Depth Lower Bounds and Non-monotonicity (for Circuits with Sparse Orientation)

Jayalal Sarma

(joint work with Sajin Koroth)

Indian Institute of Technology Madras
Chennai, India

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Quick Recap

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Model : Bounded fan-in Boolean circuits over $\{\wedge, \vee, \neg\}$.

Quick Recap

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Model : Bounded fan-in Boolean circuits over $\{\wedge, \vee, \neg\}$.
- Depth $\Omega(\log n)$ for any function that depends on all input variables.
- $\Omega(s(n))$ size $\Longrightarrow \Omega(\log s(n))$ depth.

Quick Recap

- $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Model : Bounded fan-in Boolean circuits over $\{\wedge, \vee, \neg\}$.
- Depth $\Omega(\log n)$ for any function that depends on all input variables.
- $\Omega(s(n))$ size $\Longrightarrow \Omega(\log s(n))$ depth.
- Known circuit lower bounds for general circuits are depressingly weak ($3.011 n$ on size and $(3-\epsilon) \log n$ on depth).

Lower bounds for Monotone Circuits

- (1985 Razborov ...)

There exist explicit monotone functions for which any monotone circuit requires size $2^{\Omega(\sqrt{n})}$.

Lower bounds for Monotone Circuits

- (1985 Razborov ...)

There exist explicit monotone functions for which any monotone circuit requires size $2^{\Omega(\sqrt{n})}$.

- Non-monotonicity does help in reducing circuit size !!.

Lower bounds for Monotone Circuits

- (1985 Razborov ...)

There exist explicit monotone functions for which any monotone circuit requires size $2^{\Omega(\sqrt{n})}$.

- Non-monotonicity does help in reducing circuit size !!.
- (1988 Raz-Wigderson) s-t connectivity requires $\Omega\left(\log ^{2} n\right)$ depth for any monotone circuit.
- (1989 Raz-Wigderson) Perfect matching and Clique requires $\Omega(\sqrt{n})$ monotone depth.

Lower bounds for Monotone Circuits

- (1985 Razborov ...)

There exist explicit monotone functions for which any monotone circuit requires size $2^{\Omega(\sqrt{n})}$.

- Non-monotonicity does help in reducing circuit size !!.
- (1988 Raz-Wigderson) s-t connectivity requires $\Omega\left(\log ^{2} n\right)$ depth for any monotone circuit.
- (1989 Raz-Wigderson) Perfect matching and Clique requires $\Omega(\sqrt{n})$ monotone depth.
- Non-monotonicity does help in reducing circuit depth !!.

Lower bounds for Monotone Circuits

- (1985 Razborov ...)

There exist explicit monotone functions for which any monotone circuit requires size $2^{\Omega(\sqrt{n})}$.

- Non-monotonicity does help in reducing circuit size !!.
- (1988 Raz-Wigderson) s-t connectivity requires $\Omega\left(\log ^{2} n\right)$ depth for any monotone circuit.
- (1989 Raz-Wigderson) Perfect matching and Clique requires $\Omega(\sqrt{n})$ monotone depth.
- Non-monotonicity does help in reducing circuit depth !!.
- (2014 Göös-Pitassi) Function in Monotone NP requiring $\Omega(n / \log n)$ monotone depth.

Against Non-monotone Circuits : Size

Limiting non-monotonicity : Number of negations.

Against Non-monotone Circuits : Size

Limiting non-monotonicity : Number of negations.

- (1976 Fischer)

$$
\left\{\begin{array}{l}
\text { Size :s} \\
\text { Depth : } d
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { \# of Negations : } O(\log n) \\
\text { Size }: 2 s+O(n \log n) \\
\text { Depth }: d+O(\log n)
\end{array}\right\}
$$

Against Non-monotone Circuits : Size

Limiting non-monotonicity : Number of negations.

- (1976 Fischer)

$$
\left\{\begin{array}{l}
\text { Size :s } \\
\text { Depth : } d
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { \# of Negations: } O(\log n) \\
\text { Size }: 2 s+O(n \log n) \\
\text { Depth }: d+O(\log n)
\end{array}\right\}
$$

- (1998 Amano-Maruoka) Clique requires $n^{\log n}$ size even when $\frac{1}{6} \log \log n$ negations are allowed.
- (2004 Jukna) Multi-output function such that $n^{\log n}$ size is required even when $\log n-O(\log \log n)$ negations are allowed.

Against Non-monotone Circuits : Size

Limiting non-monotonicity : Number of negations.

- (1976 Fischer)

$$
\left\{\begin{array}{l}
\text { Size :s } \\
\text { Depth : } d
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { \# of Negations: } O(\log n) \\
\text { Size }: 2 s+O(n \log n) \\
\text { Depth : } d+O(\log n)
\end{array}\right\}
$$

- (1998 Amano-Maruoka) Clique requires $n^{\log n}$ size even when $\frac{1}{6} \log \log n$ negations are allowed.
- (2004 Jukna) Multi-output function such that $n^{\log n}$ size is required even when $\log n-O(\log \log n)$ negations are allowed.
- (2015 Rossman) A function using s-t connectivity cannot be in $\mathbf{N C}^{1}$ using only $\left(\frac{1}{2}-\epsilon\right) \log n$ negations.

Against Non-monotone Circuits : Depth

- (1998 Amano-Maruoka) Clique requires depth $\Omega\left((\log n)^{\sqrt{\log n}}\right)$ even when $\frac{1}{6} \log \log n$ negations are allowed. (follows from size lower bounds).
- (1989 Raz-Wigderson) s-t connectivity requires $\Omega\left(\log ^{2} n\right)$ depth when we allow $\frac{n}{c}$ negations allowed at the input.

Against Non-monotone Circuits : Depth

- (1998 Amano-Maruoka) Clique requires depth $\Omega\left((\log n)^{\sqrt{\log n}}\right)$ even when $\frac{1}{6} \log \log n$ negations are allowed. (follows from size lower bounds).
- (1989 Raz-Wigderson) s-t connectivity requires $\Omega\left(\log ^{2} n\right)$ depth when we allow $\frac{n}{c}$ negations allowed at the input.

This work :

- Restriction (high-level idea) : Circuits where every internal gate computes a function which is not "far" from monotone.
- Main Result (high-level view) : A trade-off between "far"-ness and circuit depth lower bound.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Orientation of Boolean Functions

- Let C be a DeMorgan circuit computing f with minimum number of negations.
- Orientation of f : Characteristic vector $\beta \in\{0,1\}^{n}$ of the set of negated variables.

Orientation of Boolean Functions

- Let C be a DeMorgan circuit computing f with minimum number of negations.
- Orientation of f : Characteristic vector $\beta \in\{0,1\}^{n}$ of the set of negated variables.

Orientation of a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a $\beta \in\{0,1\}^{n}$ such that there is a monotone function $h:\{0,1\}^{2 n} \rightarrow\{0,1\}$ with $\forall x, f(x)=h(x, x \oplus \beta)$.

Orientation of Boolean Functions

- Let C be a DeMorgan circuit computing f with minimum number of negations.
- Orientation of f : Characteristic vector $\beta \in\{0,1\}^{n}$ of the set of negated variables.

Orientation of a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a $\beta \in\{0,1\}^{n}$ such that there is a monotone function $h:\{0,1\}^{2 n} \rightarrow\{0,1\}$ with $\forall x, f(x)=h(x, x \oplus \beta)$.

Property : For a function f the minimal orientation is unique.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Depth Lower Bounds vs Weight

A circuit C is weight w-restricted if at each gate g the sub-circuit rooted at that gate computes a function f_{g} whose weight of orientation is at most w.

Depth Lower Bounds vs Weight

A circuit C is weight w-restricted if at each gate g the sub-circuit rooted at that gate computes a function f_{g} whose weight of orientation is at most w.

Theorem
Let C be a weight w-restricted circuit computing Clique, then

$$
\operatorname{Depth}(C)=\Omega\left(\frac{\sqrt{n}}{4 w+1}\right)
$$

Depth Lower Bounds vs Weight

A circuit C is weight w-restricted if at each gate g the sub-circuit rooted at that gate computes a function f_{g} whose weight of orientation is at most w.

Theorem
Let C be a weight w-restricted circuit computing Clique, then

$$
\operatorname{Depth}(C)=\Omega\left(\frac{\sqrt{n}}{4 w+1}\right)
$$

For $w=\frac{\sqrt{n}}{(\log n)^{1+\epsilon}}, \operatorname{Depth}(C)=\Omega\left((\log n)^{1+\epsilon}\right)$.

Depth Lower Bounds vs Weight

A circuit C is weight w-restricted if at each gate g the sub-circuit rooted at that gate computes a function f_{g} whose weight of orientation is at most w.

Theorem
Let C be a weight w-restricted circuit computing Clique, then

$$
\operatorname{Depth}(C)=\Omega\left(\frac{\sqrt{n}}{4 w+1}\right)
$$

For $w=\frac{\sqrt{n}}{(\log n)^{1+\epsilon}}, \operatorname{Depth}(C)=\Omega\left((\log n)^{1+\epsilon}\right)$.
Weight n orientation is sufficient to compute any function.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

How many Non-trivially Oriented Gates?

How many Non-trivially Oriented Gates?

- Weak Bounds from negations :

$$
\left\{\begin{array}{l}
\text { Size }: s \\
\text { Depth }: d \\
\text { \# Negations }: t
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { Size }: s \\
\text { Depth }: d+O(t) \\
\text { \# of Non-zero Orient. }: t 2^{t-1}
\end{array}\right\}
$$

- Target: $O(n \log n)$ densely oriented gates.

How many Non-trivially Oriented Gates?

- Weak Bounds from negations :

$$
\left\{\begin{array}{l}
\text { Size }: s \\
\text { Depth : } d \\
\text { \# Negations : } t
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\text { Size }: s \\
\text { Depth }: d+O(t) \\
\text { \# of Non-zero Orient. : } t 2^{t-1}
\end{array}\right\}
$$

- Target: $O(n \log n)$ densely oriented gates.
- Can we handle higher weight β^{\prime} 's if we restrict the number of non-trivially oriented gates?
- No. There exists a (non-explicit) monotone function f which cannot be computed by $\omega(\sqrt{n})$ depth monotone circuits, but it is a computed by a $O\left(\log ^{2} n\right)$ depth circuit having only two gates with non-zero orientation.

UNIFORM ORIENTATION

If all gates have same orientation $\beta \in\{0,1\}^{n}$, this is equivalent to allowing w leaf negations.

Uniform orientation

If all gates have same orientation $\beta \in\{0,1\}^{n}$, this is equivalent to allowing w leaf negations.
For Clique, consider β as a $\sqrt{n} \times \sqrt{n}$ matrix.
A "symmetric square" is a rectangle indexed by the same set of vertices.

Structure Based Lower Bound: Case of Clique

If C computes Clique :
$\left\{\begin{array}{l}\beta \text {-matrix has a } 0 \text {-symm-sq. } \\ \text { of order } O\left(\log ^{1+\epsilon} n\right)\end{array}\right\} \Longrightarrow\{$ Depth must be $\omega(\log n)\}$
In contrast : Let U be symmetric square of order $O(\log n)$. If C computes Clique:

$$
\{\text { Depth } d\} \Longrightarrow\left\{\begin{array}{l}
\text { Depth } d+c(\log n) \\
U \text { is all } 0 \text { s in the } \beta \text {-matrix. }
\end{array}\right\}
$$

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Proof Sketch : KW Games

Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$.
KW (f) : Goal : Find $i \in[n]$ such that $x_{i} \neq y_{i}$. $\mathbf{K W}(f)=\operatorname{Depth}(f)$.

Proof Sketch : KW Games

Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$.
$\mathbf{K W}(f)$: Goal : Find $i \in[n]$ such that $x_{i} \neq y_{i}$.
$\mathbf{K W}(f)=\operatorname{Depth}(f)$.
If f is montone :
$\mathbf{K W}^{+}(f):$ Goal : Find $i \in[n]$ such that $x_{i}=1$ and $y_{i}=0$
$\mathbf{K W}^{+}(f)=$ Monotone $\operatorname{Depth}(f)$

Proof Sketch : KW Games

Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$.
KW (f) : Goal : Find $i \in[n]$ such that $x_{i} \neq y_{i}$.
$\mathbf{K W}(f)=\operatorname{Depth}(f)$.
If f is montone:
$\mathbf{K W}^{+}(f)$: Goal : Find $i \in[n]$ such that $x_{i}=1$ and $y_{i}=0$
$\mathbf{K W}^{+}(f)=\operatorname{Monotone} \operatorname{Depth}(f)$
Known Lower Bounds :

- $\mathbf{K W}^{+}($Clique $)=\Omega(\sqrt{n})$.
- $\mathbf{K W} \mathbf{W}^{+}(s-t$ connectivity $)=\Omega\left(\log ^{2} n\right)$.
- $\mathbf{K} \mathbf{W}^{+}($Perf. Match $)=\Omega(\sqrt{n})$.

Tradeoff : Depth Lower Bound vs Weight

Tradeoff : Weight vs Depth Lower Bound

Let C be a weight w-restricted circuit computing a monotone function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then

$$
\operatorname{Depth}(C)=\Omega\left(\frac{\mathbf{K} \mathbf{W}^{+}(f)}{4 w+1}\right)
$$

Proof Sketch

From Circuits to KW games: Let C be a monotone circuit computing f.
Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$ for a monotone function f. Goal : Find $i \in[n]$ such that $x_{i}=1$ and $y_{i}=0$.

- Protocol : Top-down. Current gate g with inputs g_{1} and g_{2}.
- Invariant at a gate $g: g(x)=1$ and $g(y)=0$.
- if g is \vee gate, Alice sends 0 if $g_{1}(x)=1$ else 1 .
- if g is \wedge gate, Bob sends 0 if $g_{1}(x)=0$ else 1 .

Proof Sketch

At a gate g whose orientation is $\beta \in\{0,1\}^{n}$
Subcube-Monotonicity Invariant : Restricted to the sub-cube outside the current β, the function g is monotone. Be within such a subcube.

Procotol : By using $2 w$ bits of communication :

- Either conclude that there is an index i (where $\beta_{i}=1$) such that $x_{i}=1$ and $y_{i}=0$, OR
- Change x and y to new pair x^{\prime} and y^{\prime} such that on bits indexed by β they agree, and $g\left(x^{\prime}\right)=1$ and $g\left(y^{\prime}\right)=0$.
How do we do the second step? Construct y^{\prime} by setting $y_{\beta}=x_{\beta}$. Since we know that $x_{\beta} \leq y_{\beta}$, "decreasing" y to y^{\prime} will not make the function value of g as 1 .

Proof Sketch

At a gate g whose orientation is $\beta \in\{0,1\}^{n}$
Subcube-Monotonicity Invariant : Restricted to the sub-cube outside the current β, the function g is monotone. Be within such a subcube.

Procotol : By using $2 w$ bits of communication :

- Either conclude that there is an index i (where $\beta_{i}=1$) such that $x_{i}=1$ and $y_{i}=0$, OR
- Change x and y to new pair x^{\prime} and y^{\prime} such that on bits indexed by β they agree, and $g\left(x^{\prime}\right)=1$ and $g\left(y^{\prime}\right)=0$.
How do we do the second step? Construct y^{\prime} by setting $y_{\beta}=x_{\beta}$.
Since we know that $x_{\beta} \leq y_{\beta}$, "decreasing" y to y^{\prime} will not make the function value of g as 1 .

Handling negation gates: Observe that negation gates can depend on at most $2 w$ inputs.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Future Work and Open problems

- Can we push the boundary beyond $O\left(\frac{\sqrt{n}}{\log ^{1+\epsilon} n}\right)$?
- Can we reduce "weight of orientation" in general (when we know the function computed is a monotone function)?
- Is there a structure vs weight trade-off?
- Can this new measure help in learning restricted non-monotone circuits?

Thanks !!

