Depth Lower Bounds and Non-monotonicity (for Circuits with Sparse Orientation)

Jayalal Sarma

(joint work with Sajin Koroth)

Indian Institute of Technology Madras Chennai, India

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

QUICK RECAP

- ▶ $f: \{0,1\}^n \to \{0,1\}.$
- Model : Bounded fan-in Boolean circuits over $\{\land,\lor,\neg\}$.

QUICK RECAP

- ▶ $f: \{0,1\}^n \to \{0,1\}.$
- Model : Bounded fan-in Boolean circuits over $\{\land,\lor,\urcorner\}$.
 - ► Depth Ω(log n) for any function that depends on all input variables.
 - $\Omega(s(n))$ size $\implies \Omega(\log s(n))$ depth.

QUICK RECAP

- ▶ $f: \{0,1\}^n \to \{0,1\}.$
- Model : Bounded fan-in Boolean circuits over $\{\land,\lor,\urcorner\}$.
 - ► Depth Ω(log n) for any function that depends on all input variables.
 - $\Omega(s(n))$ size $\implies \Omega(\log s(n))$ depth.
- ► Known circuit lower bounds for general circuits are depressingly weak (3.011*n* on size and (3 − ϵ) log *n* on depth).

► (1985 Razborov ...)

► (1985 Razborov ...)

There exist explicit monotone functions for which any monotone circuit requires size $2^{\Omega(\sqrt{n})}$.

► Non-monotonicity does help in reducing circuit size !!.

► (1985 Razborov ...)

- ► Non-monotonicity does help in reducing circuit size !!.
- (1988 Raz-Wigderson) *s*-*t* connectivity requires Ω(log² n) depth for any monotone circuit.
- ► (1989 Raz-Wigderson) Perfect matching and Clique requires Ω(√n) monotone depth.

► (1985 Razborov ...)

- ► Non-monotonicity does help in reducing circuit size !!.
- (1988 Raz-Wigderson) *s*-*t* connectivity requires Ω(log² n) depth for any monotone circuit.
- ► (1989 Raz-Wigderson) Perfect matching and Clique requires Ω(√n) monotone depth.
- ► Non-monotonicity does help in reducing circuit depth !!.

► (1985 Razborov ...)

- ► Non-monotonicity does help in reducing circuit size !!.
- (1988 Raz-Wigderson) *s*-*t* connectivity requires Ω(log² n) depth for any monotone circuit.
- ► (1989 Raz-Wigderson) Perfect matching and Clique requires Ω(√n) monotone depth.
- ► Non-monotonicity does help in reducing circuit depth !!.
- ► (2014 Göös-Pitassi) Function in Monotone **NP** requiring $\Omega(n/\log n)$ monotone depth.

Limiting non-monotonicity : Number of negations.

Limiting non-monotonicity : Number of negations.

► (1976 Fischer)

$$\left\{\begin{array}{l} \text{Size}:s\\ \text{Depth}:d\end{array}\right\} \implies \left\{\begin{array}{l} \texttt{\# of Negations}:O(\log n)\\ \text{Size}:2s+O(n\log n)\\ \text{Depth}:d+O(\log n)\end{array}\right\}$$

Limiting non-monotonicity : Number of negations.

► (1976 Fischer)

$$\left\{\begin{array}{l} \text{Size}:s\\ \text{Depth}:d\end{array}\right\} \implies \left\{\begin{array}{l} \texttt{\# of Negations}:O(\log n)\\ \text{Size}:2s+O(n\log n)\\ \text{Depth}:d+O(\log n)\end{array}\right\}$$

- ► (1998 Amano-Maruoka) Clique requires n^{log n} size even when ¹/₆ log log n negations are allowed.
- ► (2004 Jukna) Multi-output function such that n^{log n} size is required even when log n − O(log log n) negations are allowed.

Limiting non-monotonicity : Number of negations.

► (1976 Fischer)

$$\left\{\begin{array}{l} \text{Size}:s\\ \text{Depth}:d\end{array}\right\} \implies \left\{\begin{array}{l} \texttt{\# of Negations}:O(\log n)\\ \text{Size}:2s+O(n\log n)\\ \text{Depth}:d+O(\log n)\end{array}\right\}$$

- ► (1998 Amano-Maruoka) Clique requires n^{log n} size even when ¹/₆ log log n negations are allowed.
- ► (2004 Jukna) Multi-output function such that n^{log n} size is required even when log n – O(log log n) negations are allowed.
- ► (2015 Rossman) A function using *s*-*t* connectivity cannot be in NC¹ using only (¹/₂ - *e*) log *n* negations.

- (1998 Amano-Maruoka) Clique requires depth
 Ω((log n)√^{log n}) even when ¹/₆ log log n negations are allowed. (follows from size lower bounds).
- (1989 Raz-Wigderson) *s-t* connectivity requires $\Omega(\log^2 n)$ depth when we allow $\frac{n}{c}$ negations allowed at the input.

- (1998 Amano-Maruoka) Clique requires depth
 Ω((log n)√^{log n}) even when ¹/₆ log log n negations are allowed. (follows from size lower bounds).
- (1989 Raz-Wigderson) *s-t* connectivity requires $\Omega(\log^2 n)$ depth when we allow $\frac{n}{c}$ negations allowed at the input.

This work :

- Restriction (high-level idea) : Circuits where every internal gate computes a function which is not "far" from monotone.
- Main Result (high-level view) : A trade-off between "far"-ness and circuit depth lower bound.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Orientation of Boolean Functions

- ► Let *C* be a DeMorgan circuit computing *f* with minimum number of negations.
- ► Orientation of *f* : Characteristic vector β ∈ {0,1}ⁿ of the set of negated variables.

Orientation of Boolean Functions

- ► Let *C* be a DeMorgan circuit computing *f* with minimum number of negations.
- ► Orientation of *f* : Characteristic vector β ∈ {0,1}ⁿ of the set of negated variables.

Orientation of a function $f : \{0,1\}^n \to \{0,1\}$ is a $\beta \in \{0,1\}^n$ such that there is a monotone function $h : \{0,1\}^{2n} \to \{0,1\}$ with $\forall x, f(x) = h(x, x \oplus \beta)$.

Orientation of Boolean Functions

- ► Let *C* be a DeMorgan circuit computing *f* with minimum number of negations.
- ► Orientation of *f* : Characteristic vector β ∈ {0,1}ⁿ of the set of negated variables.

Orientation of a function $f : \{0,1\}^n \to \{0,1\}$ is a $\beta \in \{0,1\}^n$ such that there is a monotone function $h : \{0,1\}^{2n} \to \{0,1\}$ with $\forall x, f(x) = h(x, x \oplus \beta)$.

Property : For a function *f* the minimal orientation is unique.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

A circuit *C* is weight *w*-restricted if at each gate *g* the sub-circuit rooted at that gate computes a function f_g whose weight of orientation is at most *w*.

A circuit *C* is weight *w*-restricted if at each gate *g* the sub-circuit rooted at that gate computes a function f_g whose weight of orientation is at most *w*.

Theorem

Let *C* be a weight *w*-restricted circuit computing **Clique**, then

$$\mathsf{Depth}(C) = \Omega\left(\frac{\sqrt{n}}{4w+1}\right)$$

A circuit *C* is weight *w*-restricted if at each gate *g* the sub-circuit rooted at that gate computes a function f_g whose weight of orientation is at most *w*.

Theorem Let *C* be a weight *w*-restricted circuit computing **Clique**, then

$$\mathrm{Depth}(C) = \Omega\left(\frac{\sqrt{n}}{4w+1}\right)$$

For
$$w = \frac{\sqrt{n}}{(\log n)^{1+\epsilon}}$$
, $\text{Depth}(C) = \Omega((\log n)^{1+\epsilon})$.

A circuit *C* is weight *w*-restricted if at each gate *g* the sub-circuit rooted at that gate computes a function f_g whose weight of orientation is at most *w*.

Theorem Let *C* be a weight *w*-restricted circuit computing **Clique**, then

$$\mathsf{Depth}(C) = \Omega\left(\frac{\sqrt{n}}{4w+1}\right)$$

For $w = \frac{\sqrt{n}}{(\log n)^{1+\epsilon}}$, $\text{Depth}(C) = \Omega((\log n)^{1+\epsilon})$. Weight *n* orientation is sufficient to compute any function.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

How MANY NON-TRIVIALLY ORIENTED GATES?

How MANY NON-TRIVIALLY ORIENTED GATES?

• Weak Bounds from negations :

$$\left\{ \begin{array}{l} \text{Size : } s \\ \text{Depth : } d \\ \# \text{Negations : } t \end{array} \right\} \implies \left\{ \begin{array}{l} \text{Size : } s \\ \text{Depth : } d + O(t) \\ \# \text{ of Non-zero Orient. : } t2^{t-1} \end{array} \right.$$

• Target : $O(n \log n)$ densely oriented gates.

How MANY NON-TRIVIALLY ORIENTED GATES?

• Weak Bounds from negations :

$$\left\{ \begin{array}{c} \text{Size : } s \\ \text{Depth : } d \\ \# \text{ Negations : } t \end{array} \right\} \implies \begin{cases} \text{Size : } s \\ \text{Depth : } d + O(t) \\ \# \text{ of Non-zero Orient. : } t2^{t-1} \end{cases}$$

- Target : $O(n \log n)$ densely oriented gates.
- Can we handle higher weight β's if we restrict the number of non-trivially oriented gates?
- ► No. There exists a (non-explicit) monotone function f which cannot be computed by ω(√n) depth monotone circuits, but it is a computed by a O(log² n) depth circuit having only two gates with non-zero orientation.

UNIFORM ORIENTATION

If all gates have same orientation $\beta \in \{0,1\}^n$, this is equivalent to allowing *w* leaf negations.

UNIFORM ORIENTATION

If all gates have same orientation $\beta \in \{0, 1\}^n$, this is equivalent to allowing *w* leaf negations. For Clique, consider β as a $\sqrt{n} \times \sqrt{n}$ matrix.

A "symmetric square" is a rectangle indexed by the same set of vertices.

Structure Based Lower Bound: Case of Clique

If *C* computes **Clique** :

 $\left\{\begin{array}{l} \beta\text{-matrix has a 0-symm-sq.}\\ \text{of order } O(\log^{1+\epsilon}n) \end{array}\right\} \implies \left\{\begin{array}{l} \text{Depth must be } \omega(\log n) \end{array}\right\}$

In contrast : Let *U* be symmetric square of order $O(\log n)$. If *C* computes **Clique**:

$$\{ \text{ Depth } d \} \implies \begin{cases} \text{ Depth } d + c(\log n) \\ U \text{ is all 0s in the } \beta \text{-matrix.} \end{cases}$$

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

Proof Sketch : KW Games

Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$. **KW**(f) : **Goal** : Find $i \in [n]$ such that $x_i \neq y_i$. **KW**(f) = Depth(f).

PROOF SKETCH : KW GAMES

Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$.

KW(f) : **Goal** : Find $i \in [n]$ such that $x_i \neq y_i$. **KW**(f) = *Depth*(f).

If *f* is montone : $\mathbf{KW}^+(f)$: **Goal** : Find $i \in [n]$ such that $x_i = 1$ and $y_i = 0$ $\mathbf{KW}^+(f) = \text{Monotone Depth}(f)$

PROOF SKETCH : KW GAMES

Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$.

KW(f) : **Goal** : Find $i \in [n]$ such that $x_i \neq y_i$. **KW**(f) = *Depth*(f).

If *f* is montone : $\mathbf{KW}^+(f)$: **Goal** : Find $i \in [n]$ such that $x_i = 1$ and $y_i = 0$ $\mathbf{KW}^+(f) =$ Monotone Depth(f)

Known Lower Bounds :

- $\mathbf{KW}^+(\mathbf{Clique}) = \Omega(\sqrt{n}).$
- **KW**⁺(*s*-*t* connectivity) = $\Omega(\log^2 n)$.
- **KW**⁺(Perf. Match) = $\Omega(\sqrt{n})$.

Tradeoff : Depth Lower Bound vs Weight

Tradeoff : Weight vs Depth Lower Bound Let *C* be a weight *w*-restricted circuit computing a monotone function $f : \{0, 1\}^n \to \{0, 1\}$, then

$$\text{Depth}(C) = \Omega\left(\frac{\mathbf{KW}^+(f)}{4w+1}\right)$$

PROOF SKETCH

From Circuits to KW games: Let *C* be a monotone circuit computing *f*. Alice is given $x \in f^{-1}(1)$ and Bob is given $y \in f^{-1}(0)$ for a monotone function *f*. **Goal** : Find $i \in [n]$ such that $x_i = 1$ and $y_i = 0$.

- ▶ Protocol : Top-down. Current gate *g* with inputs *g*₁ and *g*₂.
- Invariant at a gate g : g(x) = 1 and g(y) = 0.
- if *g* is \lor gate, Alice sends 0 if $g_1(x) = 1$ else 1.
- if *g* is \land gate, Bob sends 0 if $g_1(x) = 0$ else 1.

Proof Sketch

At a gate *g* whose orientation is $\beta \in \{0, 1\}^n$ **Subcube-Monotonicity Invariant** : Restricted to the sub-cube outside the current β , the function *g* is monotone. Be within such a subcube.

Procotol : By using 2*w* bits of communication :

- ► Either conclude that there is an index *i* (where β_i = 1) such that x_i = 1 and y_i = 0, OR
- ► Change x and y to new pair x' and y' such that on bits indexed by β they agree, and g(x') = 1 and g(y') = 0.

How do we do the second step? Construct y' by setting $y_{\beta} = x_{\beta}$.

Since we know that $x_{\beta} \leq y_{\beta}$, "decreasing" y to y' will not make the function value of g as 1.

Proof Sketch

At a gate *g* whose orientation is $\beta \in \{0, 1\}^n$ **Subcube-Monotonicity Invariant** : Restricted to the sub-cube outside the current β , the function *g* is monotone. Be within such a subcube.

Procotol : By using 2*w* bits of communication :

- ► Either conclude that there is an index *i* (where β_i = 1) such that x_i = 1 and y_i = 0, OR
- ► Change x and y to new pair x' and y' such that on bits indexed by β they agree, and g(x') = 1 and g(y') = 0.

How do we do the second step? Construct y' by setting $y_{\beta} = x_{\beta}$.

Since we know that $x_{\beta} \leq y_{\beta}$, "decreasing" y to y' will not make the function value of g as 1.

Handling negation gates : Observe that negation gates can depend on at most 2w inputs.

Overview

Known Lower Bounds

Orientation

Depth Lower Bounds vs Weight

Barriers and Structure

Proof Sketch

Open Problems

FUTURE WORK AND OPEN PROBLEMS

- Can we push the boundary beyond $O(\frac{\sqrt{n}}{\log^{1+\epsilon} n})$?
- Can we reduce "weight of orientation" in general (when we know the function computed is a monotone function)?
- ► Is there a structure vs weight trade-off?
- Can this new measure help in learning restricted non-monotone circuits?

Thanks !!