On the Complexity of Matrix Rank and Rigidity

Jayalal Sarma M.N.

The Institute of Mathematical Sciences(IMSc), Chennai, India

Joint work with Meena Mahajan(IMSc)

CSR 2007 Ekaterinburg, Russia September 4-6, 2007

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.

• The smallest r such that M = AB where $A \in \mathbb{F}^{n \times r}$, $B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is rank(M) < r? SINGULAR: Given a matrix M is rank(M) < n?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.
- The smallest r such that M = AB where $A \in \mathbb{F}^{n \times r}$, $B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is rank(M) < r? SINGULAR: Given a matrix M is rank(M) < n?

Motivations from linear algebra, control theory, from algorithmics, complexity theory. In the context of seperating complexity classes, it might facilitate application of well developed algebraic techniques.

Complexity Theoretic Preliminaries

- L : Languages accepted by log-space bounded deterministic Turing machines. [Reachability in Undirected Graphs]
- NL : Languages accepted by log-space bounded non-deterministic Turing machines. [Reachability in Directed Graphs]
- C₌L : Languages accepted by a non-deterministic Turing machine such that input is in the language if and only if # of accepting paths = # of rejecting paths. [SINGULAR]

Circuits are DAGs with $\wedge,\,\vee$ and \neg gates at the vertices.

- AC⁰ : poly size constant depth and unbounded fanin circuits.
- TC⁰ : AC⁰ with "majority" gates.

$$AC^0 \longrightarrow TC^0 \longrightarrow NC^1 \longrightarrow L \longrightarrow NL \longrightarrow C_{=}L$$

Computing the Rank

- The natural approach takes exponential time.
- Can be computed in Polynomial time : Gaussian elimination, LU decomposion, SV decomposition. But they are inherently sequential.
- Rank can be computed in NC. Elegant parallel algorithm (Mulmuley 87) by relating the problem to testing if some coefficients of the characteristic polynomial are zeros. Independently by Chistov(1986).
- Refined complexity bounds by Allender et.al 1996. Upper bound testing exactly characterises C₌L.

Computing the rank of special matrices

- Several applications give rise to structured matrices.
- Complexity theoretic characterisations.
- Known result: For symmetric non-negative matrices, RANK BOUND and SINGULAR are $C_{\pm}L$ -complete (Allender et.al, 1996).

Restrictions we are interested in:

• $M = [a_{i,j}]$ is diagonally dominant if

$$|a_{ii}| \geq \sum_{j
eq i} |a_{ij}|$$

Fun fact : If dominance is strict for all i, M is non-singular.

 Diagonal matrices : Non-zero entries only on the main diagonal.

Rank of Restricted Families of Matrices

Matrix type	RANK BOUND	SINGULAR
Sym.Non-neg.	$C_{=}L$ -complete	$C_{=}L$ -complete
	[ABO96]	[ABO96]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rank of Restricted Families of Matrices

Matrix type	RANK BOUND	SINGULAR
Sym.Non-neg.	C ₌ L-complete	$C_{=}L$ -complete
	[ABO96]	[ABO96]
Sym.Non-neg.		
Diag. Dom.	L-complete	L-complete
Tridiagonal	?	in $C_{=}NC^{1}$
Diag	TC ⁰ -complete	in AC ⁰

▲口→ ▲圖→ ▲注→ ▲注→ 三注 …

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Computing the rank of symmetric non-negative diagonally dominant matrices is L-complete.

Theorem

Computing the rank of symmetric non-negative diagonally dominant matrices is L-complete.

MEMBERSHIP: For a non-neg. sym. dd matrix $M \in \mathbb{Q}^{n \times n}$, define the support graph $G_M = (V, E_M)$ has $V = \{v_1, \dots, v_n\}$, and

$$E_{M} = \{(v_{i}, v_{j}) \mid i \neq j \ m_{i,j} > 0\} \cup \left\{(v_{i}, v_{i}) \mid m_{i,i} > \sum_{i \neq j} m_{i,j}\right\}$$

c: Number of bipartite components of G_M .

Theorem

Computing the rank of symmetric non-negative diagonally dominant matrices is L-complete.

MEMBERSHIP: For a non-neg. sym. dd matrix $M \in \mathbb{Q}^{n \times n}$, define the support graph $G_M = (V, E_M)$ has $V = \{v_1, \dots, v_n\}$, and

$$E_{M} = \{(v_{i}, v_{j}) \mid i \neq j \ m_{i,j} > 0\} \cup \left\{(v_{i}, v_{i}) \mid m_{i,i} > \sum_{i \neq j} m_{i,j}\right\}$$

c: Number of bipartite components of G_M .

Claim [Dah99]: rank(M) = n - c

Using this we can reduce the problem to counting the number of bipartite components in a graph. This can be computed in L.

HARDNESS :

The problem of testing reachability in undirected forests where there are exactly two components is L-complete [CM87]. Given an instance, (G(V, E), s, t), define $G'(V \times \{0, 1\}) \cup \{u\}, E')$:

HARDNESS : The problem of testing reachability in undirected forests where there are exactly two components is L-complete [CM87]. Given an instance, (G(V, E), s, t), define $G'(V \times \{0, 1\}) \cup \{u\}, E')$:

Claim :

G' has two bipartite components $\iff t$ is reachable from s in G

For each $i \neq j$ $m_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E' \\ 0 & \text{otherwise} \end{cases}$ For each i $m_{i,i} = \begin{cases} 1 + \sum_{j \neq i} m_{i,j} & \text{if } (i,i) \in E' \\ \sum_{j \neq i} m_{i,j} & \text{otherwise} \end{cases}$

For tri-diagonal matrices

Theorem

SINGULAR for tri-diagonal matrices is in $C_{=}NC^{1}$. Computing the determinant of these matrices is in GapNC¹, hard for NC¹.

DETERMINANT:

$$P_i = Perm(M[i])$$

 $D_i = Derm(M[i])$

We have the following recurrences:

$$P_0 = D_0 = 1$$

$$P_i = a_{i,i}P_{i-1} + a_{i-1,i}a_{i,i-1}P_{i-2}$$

$$P_{1} = D_{1} = a_{1,1}$$

$$D_{i} = a_{i,i}D_{i-1} - a_{i-1,i}a_{i,i-1}D_{i-2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Planar Branching Program for P_i

Similar graphs have been studied earlier as G-graphs [AAB⁺99]. where they show that counting the number of s-t paths in such graphs is hard for NC^1 .

G-graphs are those layered graphs which can be decomposed into the following components.

通 ト イ ヨ ト イ ヨ ト

Counting paths in G-graphs to Tridiagonal determinant :

• First suppose that the encoded string has alternate DU. Just read off the weights on the corresponding edges in the graph, produce matrix M_1 such that,

 $Perm(M_1)$ = the number of weighted *s*-*t* paths in the graph

- Any BWBP can be transformed to this form : If the string does not start with a *D* we will just put in a prefix *D* with def = 101
- When there are *UU* or *DD*, Simply put in a *D* with *def* = 101 in between two *U* and a *U* with *abc* = 101 in between two *Ds*.

How close is *M* to a rank *r* matrix?

Definition (Rigidity)

Given a matrix M and $r \leq n$, rigidity of the matrix $M(R_M(r))$ is the number of entries of the matrix that we need to change to bring the rank below r.

[Val77] Interesting in a circuit complexity theory setting. If for some $\epsilon > 0$ there exists a $\delta > 0$ such that an $n \times n$ matrix M_n has rigidity $R_{M_n}(\epsilon n) \ge n^{1+\delta}$ over a field \mathbb{F} , then the transformation $x \to Mx$ cannot be computed by linear size logarithmic depth linear circuits.

[Raz89] For an explicit infinite sequence of (0,1)-matrices $\{M_n\}$ over a finite field \mathbb{F} , if $R_M(r) \geq \frac{n^2}{2^{(\log r)^{o(1)}}}$ for some $r \geq 2^{(\log \log n)^{\omega(1)}}$, then there is an explicit language $L_M \notin PH^{cc}$, where PH^{cc} is the analog of PH in the communication complexity setting.

Computing Rigidity - Why could that be interesting?

RIGID(M, r, k): Given a matrix M, values r and k, is $R_M(r) \le k$?

- Natural optimisation problem related to rank.
- Valiant's reduction [Val77] identifies "high rigidity" as a a combinatorial property of the matrices (which defines the function computed) based on which he proves linear size lower bounds for log-depth circuits. Among the n × n matrices, the density of "rigid" matrices is high.

• Practical Applications : Optimisation in control theory.

Computing Rigidity

RIGID(M, r, k): Given a matrix M, values r and k, is $R_M(r) \le k$?

Field \mathbb{F}	restriction	bound
F	-	in NP
\mathbb{F}_2	-	NP -complete [Des07]
$\mathbb Z$ or $\mathbb Q$	Boolean, constant <i>k</i>	$C_{=}L$ -complete
$\mathbb Z$ or $\mathbb Q$	constant <i>k</i>	$C_{=}L$ -hard
\mathbb{F}_{p}	constant <i>k</i>	Mod _p L-complete
Q	r = n	$C_{=}L$ -complete
		witness-search in L ^{GapL}
Z	r = n and $k = 1$	in L ^{GapL}

(ロト・日本)・モン・モン・モー のへの

For constant k, for 0-1 matrices, RIGID is C₌L-complete

MEMBERSHIP: we need to test if if there is a set of $0 \le s \le k$ entries of M, which, when flipped, yield a matrix of rank below r. The number of such sets is bounded by $\sum_{s=0}^{k} {n \choose s} = t \in n^{O(1)}$. Let the corresponding matrices be $M_1, M_2 \dots M_t$; these can be generated from M in logspace. Now,

$$(M, r) \in \operatorname{RIGID}(k) \iff \exists i : (M_i, r) \in \operatorname{RANK} \operatorname{BOUND}(\mathbb{Z}) \\ \iff (N', r') \in \operatorname{RANK} \operatorname{BOUND}(\mathbb{Z})$$

where N' and r' can be generated in L using standard techniques.

For constant k, for 0-1 matrices, RIGID is C₌L-complete

For 0-1 matrices, for k - 0, the problem is C₌L-hard, since RIGID(M, n, 0) tests if the matrix is singular. To prove it for arbitrary k, tensor it with I_{k+1} , the rigidity gets amplified by a factor of k.

$$\begin{array}{ll} M \in \mathrm{SINGULAR}(\mathbb{Z}) & \Longrightarrow \\ & (N, n(k+1)-k) \in \mathrm{RIGID}(N, n(k+1)-k, 0) \\ & \subseteq \mathrm{RIGID}(N, n(k+1)-k, k) \\ M \not\in \mathrm{SINGULAR}(\mathbb{Z}) & \Longrightarrow \\ & (N, n(k+1)-k) \not\in \mathrm{RIGID}(N, n(k+1)-k, k) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Bounded Rigidity

Definition (Bounded Rigidity)

Given a matrix M and r < n, bounded rigidity of the matrix M $(R_M(b, r))$ is the number of entries of the matrix that we need to change to bring the rank below r, if the change allowed per entry is atmost b.

- B-RIGID(M, r, k, b): Given a matrix M, values b, r and k, is $R_M(b, r) \le k$?
- Another formulation : Define an interval of matrices [A] where

$$m_{ij} - b \leq a_{ij} \leq m_{ij} + b$$

Question : Is there a rank r matrix $B \in [A]$ such that M - B has atmost k non-zero entries?

Why should there be?

Consider the matrix

$$\left[\begin{array}{ccccc} 2^k & 0 & 0 & 0 & 0 \\ 0 & 2^k & 0 & 0 & 0 \\ 0 & 0 & 2^k & 0 & 0 \\ 0 & 0 & 0 & 2^k & 0 \\ 0 & 0 & 0 & 0 & 2^k \end{array}\right]$$

- $R_M(b, n-1)$ is undefined unless $b \ge \frac{2^k}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether R_M(b, r) is defined ?

Why should there be?

Consider the matrix

$$\left[\begin{array}{ccccc} 2^k & 0 & 0 & 0 & 0 \\ 0 & 2^k & 0 & 0 & 0 \\ 0 & 0 & 2^k & 0 & 0 \\ 0 & 0 & 0 & 2^k & 0 \\ 0 & 0 & 0 & 0 & 2^k \end{array}\right]$$

- $R_M(b, n-1)$ is undefined unless $b \ge \frac{2^k}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether R_M(b, r) is defined ?

It is NP-hard.

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_M(b, n-1)$ is defined, is NP-complete.

Membership:

- The bound *b* defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of *M*.
- ZERO-ON-AN-EDGE LEMMA: For a multilinear polynomial $p(x_1, x_2 \dots x_t)$, consider the hypercube defined by the interval of each of the x_i s. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_M(b, n-1)$ is defined, is NP-complete.

Membership:

- The bound *b* defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of *M*.
- ZERO-ON-AN-EDGE LEMMA: For a multilinear polynomial $p(x_1, x_2 \dots x_t)$, consider the hypercube defined by the interval of each of the x_i s. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

 NP algorithm : Guess the edge of the hypercube where the zero occurs and verify if the sign of determinant at each end point are opposite.

NP-completeness for a restricted case

HARDNESS: The interval $[M - \theta J, M + \theta J]$ is singular if and only if $R_M(n, \theta)$ is defined. By a reduction from MAXCUT problem, [PR93] showed that that checking interval singularity is NP-hard. Hence the hardness

follows in our case too.

Open Problems

- Is there a characterisation of other small complexity classes (like NC¹, NL) using the rank/determinant computation?
- A better upper bound for computing rigidity over \mathbb{Q} .
- Is there an efficient algorithm when r is a constant?
- An NP upper bound for bounded rigidity a generalisation of the zero-on-an-edge lemma to arbitrary rank.

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

E. Allender, A. Ambainis, D. A. Mix Barrington, S. Datta, and H. LeThanh.

Bounded-depth arithmetic circuits: counting and closure.

In Proceedings of 26th International Colloquium on Automata, Languages and Programming (ICALP), volume 1644 of Lecture Notes in Computer Science, pages 149–158. Springer-Verlag, 1999.

Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of matrix rank and feasible systems of linear equations.

In *Proc. 28th ACMSTOC*, pages 161–167, 1996. Appears in Computational Complexity, 8(2), 99–126, 1999.

S A Cook and P McKenzie.

Problems complete for L.

Jl. of Algorithms, 8:385–394, 1987.

🔋 G. Dahl.

A note on nonnegative diagonally dominant matrices.

Linear Algebra and Applications, 317:217–224, April 1999.

Amit Deshpande.

Sampling-based dimension reduction algorithms. PhD thesis, MIT, May 2007.

- S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Math. Control Signals Systems, 6:1–9, 1993.
- A. A. Razborov. On rigid matrices. manuscript in russian, 1989.

L. G. Valiant.

Graph theoretic arguments in low-level complexity.

In Proc. 6th MFCS, volume 53 of LNCS, pages 162–176. Springer, Berlin, 1977.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの