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Matrix Rank

Rank of a matrix M ∈ Fn×n has the following equivalent
definitions.

• The size of the largest submatrix with a non-zero determinant.

• The number of linearly independent rows/columns of a matrix.

• The smallest r such that M = AB where A ∈ Fn×r , B ∈ Fr×n.

rank bound: Given a matrix M and a value r , is rank(M) < r?
singular: Given a matrix M is rank(M) < n?
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Motivations from linear algebra, control theory, from algorithmics,
complexity theory. In the context of seperating complexity classes,
it might facilitate application of well developed algebraic
techniques.



Complexity Theoretic Preliminaries

• L : Languages accepted by log-space bounded deterministic
Turing machines. [Reachability in Undirected Graphs]

• NL : Languages accepted by log-space bounded
non-deterministic Turing machines. [Reachability in Directed
Graphs]

• C=L : Languages accepted by a non-deterministic Turing
machine such that input is in the language if and only if
# of accepting paths = # of rejecting paths. [singular]

Circuits are DAGs with ∧, ∨ and ¬ gates at the vertices.

• AC0 : poly size constant depth and unbounded fanin circuits.

• TC0 : AC0 with “majority” gates.

AC0 //___ TC0 // NC1 // L // NL // C=L



Computing the Rank

• The natural approach takes exponential time.

• Can be computed in Polynomial time :
Gaussian elimination, LU decomposion, SV decomposition.
But they are inherently sequential.

• Rank can be computed in NC.
Elegant parallel algorithm (Mulmuley 87) by relating the
problem to testing if some coefficients of the characterstic
polynomial are zeros. Independently by Chistov(1986).

• Refined complexity bounds by Allender et.al 1996. Upper
bound testing exactly characterises C=L.



Computing the rank of special matrices

• Several applications give rise to structured matrices.

• Complexity theoretic characterisations.

• Known result: For symmetric non-negative matrices,
rank bound and singular are C=L-complete (Allender
et.al, 1996).

Restrictions we are interested in:

• M = [ai ,j ] is diagonally dominant if

|aii | ≥
∑

j 6=i

|aij |

Fun fact : If dominance is strict for all i , M is non-singular.

• Diagonal matrices : Non-zero entries only on the main
diagonal.



Rank of Restricted Families of Matrices

Matrix type rank bound singular

Sym.Non-neg. C=L-complete C=L-complete
[ABO96] [ABO96]

TC0 // NC1 // C=NC1 // L // NL
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Rank of Restricted Families of Matrices

Matrix type rank bound singular

Sym.Non-neg. C=L-complete C=L-complete
[ABO96] [ABO96]

Sym.Non-neg.
Diag. Dom. L-complete L-complete

Tridiagonal ? in C=NC1

Diag TC0-complete in AC0

TC0 // NC1 // | // C=NC1 // L // NL
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Characterising Log space

Theorem
Computing the rank of symmetric non-negative diagonally
dominant matrices is L-complete.
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Theorem
Computing the rank of symmetric non-negative diagonally
dominant matrices is L-complete.

Membership: For a non-neg. sym. dd matrix M ∈ Qn×n, define
the support graph GM = (V , EM) has V = {v1, . . . vn}, and

EM = {(vi , vj) | i 6= j mi ,j > 0} ∪






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∑
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c : Number of bipartite components of GM .
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c : Number of bipartite components of GM .

Claim [Dah99]: rank(M) = n − c

Using this we can reduce the problem to counting the number of
bipartite components in a graph. This can be computed in L.



Characterising Log space
Hardness :

The problem of testing reachability in undirected forests where
there are exactly two components is L-complete [CM87]. Given an
instance, (G (V , E ), s, t), define G ′(V × {0, 1}) ∪ {u}, E ′):



Characterising Log space
Hardness :

The problem of testing reachability in undirected forests where
there are exactly two components is L-complete [CM87]. Given an
instance, (G (V , E ), s, t), define G ′(V × {0, 1}) ∪ {u}, E ′):

G1 G2

S1 S2

T1 T2

U
Claim :

G ′ has two bipartite compo-
nents ⇐⇒ t is reachable from
s in G

For each i 6= j mi ,j =

{

1 if (i , j) ∈ E ′

0 otherwise

For each i mi ,i =

{

1 +
∑

j 6=i mi ,j if (i , i) ∈ E ′

∑

j 6=i mi ,j otherwise



For tri-diagonal matrices

Theorem
singular for tri-diagonal matrices is in C=NC1. Computing the
determinant of these matrices is in GapNC1, hard for NC1.

Determinant:
i

i M[i]
Pi = Perm(M[i ])

Di = Derm(M[i ])

We have the following recurrences:

P0 = D0 = 1 P1 = D1 = a1,1

Pi = ai ,iPi−1 + ai−1,iai ,i−1Pi−2 Di = ai ,iDi−1 − ai−1,iai ,i−1Di−2



Planar Branching Program for Pi

◦P0

a12 //

a11

ÂÂ?
??

??
??

??
??

??
? ◦

a21 //◦
P2

a33

ÂÂ?
??

??
??

??
??

??
?

a34 //◦
a42 //◦

P4 ◦//
an,n−1

??

ann

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ Pn

◦
P1

a22

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
a23

//◦
a32

//◦
P3

a45

//

a44

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ◦ ◦
Pn−1

Similar graphs have been studied earlier as G-graphs [AAB+99].
where they show that counting the number of s-t paths in such
graphs is hard for NC1.
G-graphs are those layered graphs which can be decomposed into
the following components.

◦ a //
b

ÂÂ@
@@

@@
@@

@ ◦ ◦ d //◦

◦
c

// ◦
f

//

e
??~~~~~~~ ◦



Counting paths in G -graphs to Tridiagonal determinant :

• First suppose that the encoded string has alternate DU. Just
read off the weights on the corresponding edges in the graph,
produce matrix M1 such that,

Perm(M1) = the number of weighted s-t paths in the graph

◦ a //
b

ÂÂ@
@@

@@
@@

@ ◦ ◦ d //◦

◦
c

// ◦
f

//

e
??~~~~~~~ ◦

D U

• Any BWBP can be transformed to this form : If the string
does not start with a D we will just put in a prefix D with
def = 101

• When there are UU or DD, Simply put in a D with def = 101
in between two U and a U with abc = 101 in between two Ds.



How close is M to a rank r matrix?

Definition (Rigidity)

Given a matrix M and r ≤ n, rigidity of the matrix M (RM(r)) is
the number of entries of the matrix that we need to change to
bring the rank below r .

[Val77] Interesting in a circuit complexity theory setting. If for some
ǫ > 0 there exists a δ > 0 such that an n × n matrix Mn has
rigidity RMn

(ǫn) ≥ n1+δ over a field F, then the
transformation x → Mx cannot be computed by linear size
logarithmic depth linear circuits.

[Raz89] For an explicit infinite sequence of (0,1)-matrices {Mn} over a

finite field F, if RM(r) ≥ n2

2(log r)o(1) for some r ≥ 2(log log n)ω(1)
,

then there is an explicit language LM /∈ PHcc , where PHcc is
the analog of PH in the communication complexity setting.



Computing Rigidity - Why could that be interesting?

rigid(M, r , k): Given a matrix M, values r and k , is RM(r) ≤ k?

• Natural optimisation problem related to rank.

• Valiant’s reduction [Val77] identifies “high rigidity” as a a
combinatorial property of the matrices (which defines the
function computed) based on which he proves linear size lower
bounds for log-depth circuits. Among the n × n matrices, the
density of “rigid” matrices is high.

• Practical Applications : Optimisation in control theory.



Computing Rigidity

rigid(M, r , k): Given a matrix M, values r and k , is RM(r) ≤ k?

Field F restriction bound

F - in NP

F2 - NP -complete [Des07]

Z or Q Boolean, constant k C=L-complete

Z or Q constant k C=L-hard

Fp constant k ModpL-complete

Q r = n C=L-complete
witness-search in LGapL

Z r = n and k = 1 in LGapL



For constant k , for 0-1 matrices, rigid is C=L-complete

Membership: we need to test if if there is a set of 0 ≤ s ≤ k
entries of M, which, when flipped, yield a matrix of rank below r .

The number of such sets is bounded by Σk
s=0

(

n
s

)

= t ∈ nO(1).

Let the corresponding matrices be M1, M2 . . .Mt ; these can be
generated from M in logspace. Now,

(M, r) ∈ rigid(k) ⇐⇒ ∃i : (Mi , r) ∈ rank bound(Z)
⇐⇒ (N ′, r ′) ∈ rank bound(Z)

where N ′ and r ′ can be generated in L using standard techniques.



For constant k , for 0-1 matrices, rigid is C=L-complete

For 0-1 matrices, for k − 0, the problem is C=L-hard, since
rigid(M, n, 0) tests if the matrix is singular.
To prove it for arbitrary k , tensor it with Ik+1, the rigidity gets
amplified by a factor of k .

M

M

M

0

0

N =

M ∈ singular(Z) =⇒
(N, n(k + 1) − k) ∈ rigid(N, n(k + 1) − k , 0)
⊆ rigid(N, n(k + 1) − k , k)

M 6∈ singular(Z) =⇒
(N, n(k + 1) − k) 6∈ rigid(N, n(k + 1) − k , k)



Bounded Rigidity

Definition (Bounded Rigidity)

Given a matrix M and r < n, bounded rigidity of the matrix M
(RM(b, r)) is the number of entries of the matrix that we need to
change to bring the rank below r , if the change allowed per entry
is atmost b.

• b-rigid(M, r , k , b): Given a matrix M, values b, r and k , is
RM(b, r) ≤ k?

• Another formulation : Define an interval of matrices [A] where

mij − b ≤ aij ≤ mij + b

Question : Is there a rank r matrix B ∈ [A] such that M − B
has atmost k non-zero entries?



Why should there be?

Consider the matrix












2k 0 0 0 0
0 2k 0 0 0
0 0 2k 0 0
0 0 0 2k 0
0 0 0 0 2k













• RM(b, n − 1) is undefined unless b ≥ 2k

n
.

• Question : For a given matrix M, bound b, target rank r , can
we efficiently test whether RM(b, r) is defined ?
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• Question : For a given matrix M, bound b, target rank r , can
we efficiently test whether RM(b, r) is defined ?

It is NP-hard.



NP-completeness for a restricted case
For a given matrix M, bound b, testing whether RM(b, n − 1) is
defined, is NP-complete.
Membership:

• The bound b defines an interval for each entry of the matrix.

• Determinant: a multlilinear polynomial in the entries of M.

• Zero-on-an-edge Lemma: For a multilinear polynomial
p(x1, x2 . . . xt), consider the hypercube defined by the interval
of each of the xi s. If there is a zero of the polynomial in the
hypercube then there is a zero on an edge of the hypercube



NP-completeness for a restricted case
For a given matrix M, bound b, testing whether RM(b, n − 1) is
defined, is NP-complete.
Membership:

• The bound b defines an interval for each entry of the matrix.

• Determinant: a multlilinear polynomial in the entries of M.

• Zero-on-an-edge Lemma: For a multilinear polynomial
p(x1, x2 . . . xt), consider the hypercube defined by the interval
of each of the xi s. If there is a zero of the polynomial in the
hypercube then there is a zero on an edge of the hypercube

• NP algorithm : Guess the edge of the hypercube where the
zero occurs and verify if the sign of determinant at each end
point are opposite.



NP-completeness for a restricted case

Hardness: The interval [M − θJ, M + θJ] is singular if and only
if RM(n, θ) is defined.
By a reduction from MAXCUT problem, [PR93] showed that that
checking interval singularity is NP-hard. Hence the hardness
follows in our case too.



Open Problems

• Is there a characterisation of other small complexity classes
(like NC1, NL) using the rank/determinant computation?

• A better upper bound for computing rigidity over Q.

• Is there an efficient algorithm when r is a constant?

• An NP upper bound for bounded rigidity - a generalisation of
the zero-on-an-edge lemma to arbitrary rank.



Thank You



E. Allender, A. Ambainis, D. A. Mix Barrington, S. Datta, and
H. LeThanh.
Bounded-depth arithmetic circuits: counting and closure.
In Proceedings of 26th International Colloquium on Automata,
Languages and Programming (ICALP), volume 1644 of
Lecture Notes in Computer Science, pages 149–158.
Springer-Verlag, 1999.

Eric Allender, Robert Beals, and Mitsunori Ogihara.
The complexity of matrix rank and feasible systems of linear
equations.
In Proc. 28th ACMSTOC, pages 161–167, 1996.
Appears in Computational Complexity, 8(2), 99–126, 1999.

S A Cook and P McKenzie.
Problems complete for L.
Jl. of Algorithms, 8:385–394, 1987.

G. Dahl.
A note on nonnegative diagonally dominant matrices.



Linear Algebra and Applications, 317:217–224, April 1999.

Amit Deshpande.
Sampling-based dimension reduction algorithms.
PhD thesis, MIT, May 2007.

S. Poljak and J. Rohn.
Checking robust nonsingularity is NP-hard.
Math. Control Signals Systems, 6:1–9, 1993.

A. A. Razborov.
On rigid matrices.
manuscript in russian, 1989.

L. G. Valiant.
Graph theoretic arguments in low-level complexity.
In Proc. 6th MFCS, volume 53 of LNCS, pages 162–176.
Springer, Berlin, 1977.


