynomial size reduction? No, in general, but not known for constant depth.

They are *homogeneous* : Each monomial is of the same degree.

*Homogeneous circuit* : It computes a homogeneous polynomial at each gate.

 $\operatorname{QUESTION}\ 1$  : Can we prove lower bounds against homogeneous circuits?

 $\rm QUESTION~2$  : Does non-homogeneity help in super polynomial size reduction? No, in general, but not known for constant depth.

AGRAWAL-VINAY(2008), KOIRAN(2010): If f can be computed by polynomial size circuits, then f can be computed in size  $2^{O(\sqrt{n} \log n)}$  by a depth 4 **homogeneous** circuit.

Conclusion : Suffices to prove lower bounds of the form  $2^{\omega(\sqrt{n}\log n)}$  against depth 4 homegenous circuits.

#### In the Homogeneous World ...

ITERATED MATRIX MULTIPLICATION (IMM) Given d,  $n \times n$  generic matrices, compute the product matrix. Polynomial is the one computed at (1, 1)-entry of the resulting matrix.

$$\begin{pmatrix} x_{11}^{(1)} & \dots & x_{1n}^{(1)} \\ \vdots & \vdots & \vdots \\ x_{n1}^{(1)} & \dots & x_{nn}^{(n)} \end{pmatrix} \begin{pmatrix} x_{11}^{(2)} & \dots & x_{1n}^{(2)} \\ \vdots & \vdots & \vdots \\ x_{n1}^{(2)} & \dots & x_{nn}^{(2)} \end{pmatrix} \dots \begin{pmatrix} x_{1n}^{(d)} & \dots & x_{1n}^{(d)} \\ \vdots & \vdots & \vdots \\ x_{n1}^{(d)} & \dots & x_{nn}^{(d)} \end{pmatrix} = \begin{pmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{n1} & \dots & p_{nn} \end{pmatrix}$$

NISAN-WIGDERSON (1995): Any **depth three homogeneous** circuit computing the IMM polynomial must have size  $\Omega\left(\frac{n^{d-1}}{d!}\right)$ .

#### In the Homogeneous World ...

ITERATED MATRIX MULTIPLICATION (IMM) Given d,  $n \times n$  generic matrices, compute the product matrix. Polynomial is the one computed at (1, 1)-entry of the resulting matrix.

$$\begin{pmatrix} x_{11}^{(1)} & \dots & x_{1n}^{(1)} \\ \vdots & \vdots & \vdots \\ x_{n1}^{(1)} & \dots & x_{nn}^{(n)} \end{pmatrix} \begin{pmatrix} x_{11}^{(2)} & \dots & x_{1n}^{(2)} \\ \vdots & \vdots & \vdots \\ x_{n1}^{(2)} & \dots & x_{nn}^{(2)} \end{pmatrix} \dots \begin{pmatrix} x_{1n}^{(d)} & \dots & x_{1n}^{(d)} \\ \vdots & \vdots & \vdots \\ x_{n1}^{(d)} & \dots & x_{nn}^{(d)} \end{pmatrix} = \begin{pmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{n1} & \dots & p_{nn} \end{pmatrix}$$

NISAN-WIGDERSON (1995): Any **depth three homogeneous** circuit computing the IMM polynomial must have size  $\Omega\left(\frac{n^{d-1}}{d!}\right)$ . Technique : Partial Derivatives Method.

There is a depth two homogeneous circuit computing the IMM polynomial of size  $O(n^{d-1})$ .

# Meanwhile in Bangalore ... Strong Lower Bounds against Homogeneous depth-4 circuits

GUPTA-KAMATH-KAYAL-SAPTARISHI (2012): Any homogeneous depth four arithmetic circuit with bottom fanin bounded by  $\sqrt{n}$  computing permanent must of size  $2^{\Omega(\sqrt{n} \log n)}$ .

# Meanwhile in Bangalore ... Strong Lower Bounds against Homogeneous depth-4 circuits

GUPTA-KAMATH-KAYAL-SAPTARISHI (2012): Any homogeneous depth four arithmetic circuit with bottom fanin bounded by  $\sqrt{n}$  computing permanent must of size  $2^{\Omega(\sqrt{n} \log n)}$ .

Technique : Shifted Partial Derivatives Method.

Good news : If this size lower bound is quantitatively improved to  $2^{\omega(\sqrt{n}\log^2 n)}$ , then we separate VP from VNP .

# Meanwhile in Bangalore ... Strong Lower Bounds against Homogeneous depth-4 circuits

GUPTA-KAMATH-KAYAL-SAPTARISHI (2012): Any homogeneous depth four arithmetic circuit with bottom fanin bounded by  $\sqrt{n}$  computing permanent must of size  $2^{\Omega(\sqrt{n} \log n)}$ .

Technique : Shifted Partial Derivatives Method.

Good news : If this size lower bound is quantitatively improved to  $2^{\omega(\sqrt{n}\log^2 n)}$ , then we separate VP from VNP .

Bad news : Whatever is known, works even for the determinant.

They are *multilinear* : Each monomial has variables occuring in individual degree at most 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Circuit is *multilinear* if each gate computes a multilinear polynomial.

They are *multilinear* : Each monomial has variables occuring in individual degree at most 1.

Circuit is *multilinear* if each gate computes a multilinear polynomial.

 $\operatorname{QUESTION}\ 1$  : Can we prove lower bounds against multilinear circuits?

 $\operatorname{QUESTION}\ 2$  : Does non-multilinearity help in super polynomial size reduction?

They are *multilinear* : Each monomial has variables occuring in individual degree at most 1.

Circuit is *multilinear* if each gate computes a multilinear polynomial.

 $\operatorname{QUESTION}\ 1$  : Can we prove lower bounds against multilinear circuits?

 $\operatorname{QUESTION}\ 2$  : Does non-multilinearity help in super polynomial size reduction?

RAZ 2005 : Multilinear formulas computing determinant and permanent of  $n \times n$  matrices require  $n^{\Omega(\log n)}$  size.

Can we extend the above lower bound technique to the case of non-multilinear circuits?

#### **Product Dimension**

Consider a depth three circuit ( $\Sigma\Pi\Sigma$ ). Let the top-fanin be k.  $\forall 1 \leq i \leq k, d_i$  denote the fanin of the  $i^{th}$  product gate  $Q_i$ .

Product Dimension( $Q_i$ ) =  $dim\{span\{L_{ij} : j \in [d_i]\}\}$ . Product Dimension(C) =  $\max_i\{\text{Product Dimension}(Q_i)\}$ .

#### **Product Dimension**

Consider a depth three circuit ( $\Sigma\Pi\Sigma$ ). Let the top-fanin be k.  $\forall 1 \leq i \leq k, d_i$  denote the fanin of the  $i^{th}$  product gate  $Q_i$ .

Product Dimension( $Q_i$ ) = dim{span{ $L_{ij} : j \in [d_i]$ }. Product Dimension(C) = max<sub>i</sub>{Product Dimension( $Q_i$ )}.

- Product Dimension 1 : Diagonal Circuits we know lower bounds against them (SAXENA(2008)).
- Product Dimension *n* : General depth three circuits. Our main adversary.
- Product Dimension vs Rank of a circuit. The latter is a strong restriction.

# Our Main Results

We generalize Raz's method to non-multilinear setting. And apply it to prove the following results:

#### Theorem

Any homogeneous depth three circuit computing an entry in the product of d,  $n \times n$  matrices has size  $\Omega(\frac{n^{d-1}}{2^d})$ .

#### Theorem

There is an explicit polynomial  $p(x_1, ..., x_n)$  of degree at most  $\frac{n}{2}$  in VNP such that any  $\Sigma \Pi \Sigma$  circuit C of product dimension at most  $\frac{n}{10}$  computing it has size  $2^{\Omega(n)}$ .

Extending to product dimension n settles the depth three lowerbounds question over infinite fields.

GUPTA-KAMATH-KAYAL-SAPTARISHI (2013): If an *n*-variate polynomial of degree d ( $d = n^{O(1)}$ ) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d \log(d)} \log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n \log^2 n})}$ .

GUPTA-KAMATH-KAYAL-SAPTARISHI (2013): If an *n*-variate polynomial of degree d ( $d = n^{O(1)}$ ) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d \log(d)} \log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n \log^{\frac{3}{2}} n})}$ .

TAVENAS(2013): If an *n*-variate polynomial of degree d $(d = n^{O(1)})$  is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d}\log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n}\log n)}$ .

GUPTA-KAMATH-KAYAL-SAPTARISHI (2013): If an *n*-variate polynomial of degree d ( $d = n^{O(1)}$ ) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d \log(d)} \log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n \log^{\frac{3}{2}} n})}$ .

TAVENAS(2013): If an *n*-variate polynomial of degree d $(d = n^{O(1)})$  is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d} \log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n} \log n)}$ .

Revised Goal : Show lower bounds of the kind  $2^{\omega(\sqrt{n}\log n)}$  against depth three circuits.

GUPTA-KAMATH-KAYAL-SAPTARISHI (2013): If an *n*-variate polynomial of degree d ( $d = n^{O(1)}$ ) is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d \log(d)} \log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n \log^{\frac{3}{2}} n})}$ .

TAVENAS(2013): If an *n*-variate polynomial of degree d $(d = n^{O(1)})$  is computable by an arithmetic circuit of polynomial size then it can also be computed by a depth **three** circuit of size  $2^{O(\sqrt{d}\log(n))}$ . If  $d \le n$ , this is  $2^{O(\sqrt{n}\log n)}$ .

Revised Goal : Show lower bounds of the kind  $2^{\omega(\sqrt{n}\log n)}$  against depth three circuits of product dimension *n*.

We will show this for product dimension  $\frac{n}{10}$ .

#### Our Results contd.

(s, d)-product-sparse formulas. Each product gate is having one of the inputs as  $2^{s}$ -sparse, number of non-syntactic-multilinear violations in any path is at most d.

Syntactic multilinear formulas, and skew formulas are special cases.

#### Theorem (Generalizing Multilinear Formulas)

Let X be a set of 2n variables and let  $f \in \mathbb{F}[X]$  be a full max-rank polynomial. Let  $\Phi$  be any (s, d)-product-sparse formula of size  $n^{\epsilon \log n}$ , for a constant  $\epsilon$ . If  $sd = o(n^{1/8})$ , then f cannot be computed by  $\Phi$ .

#### Theorem (Generalizing Ordered Branching Programs) Let X be a set of 2n variables and $\mathbb{F}$ be a field. For any full max-rank homogeneous polynomial f of degree n over X and $\mathbb{F}$ , the size of any partitioned ABP computing f must be $2^{\Omega(n)}$ .

**1** Introduction & Results





### Partial Derivative Matrix : from Multilinear World

 $X = \{x_1, x_2, \dots, x_n\}$  be the set of variables.  $X = Y \cup Z$ .

 $M_f$ : for any  $f \in \mathbb{F}[Y, Z]$ ; rows and cols indexed by subsets of Y and Z resp.

 $M_f(p,q) = c$ , where c is the coefficient of the multilinear monomial pq in f.

# Partial Derivative Matrix : from Multilinear World

 $X = \{x_1, x_2, \dots, x_n\}$  be the set of variables.  $X = Y \cup Z$ .

 $M_f$ : for any  $f \in \mathbb{F}[Y, Z]$ ; rows and cols indexed by subsets of Y and Z resp.

 $M_f(p,q) = c$ , where c is the coefficient of the multilinear monomial pq in f. RAZ (2005): RANK $(M_f)$  can be used as a complexity measure for

RAZ (2005): RANK( $M_f$ ) can be used as a complexity measure for **multilinear** circuits polynomials.

# Partial Derivative Matrix : from Multilinear World

 $X = \{x_1, x_2, \dots, x_n\}$  be the set of variables.  $X = Y \cup Z$ .

 $M_f$ : for any  $f \in \mathbb{F}[Y, Z]$ ; rows and cols indexed by subsets of Y and Z resp.

 $M_f(p,q) = c$ , where c is the coefficient of the multilinear monomial pq in f. RAZ (2005): RANK $(M_f)$  can be used as a complexity measure for **multilinear** circuits polynomials.

- For any multilinear formula of polynomials size, there is a partition such that the polynomial at the output has "low" rank for *M<sub>f</sub>*.
- For any partition, the  $M_f$  of permanent and determinant has "large" rank.

# Our Main Tool: Polynomial Coefficient Matrix

$$\begin{split} X &= Y \cup Z, |Y| = |Z| \\ \text{Var}(h) : \text{Variables appearing in } h. \\ M_f: \text{ for any } f \in \mathbb{F}[Y, Z] \\ M_f(p, q) &= h, \text{ where} \\ \bullet f &= h.pq + r \\ \bullet h, r \in \mathbb{F}[Y \cup Z] \\ \bullet \text{Var}(h) \subseteq \text{Var}(pq). \end{split}$$

*pq* does not divide any monomial in *r* with Var(*r*) ⊆ Var(*pq*).


## Our Main Tool: Polynomial Coefficient Matrix

 $X = Y \cup Z, |Y| = |Z|$ Var(h) : Variables appearing in h.  $M_f: \text{ for any } f \in \mathbb{F}[Y, Z]$  $M_f(p, q) = h, \text{ where}$  $\bullet f = h.pq + r$  $\bullet h, r \in \mathbb{F}[Y \cup Z]$ 

• 
$$Var(h) \subseteq Var(pq)$$
.

*pq* does not divide any monomial in *r* with Var(*r*) ⊆ Var(*pq*).



$$f = \sum_{p,q} M_f(p,q) pq$$

. If f is multilinear then  $M_f$  is same as PDM.

# Our Main Tool: Polynomial Coefficient Matrix





#### **Complexity Measure:**

$$MAX-RANK(f) = \max_{S:Y \cup Z \to \mathbb{F}} \{RANK(M_f|_S)\}$$

## Properties of MAX-RANK(f)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• MAX-RANK $(f_v) \leq 2^{\min\{|Y_v|, |Z_v|\}}$ .

## Properties of MAX-RANK(f)

- MAX-RANK $(f_v) \leq 2^{\min\{|Y_v|, |Z_v|\}}$ .
- With Addition:  $h = f + g \implies M_h = M_f + M_g$ MAX-RANK $(h) \le$  MAX-RANK(f) + MAX-RANK(g).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Properties of MAX-RANK(f)

- MAX-RANK $(f_v) \leq 2^{\min\{|Y_v|, |Z_v|\}}$ .
- With Addition:  $h = f + g \implies M_h = M_f + M_g$ MAX-RANK $(h) \le$  MAX-RANK(f) + MAX-RANK(g).
- With Multiplication:  $h = f \times g$ 
  - $X_f \cap X_g = \phi \implies M_h = M_f \otimes M_g$ . Max-Rank $(h) \le Max$ -Rank $(f) \times Max$ -Rank(g)
  - $g \in \mathbb{F}[Y]$ , then MAX-RANK $(h) \leq$  MAX-RANK(f)
  - Support $(g) \leq r \implies \text{Max-Rank}(h) \leq r \cdot \text{Max-Rank}(f)$
  - If g is an affine form, MAX-RANK $(h) \leq 2 \cdot MAX$ -RANK(f).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma If  $f \in \mathbb{F}[Y, Z]$  and  $g \in \mathbb{F}[Y]$ , then MAX-RANK $(M_{fg}) \leq MAX-RANK(M_f)$ .

#### Lemma

```
If f \in \mathbb{F}[Y, Z] and g \in \mathbb{F}[Y], then
MAX-RANK(M_{fg}) \leq MAX-RANK(M_f).
```

## Proof.

- Consider a simple case. g = y.
- Conider the row of M<sub>f·y</sub> indexed by a monomial p (denote it by M<sub>f</sub>(p)) will either be zero (if y ∉ Var(p)) or will be expressible as M<sub>fg</sub>(p) = y · M<sub>f</sub>(p) + M<sub>f</sub>(p/y).
- Under any substitution, rowspace of  $M_{fy}|_S$  is contained in rowspace of  $M_f|_S$ .

• Hence MAX-RANK $(M_{fy}) \leq MAX-RANK(M_f)$ .

#### Lemma

If  $f \in \mathbb{F}[Y, Z]$  and  $g \in \mathbb{F}[Y]$ , then MAX-RANK $(M_{fg}) \leq MAX$ -RANK $(M_f)$ .

## Proof.

- Let g be a monomial. Let T ⊆ Y. Let y<sup>T</sup> denote the corresponding monomial.
- The row of M<sub>y<sup>T</sup>.f</sub> indexed by a monomial p will either be zero (if T ⊈ Var(p)) or will be expressible as

$$M_{y^{T}.f}(p) = \sum_{T' \subseteq T} y^{T \setminus T'} M_f(p/y^{T'})$$

- Under any substitution, rowspace of  $M_{fy\tau}|_S$  is contained in rowspace of  $M_f|_S$ .
- Hence MAX-RANK $(M_{fg}) \leq MAX-RANK(M_f)$ .

## Lemma If $f \in \mathbb{F}[Y, Z]$ and $g \in \mathbb{F}[Y]$ , then MAX-RANK $(M_{fg}) \leq MAX-RANK(M_f)$ .

## Proof.

• Consider  $g = \sum_{i \in [r]} m_i$  where r is the number of monomials in g.  $M_{fg} = \sum_{i \in [r]} M_{fm_i}$ .

- Under any substitution, rowspace of  $M_{fg}|_S$  is contained in rowspace of  $M_f|_S$ .
- Hence MAX-RANK $(M_{fg}) \leq MAX-RANK(M_f)$ .

Lemma If  $f \in \mathbb{F}[Y, Z]$  and  $g \in \mathbb{F}[Y]$ , then MAX-RANK $(M_{fg}) \leq MAX-RANK(M_f)$ .

### Corollary

Let  $f, g \in \mathbb{F}[Y, Z]$ :

- If g is a linear form then MAX-RANK $(M_{fg}) \leq 2$ . MAX-RANK $(M_f)$ .
- If  $g = \sum_{i \in [r]} g_i h_i$  where  $g_i \in \mathbb{F}[Y]$  and  $h_i \in \mathbb{F}[Z]$ , then MAX-RANK $(M_{fg}) \leq r$ . MAX-RANK $(M_f)$ .

• If g has r monomials, then MAX-RANK $(M_{fg}) \leq r \cdot MAX-RANK(M_f)$ .

#### Theorem

Any homogeneous depth three circuit computing an entry in the product of d  $n \times n$  matrices has size  $\Omega(\frac{n^{d-1}}{2^d})$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Theorem

Any homogeneous depth three circuit computing an entry in the product of  $d \ n \times n$  matrices has size  $\Omega(\frac{n^{d-1}}{2^d})$ .

Proof.

- Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
- 2 C can be written as  $\sum_{i} P_{i}$  where  $P_{i} = \prod_{j=1}^{\deg(P_{i})} \ell_{ij}$  where  $\ell_{ij}$  is a homogeneous linear form.

### Theorem

Any homogeneous depth three circuit computing an entry in the product of  $d \ n \times n$  matrices has size  $\Omega(\frac{n^{d-1}}{2^d})$ .

Proof.

- Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
- 2 C can be written as  $\sum_{i} P_{i}$  where  $P_{i} = \prod_{j=1}^{\deg(P_{i})} \ell_{ij}$  where  $\ell_{ij}$  is a homogeneous linear form. MAX-RANK $(P_{i}) \leq 2^{d}$ .

### Theorem

Any homogeneous depth three circuit computing an entry in the product of  $d \ n \times n$  matrices has size  $\Omega(\frac{n^{d-1}}{2^d})$ .

Proof.

- Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
- 2 C can be written as  $\sum_{i} P_{i}$  where  $P_{i} = \prod_{j=1}^{\deg(P_{i})} \ell_{ij}$  where  $\ell_{ij}$  is a homogeneous linear form. MAX-RANK $(P_{i}) \leq 2^{d}$ .

MAX-RANK
$$(C) \leq k.2^d$$

#### Theorem

Any homogeneous depth three circuit computing an entry in the product of  $d \ n \times n$  matrices has size  $\Omega(\frac{n^{d-1}}{2^d})$ .

Proof.

- Let C be the depth three circuit with formal degree d and top fan-in k. Fix and arbitrary partition,
- 2 C can be written as  $\sum_{i} P_{i}$  where  $P_{i} = \prod_{j=1}^{\deg(P_{i})} \ell_{ij}$  where  $\ell_{ij}$  is a homogeneous linear form. MAX-RANK $(P_{i}) \leq 2^{d}$ .

MAX-RANK
$$(C) \leq k.2^d$$

3 MAX-RANK $(IMM(d, n)) = n^{d-1}$ .

# MAX-RANK( $IMM(d, n) = n^{d-1}$





◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

(1, d)

# MAX-RANK( $IMM(d, n) = n^{d-1}$



Partition: Y(Z) as variables in the odd(even) indexed matrices. Observe : while constructing a path, if we fix the edges from the odd layers, the edges from the even layers are unique.

# MAX-RANK $(IMM(d, n)) = n^{d-1}$

- The matrix M<sub>f</sub> will have only one non-zero entry in the row chosen, at the column(T) indexed by the corresponding even indexed variables.
- The same set of edges (the column T) from even indexed layers will not form a path with any other set of edges from the odd indexed layers.
- Thus the matrix  $M_f$  simply has the identity matrix of size  $n^{d-1}$  up to permutation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Hence rank of  $M_f$  is exactly  $n^{d-1}$ .

# Application 2 : Depth Three circuits with Product Dimension $\frac{n}{10}$

## Theorem

There is an explicit polynomial P in n variables and degree at most  $\frac{n}{2}$  such that any  $\Sigma \Pi \Sigma$  circuit C of product dimension at most  $\frac{n}{10}$  computing it has size  $2^{\Omega(n)}$ .

Proof.

**1** For a  $\Sigma\Pi\Sigma$  circuit *C* with top-fanin *k* and product dimension *r*, computing a degree *d* polynomial, for any equipartition, MAX-RANK(*C*)  $\leq k \binom{d+r}{r} (d+1)$ .

# Application 2 : Depth Three circuits with Product Dimension $\frac{n}{10}$

## Theorem

There is an explicit polynomial P in n variables and degree at most  $\frac{n}{2}$  such that any  $\Sigma \Pi \Sigma$  circuit C of product dimension at most  $\frac{n}{10}$  computing it has size  $2^{\Omega(n)}$ .

Proof.

**1** For a  $\Sigma\Pi\Sigma$  circuit *C* with top-fanin *k* and product dimension *r*, computing a degree *d* polynomial, for any equipartition, MAX-RANK(*C*)  $\leq k \binom{d+r}{r} (d+1)$ .

2 There is a polynomial *P* of degree  $\frac{n}{2}$  such that there is a partition for which MAX-RANK(*P*)  $\geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$ .

# Application 2 : Depth Three circuits with Product Dimension $\frac{n}{10}$

## Theorem

There is an explicit polynomial P in n variables and degree at most  $\frac{n}{2}$  such that any  $\Sigma \Pi \Sigma$  circuit C of product dimension at most  $\frac{n}{10}$  computing it has size  $2^{\Omega(n)}$ .

Proof.

**1** For a  $\Sigma\Pi\Sigma$  circuit *C* with top-fanin *k* and product dimension *r*, computing a degree *d* polynomial, for any equipartition, MAX-RANK(*C*)  $\leq k \binom{d+r}{r} (d+1)$ .

2 There is a polynomial *P* of degree  $\frac{n}{2}$  such that there is a partition for which MAX-RANK(*P*)  $\geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$ .

**3** Hence, 
$$k \geq 2^{\Omega(n)}$$
, if  $r \leq rac{n}{10}$ .

#### Lemma

For a  $\Sigma \Pi \Sigma$  circuit *C* with product dimension *r*, computing a degree *d* polynomial, for any equipartition, MAX-RANK(*C*)  $\leq$  (top fanin) $\binom{d+r}{r}(d+1)$ .

### Proof.

- Consider a product gate  $Q = \prod_{i=1}^{t} \ell_i$ .
- Let  $\ell_i$ 's (for this Q) be spanned by the affine forms  $m_1, \ldots m_r$ .

#### Lemma

For a  $\Sigma\Pi\Sigma$  circuit C with product dimension r, computing a degree d polynomial, for any equipartition, MAX-RANK(C)  $\leq$  (top fanin) $\binom{d+r}{r}(d+1)$ .

Proof.

- Consider a product gate  $Q = \prod_{i=1}^{t} \ell_i$ .
- Let  $\ell_i$ 's (for this Q) be spanned by the affine forms  $m_1, \ldots m_r$ .

$$Q = \prod_{i=1}^{t} \left( \ell'_i + \beta_i \right)$$

(ロ)、(型)、(E)、(E) の(()

where  $\ell'_i = \ell_i - \beta_i$  is the homog. part of the affine form  $\ell_i$ .

- Difficulty 1 : s could be as large as  $2^t r^d$ .
- Difficulty 2 : MAX-RANK( $\prod_{i}^{d} m'_{ii}$ ) can be as large as  $2^{d}$ .

#### Lemma

For a  $\Sigma\Pi\Sigma$  circuit C with product dimension r, computing a degree d polynomial, for any equipartition, MAX-RANK(C)  $\leq$  (top fanin) $\binom{d+r}{r}(d+1)$ .

Proof.

- Consider a product gate  $Q = \prod_{i=1}^{t} \ell_i$ .
- Let  $\ell_i$ 's (for this Q) be spanned by the affine forms  $m_1, \ldots m_r$ .

$$Q = \sum_{j=1}^{2^t} c_j \left( \prod_{i=1}^{\leq t} \ell'_i \right)$$

where  $\ell'_i$  is the homog. part of the affine form  $\ell_i$ .

- Difficulty 1 : s could be as large as  $2^t r^d$ .
- Difficulty 2 : MAX-RANK( $\prod_{i}^{d} m'_{ii}$ ) can be as large as  $2^{d}$ .

#### Lemma

For a  $\Sigma\Pi\Sigma$  circuit C with product dimension r, computing a degree d polynomial, for any equipartition, MAX-RANK(C)  $\leq$  (top fanin) $\binom{d+r}{r}(d+1)$ .

Proof.

- Consider a product gate  $Q = \prod_{i=1}^{t} \ell_i$ .
- Let  $\ell_i$ 's (for this Q) be spanned by the affine forms  $m_1, \ldots m_r$ .

$$Q = \sum_{j=1}^{2^t} c_j \left( \prod_{i=1}^{\leq t} (\alpha_{i1} m'_1 + \alpha_{i2} m'_2 + \ldots + \alpha_{ir} m'_r) \right)$$

where  $m'_i$  is the homogenous part of the linear form  $m_i$ .

- Difficulty 1 : s could be as large as  $2^t r^d$ .
- Difficulty 2 : MAX-RANK( $\prod_{i}^{d} m'_{ii}$ ) can be as large as  $2^{d}$ .

#### Lemma

For a  $\Sigma\Pi\Sigma$  circuit C with product dimension r, computing a degree d polynomial, for any equipartition, MAX-RANK(C)  $\leq$  (top fanin) $\binom{d+r}{r}(d+1)$ .

Proof.

- Consider a product gate  $Q = \prod_{i=1}^{t} \ell_i$ .
- Let  $\ell_i$ 's (for this Q) be spanned by the affine forms  $m_1, \ldots m_r$ .

$$Q = \sum_{j=1}^{s} c'_j \prod_{i=1}^{d} m'_{ij}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ●

where s could be as large as  $2^t r^d$ .

- Difficulty 1 : s could be as large as  $2^t r^d$ .
- Difficulty 2 : MAX-RANK( $\prod_{i}^{d} m'_{ii}$ ) can be as large as  $2^{d}$ .

 Observe : MAX-RANK(ℓ<sup>d</sup>) ≤ d + 1. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Observe : MAX-RANK(ℓ<sup>d</sup>) ≤ d + 1. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- SHPILKA (2001): Any monomial of degree *d* can be written as the sum of *d<sup>th</sup>* powers of 2<sup>*d*</sup> linear forms - the linear forms are ∑<sub>x∈S</sub> x for S ⊆ [*d*].

- Observe : MAX-RANK(ℓ<sup>d</sup>) ≤ d + 1. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- SHPILKA (2001): Any monomial of degree *d* can be written as the sum of *d<sup>th</sup>* powers of 2<sup>*d*</sup> linear forms - the linear forms are ∑<sub>x∈S</sub> x for S ⊆ [*d*].

• 
$$S = \prod_{i=1}^{d} \ell_i$$
 to  $S = \sum_{t=1}^{2^d} (L_t)^d$ .

- Observe : MAX-RANK(ℓ<sup>d</sup>) ≤ d + 1. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- SHPILKA (2001): Any monomial of degree *d* can be written as the sum of *d<sup>th</sup>* powers of 2<sup>*d*</sup> linear forms - the linear forms are ∑<sub>x∈S</sub> x for S ⊆ [*d*].

• 
$$S = \prod_{i=1}^{d} \ell_i$$
 to  $S = \sum_{t=1}^{2^d} (L_t)^d$ .

Each  $L_t$  is  $\sum_{i \in [r]} \alpha_i \ell_i$  such that  $\sum \alpha_i \leq d$ .

- Observe : MAX-RANK(ℓ<sup>d</sup>) ≤ d + 1. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- SHPILKA (2001): Any monomial of degree *d* can be written as the sum of *d<sup>th</sup>* powers of 2<sup>*d*</sup> linear forms - the linear forms are ∑<sub>x∈S</sub> x for S ⊆ [*d*].

• 
$$S = \prod_{i=1}^{d} \ell_i$$
 to  $S = \sum_{t=1}^{2^d} (L_t)^d$ .  
Each  $L_t$  is  $\sum_{i \in [r]} \alpha_i \ell_i$  such that  $\sum \alpha_i \leq d$ .  
• Thus,  $Q = \sum_{q=1}^{m} c_q \cdot (L_q)^d$  where  $m = \binom{d+r}{r}$ .

MAX-RANK
$$(Q) \leq (d+1) \binom{d+r}{r}$$

- Observe : MAX-RANK(ℓ<sup>d</sup>) ≤ d + 1. The idea is to express express a product of linear forms as a sum of product of powers of linear forms.
- SHPILKA (2001): Any monomial of degree *d* can be written as the sum of *d<sup>th</sup>* powers of 2<sup>*d*</sup> linear forms - the linear forms are ∑<sub>x∈S</sub> x for S ⊆ [*d*].

• 
$$S = \prod_{i=1}^{d} \ell_i$$
 to  $S = \sum_{t=1}^{2^d} (L_t)^d$ .  
Each  $L_t$  is  $\sum_{i \in [r]} \alpha_i \ell_i$  such that  $\sum \alpha_i \leq d$ .  
• Thus,  $Q = \sum_{q=1}^{m} c_q \cdot (L_q)^d$  where  $m = \binom{d+r}{r}$ .  
MAX-RANK $(C) \leq k(d+1)\binom{d+r}{r}$ 

## Step 2: Constructing the hard polynomial

#### Lemma

There is a polynomial P of degree  $\frac{n}{2}$  and a partition such that there is a partition for which MAX-RANK(P)  $\geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$ .

Proof.

- Fix  $Y = \{x_1, x_2, \dots, x_{\frac{n}{2}}\}$  and  $Z = \{x_{\frac{n}{2}+1}, \dots, x_n\}$ .
- Let  $S_1 \dots S_\ell$  and  $T_1 \dots T_\ell$  be canonically ordered subsets of Y and Z of size exactly  $\frac{n}{4}$  where  $\ell = \binom{n/2}{n/4}$ .

## Step 2: Constructing the hard polynomial

#### Lemma

There is a polynomial P of degree  $\frac{n}{2}$  and a partition such that there is a partition for which MAX-RANK(P)  $\geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$ .

Proof.

- Fix  $Y = \{x_1, x_2, \dots, x_{\frac{n}{2}}\}$  and  $Z = \{x_{\frac{n}{2}+1}, \dots, x_n\}$ .
- Let  $S_1 \dots S_\ell$  and  $T_1 \dots T_\ell$  be canonically ordered subsets of Y and Z of size exactly  $\frac{n}{4}$  where  $\ell = \binom{n/2}{n/4}$ .

$$P = \sum_{i=1}^{\ell} \prod_{y \in S_i} \prod_{z \in T_i} (yz)$$

## Step 2: Constructing the hard polynomial

#### Lemma

There is a polynomial P of degree  $\frac{n}{2}$  and a partition such that there is a partition for which MAX-RANK(P)  $\geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$ .

Proof.

- Fix  $Y = \{x_1, x_2, \dots, x_{\frac{n}{2}}\}$  and  $Z = \{x_{\frac{n}{2}+1}, \dots, x_n\}$ .
- Let  $S_1 \dots S_\ell$  and  $T_1 \dots T_\ell$  be canonically ordered subsets of Yand Z of size exactly  $\frac{n}{4}$  where  $\ell = \binom{n/2}{n/4}$ .  $P = \sum_{i=1}^{\ell} \prod_{y \in S_i} \prod_{z \in T_i} (yz)$
- In the matrix, only the diagonal entries of these corresponding subsets will be non-zero. Thus, MAX-RANK(P) ≥ (<sup>n</sup>/<sub>2</sub>) ≥ 2<sup>n</sup>/<sub>√n</sub>.

## Choosing the parameters

$$k \times \binom{d+r}{r}(d+1) \geq \frac{2^{\frac{n}{2}}}{\sqrt{n}}$$

 $d = \frac{n}{2}$ ,  $r = \frac{n}{10}$  gives,  $k \ge 2^{cn}$  for some constant c > 0.

#### Lemma

The polynomial P can be computed by a diagonal circuit (hence product dimension 1) of size  $2^n$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
## Choosing the parameters

$$k imes {d+r \choose r} (d+1) \ge rac{2^{rac{n}{2}}}{\sqrt{n}}$$

 $d = \frac{n}{2}$ ,  $r = \frac{n}{10}$  gives,  $k \ge 2^{cn}$  for some constant c > 0.

#### Lemma

The polynomial P can be computed by a diagonal circuit (hence product dimension 1) of size  $2^n$ .

#### Proof.

- Express the polynomial as a sum of monomials.
- Express each monomial as a sum of powers of linear forms.

- Each product gate has product dimension 1.
- The resulting circuit is of depth d and of size  $2^{O(n)}$ .

• We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension  $\frac{n}{10}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension <sup>n</sup>/<sub>10</sub>. (Follow up : can be improved to <sup>n</sup>/<sub>4</sub>).

- We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension <sup>n</sup>/<sub>10</sub>. (Follow up : can be improved to <sup>n</sup>/<sub>4</sub>).
- So close, yet so far : the techniques so far do not distinguish between determinant and permanent. What makes them distinct? Properties?

- We showed lower bounds against depth three homogeneous circuits, depth three circuits of product dimension <sup>n</sup>/<sub>10</sub>. (Follow up : can be improved to <sup>n</sup>/<sub>4</sub>).
- So close, yet so far : the techniques so far do not distinguish between determinant and permanent. What makes them distinct? Properties?
- Open Problem : Is there a chasm at depth three for finite fields?
- Open Problem : Is there a depth reduction to depth three homogeneous circuits?
- Open Problem : Unify our method with the shifted partial derivatives method of *GKKS*12.

so close ... yet so far ...

Thanks !

Questions?

<□ > < @ > < E > < E > E のQ @