On the Complexity of Matrix Rank and Rigidity

Jayalal Sarma M.N.
The Institute of Mathematical Sciences(IMSc), Chennai, India

Joint work with
Meena Mahajan(IMSc)

CSR 2007

Ekaterinburg, Russia
September 4-6, 2007

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.
- The smallest r such that $M=A B$ where $A \in \mathbb{F}^{n \times r}, B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is $\operatorname{rank}(M)<r$? SINGULAR: Given a matrix M is $\operatorname{rank}(M)<n$?

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.
- The smallest r such that $M=A B$ where $A \in \mathbb{F}^{n \times r}, B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is $\operatorname{rank}(M)<r$? SINGULAR: Given a matrix M is $\operatorname{rank}(M)<n$?

Motivations from linear algebra, control theory, from algorithmics, complexity theory. In the context of seperating complexity classes, it might facilitate application of well developed algebraic techniques.

Complexity Theoretic Preliminaries

- L : Languages accepted by log-space bounded deterministic Turing machines. [Reachability in Undirected Graphs]
- NL: Languages accepted by log-space bounded non-deterministic Turing machines. [Reachability in Directed Graphs]
- $\mathrm{C}_{=} \mathrm{L}$: Languages accepted by a non-deterministic Turing machine such that input is in the language if and only if $\#$ of accepting paths $=\#$ of rejecting paths. [SINGULAR]

Circuits are DAGs with \wedge, \vee and \neg gates at the vertices.

- $A C^{0}$: poly size constant depth and unbounded fanin circuits.
- TC^{0} : AC^{0} with "majority" gates.

Computing the Rank

- The natural approach takes exponential time.
- Can be computed in Polynomial time : Gaussian elimination, LU decomposion, SV decomposition. But they are inherently sequential.
- Rank can be computed in NC. Elegant parallel algorithm (Mulmuley 87) by relating the problem to testing if some coefficients of the characterstic polynomial are zeros. Independently by Chistov(1986).
- Refined complexity bounds by Allender et.al 1996. Upper bound testing exactly characterises $C_{=} L$.

Computing the rank of special matrices

- Several applications give rise to structured matrices.
- Complexity theoretic characterisations.
- Known result: For symmetric non-negative matrices, RANK BOUND and SINGULAR are $\mathrm{C}_{=}$L-complete (Allender et.al, 1996).

Restrictions we are interested in:

- $M=\left[a_{i, j}\right]$ is diagonally dominant if

$$
\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right|
$$

Fun fact: If dominance is strict for all i, M is non-singular.

- Diagonal matrices : Non-zero entries only on the main diagonal.

Rank of Restricted Families of Matrices

Matrix type	RANK BOUND	SINGULAR
Sym.Non-neg.	$C_{=}$L-complete $[$ABO96 $]$	$C_{=}$L-complete $[$ABO96 $]$

Rank of Restricted Families of Matrices

Matrix type	RANK BOUND	SINGULAR
Sym.Non-neg.	$\mathrm{C}_{=}$L-complete $[\mathrm{ABO} 56]$	$\mathrm{C}_{=}$L-complete $[\mathrm{ABO} 96]$
Sym.Non-neg. Diag. Dom.	L-complete	L-complete
Tridiagonal	$?$	in $\mathrm{C}_{=} \mathrm{NC}^{1}$
Diag	TC^{0}-complete	in AC^{0}

Characterising Log space

Theorem
Computing the rank of symmetric non-negative diagonally dominant matrices is L-complete.

Characterising Log space

Theorem

Computing the rank of symmetric non-negative diagonally dominant matrices is L-complete.
Membership: For a non-neg. sym. dd matrix $M \in \mathbb{Q}^{n \times n}$, define the support graph $G_{M}=\left(V, E_{M}\right)$ has $V=\left\{v_{1}, \ldots v_{n}\right\}$, and

$$
E_{M}=\left\{\left(v_{i}, v_{j}\right) \mid i \neq j \quad m_{i, j}>0\right\} \cup\left\{\left(v_{i}, v_{i}\right) \mid m_{i, i}>\sum_{i \neq j} m_{i, j}\right\}
$$

c : Number of bipartite components of G_{M}.

Characterising Log space

Theorem

Computing the rank of symmetric non-negative diagonally dominant matrices is L-complete.
Membership: For a non-neg. sym. dd matrix $M \in \mathbb{Q}^{n \times n}$, define the support graph $G_{M}=\left(V, E_{M}\right)$ has $V=\left\{v_{1}, \ldots v_{n}\right\}$, and

$$
E_{M}=\left\{\left(v_{i}, v_{j}\right) \mid i \neq j \quad m_{i, j}>0\right\} \cup\left\{\left(v_{i}, v_{i}\right) \mid m_{i, i}>\sum_{i \neq j} m_{i, j}\right\}
$$

c : Number of bipartite components of G_{M}.
Claim [Dah99]: $\operatorname{rank}(M)=n-c$
Using this we can reduce the problem to counting the number of bipartite components in a graph. This can be computed in L.

Characterising Log space

HARDNESS :
The problem of testing reachability in undirected forests where there are exactly two components is L-complete [CM87]. Given an instance, $(G(V, E), s, t)$, define $\left.G^{\prime}(V \times\{0,1\}) \cup\{u\}, E^{\prime}\right)$:

Characterising Log space

HARDNESS :
The problem of testing reachability in undirected forests where there are exactly two components is L-complete [CM87]. Given an instance, $(G(V, E), s, t)$, define $\left.G^{\prime}(V \times\{0,1\}) \cup\{u\}, E^{\prime}\right)$:

Claim :
G^{\prime} has two bipartite components $\Longleftrightarrow t$ is reachable from s in G
$\begin{array}{ll}\text { For each } i \neq j & m_{i, j}=\left\{\begin{array}{l}1 \\ 0\end{array}\right. \\ \text { For each } i & m_{i, i}=\left\{\begin{aligned} 1+\sum_{j \neq i} m_{i, j}\end{aligned}\right. \\ \sum_{j \neq i} m_{i, j}\end{array}$
if $(i, j) \in E^{\prime}$
otherwise
if $(i, i) \in E^{\prime}$
otherwise

For tri-diagonal matrices

Theorem
SINGULAR for tri-diagonal matrices is in $\mathrm{C}_{=} \mathrm{NC}^{1}$. Computing the determinant of these matrices is in GapNC ${ }^{1}$, hard for NC^{1}.
Determinant:

$$
\begin{aligned}
P_{i} & =\operatorname{Perm}(M[i]) \\
D_{i} & =\operatorname{Derm}(M[i])
\end{aligned}
$$

We have the following recurrences:

$$
\begin{array}{ll}
P_{0}=D_{0}=1 & P_{1}=D_{1}=a_{1,1} \\
P_{i}=a_{i, i} P_{i-1}+a_{i-1, i} a_{i, i-1} P_{i-2} & D_{i}=a_{i, i} D_{i-1}-a_{i-1, i} a_{i, i-1} D_{i-2}
\end{array}
$$

Planar Branching Program for P_{i}

Similar graphs have been studied earlier as G-graphs [AAB ${ }^{+} 99$]. where they show that counting the number of s-t paths in such graphs is hard for NC^{1}.
G-graphs are those layered graphs which can be decomposed into the following components.

Counting paths in G-graphs to Tridiagonal determinant :

- First suppose that the encoded string has alternate DU. Just read off the weights on the corresponding edges in the graph, produce matrix M_{1} such that,
$\operatorname{Perm}\left(M_{1}\right)=$ the number of weighted $s-t$ paths in the graph

- Any BWBP can be transformed to this form : If the string does not start with a D we will just put in a prefix D with def $=101$
- When there are $U U$ or $D D$, Simply put in a D with def $=101$ in between two U and a U with $a b c=101$ in between two D s.

How close is M to a rank r matrix?

Definition (Rigidity)

Given a matrix M and $r \leq n$, rigidity of the matrix $M\left(R_{M}(r)\right)$ is the number of entries of the matrix that we need to change to bring the rank below r.
[Val77] Interesting in a circuit complexity theory setting. If for some $\epsilon>0$ there exists a $\delta>0$ such that an $n \times n$ matrix M_{n} has rigidity $R_{M_{n}}(\epsilon n) \geq n^{1+\delta}$ over a field \mathbb{F}, then the transformation $x \rightarrow M x$ cannot be computed by linear size logarithmic depth linear circuits.
[Raz89] For an explicit infinite sequence of (0,1)-matrices $\left\{M_{n}\right\}$ over a finite field \mathbb{F}, if $R_{M}(r) \geq \frac{n^{2}}{2^{(\log r)^{o(1)}}}$ for some $r \geq 2^{(\log \log n)^{\omega(1)}}$, then there is an explicit language $L_{M} \notin \mathrm{PH}^{c c}$, where $\mathrm{PH}^{c c}$ is the analog of PH in the communication complexity setting.

Computing Rigidity - Why could that be interesting?

$\operatorname{RIGID}(M, r, k)$: Given a matrix M, values r and k, is $R_{M}(r) \leq k$?

- Natural optimisation problem related to rank.
- Valiant's reduction [Val77] identifies "high rigidity" as a a combinatorial property of the matrices (which defines the function computed) based on which he proves linear size lower bounds for log-depth circuits. Among the $n \times n$ matrices, the density of "rigid" matrices is high.
- Practical Applications: Optimisation in control theory.

Computing Rigidity

$\operatorname{RIGID}(M, r, k)$: Given a matrix M, values r and k, is $R_{M}(r) \leq k$?

Field \mathbb{F}	restriction	bound
\mathbb{F}	-	in NP
\mathbb{F}_{2}	-	NP -complete [Des07]
\mathbb{Z} or \mathbb{Q}	Boolean, constant k	$\mathrm{C}_{=}$L-complete
\mathbb{Z} or \mathbb{Q}	constant k	$\mathrm{C}_{=}$L-hard
\mathbb{F}_{p}	constant k	Mod $_{p}$ L-complete
\mathbb{Q}	$r=n$	$C_{=}$L-complete witness-search in $L^{\text {GapL }}$
\mathbb{Z}	$r=n$ and $k=1$	in L GapL

For constant k, for $0-1$ matrices, RIGID is $\mathrm{C}_{=} \mathrm{L}$-complete

Membership: we need to test if if there is a set of $0 \leq s \leq k$ entries of M, which, when flipped, yield a matrix of rank below r. The number of such sets is bounded by $\sum_{s=0}^{k}\binom{n}{s}=t \in n^{O(1)}$. Let the corresponding matrices be $M_{1}, M_{2} \ldots M_{t}$; these can be generated from M in logspace. Now,

$$
\begin{aligned}
(M, r) \in \operatorname{RIGID}(k) & \Longleftrightarrow \exists i:\left(M_{i}, r\right) \in \operatorname{RaNK} \operatorname{BOUND}(\mathbb{Z}) \\
& \Longleftrightarrow\left(N^{\prime}, r^{\prime}\right) \in \operatorname{RaNK} \operatorname{BOUND}(\mathbb{Z})
\end{aligned}
$$

where N^{\prime} and r^{\prime} can be generated in L using standard techniques.

For constant k, for $0-1$ matrices, RIGID is $\mathrm{C}_{=} \mathrm{L}$-complete

For 0-1 matrices, for $k-0$, the problem is $C_{=} L$-hard, since $\operatorname{RIGID}(M, n, 0)$ tests if the matrix is singular.
To prove it for arbitrary k, tensor it with I_{k+1}, the rigidity gets amplified by a factor of k.

$$
\begin{aligned}
M \in \operatorname{SiNGULAR}(\mathbb{Z}) & \Longrightarrow \\
& (N, n(k+1)-k) \in \operatorname{RIGid}(N, n(k+1)-k, 0) \\
& \subseteq \operatorname{RiGid}(N, n(k+1)-k, k) \\
& (N, n(k+1)-k) \notin \operatorname{Rig} \operatorname{IGID}(N, n(k+1)-k, k)
\end{aligned}
$$

Bounded Rigidity

Definition (Bounded Rigidity)

Given a matrix M and $r<n$, bounded rigidity of the matrix M ($R_{M}(b, r)$) is the number of entries of the matrix that we need to change to bring the rank below r, if the change allowed per entry is atmost b.

- B-RIGID (M, r, k, b) : Given a matrix M, values b, r and k, is $R_{M}(b, r) \leq k ?$
- Another formulation: Define an interval of matrices $[A]$ where

$$
m_{i j}-b \leq a_{i j} \leq m_{i j}+b
$$

Question: Is there a rank r matrix $B \in[A]$ such that $M-B$ has atmost k non-zero entries?

Why should there be?

Consider the matrix

$$
\left[\begin{array}{ccccc}
2^{k} & 0 & 0 & 0 & 0 \\
0 & 2^{k} & 0 & 0 & 0 \\
0 & 0 & 2^{k} & 0 & 0 \\
0 & 0 & 0 & 2^{k} & 0 \\
0 & 0 & 0 & 0 & 2^{k}
\end{array}\right]
$$

- $R_{M}(b, n-1)$ is undefined unless $b \geq \frac{2^{k}}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether $R_{M}(b, r)$ is defined ?

Why should there be?

Consider the matrix

$$
\left[\begin{array}{ccccc}
2^{k} & 0 & 0 & 0 & 0 \\
0 & 2^{k} & 0 & 0 & 0 \\
0 & 0 & 2^{k} & 0 & 0 \\
0 & 0 & 0 & 2^{k} & 0 \\
0 & 0 & 0 & 0 & 2^{k}
\end{array}\right]
$$

- $R_{M}(b, n-1)$ is undefined unless $b \geq \frac{2^{k}}{n}$.
- Question: For a given matrix M, bound b, target rank r, can we efficiently test whether $R_{M}(b, r)$ is defined ?

It is NP-hard.

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_{M}(b, n-1)$ is defined, is NP-complete. Membership:

- The bound b defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of M.
- Zero-on-an-edge Lemma: For a multilinear polynomial $p\left(x_{1}, x_{2} \ldots x_{t}\right)$, consider the hypercube defined by the interval of each of the $x_{i} \mathrm{~s}$. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_{M}(b, n-1)$ is defined, is NP-complete. Membership:

- The bound b defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of M.
- Zero-on-an-edge Lemma: For a multilinear polynomial $p\left(x_{1}, x_{2} \ldots x_{t}\right)$, consider the hypercube defined by the interval of each of the $x_{i} \mathrm{~s}$. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

- NP algorithm: Guess the edge of the hypercube where the zero occurs and verify if the sign of determinant at each end point are opposite.

NP-completeness for a restricted case

Hardness: The interval $[M-\theta J, M+\theta J$] is singular if and only if $R_{M}(n, \theta)$ is defined.
By a reduction from MAXCUT problem, [PR93] showed that that checking interval singularity is NP-hard. Hence the hardness follows in our case too.

Open Problems

- Is there a characterisation of other small complexity classes (like $\mathrm{NC}^{1}, \mathrm{NL}$) using the rank/determinant computation?
- A better upper bound for computing rigidity over \mathbb{Q}.
- Is there an efficient algorithm when r is a constant?
- An NP upper bound for bounded rigidity - a generalisation of the zero-on-an-edge lemma to arbitrary rank.

Thank You
E. Allender, A. Ambainis, D. A. Mix Barrington, S. Datta, and H. LeThanh.

Bounded-depth arithmetic circuits: counting and closure.
In Proceedings of 26th International Colloquium on Automata,
Languages and Programming (ICALP), volume 1644 of
Lecture Notes in Computer Science, pages 149-158.
Springer-Verlag, 1999.
Eric Allender, Robert Beals, and Mitsunori Ogihara.
The complexity of matrix rank and feasible systems of linear equations.
In Proc. 28th ACMSTOC, pages 161-167, 1996.
Appears in Computational Complexity, 8(2), 99-126, 1999.
國 S A Cook and P McKenzie.
Problems complete for L.
JI. of Algorithms, 8:385-394, 1987.
围 G. Dahl.
A note on nonnegative diagonally dominant matrices.

Linear Algebra and Applications, 317:217-224, April 1999.
(Amit Deshpande.
Sampling-based dimension reduction algorithms.
PhD thesis, MIT, May 2007.
嗇 S. Poljak and J. Rohn.
Checking robust nonsingularity is NP-hard.
Math. Control Signals Systems, 6:1-9, 1993.
A. A. Razborov.

On rigid matrices.
manuscript in russian, 1989.

五
L. G. Valiant.

Graph theoretic arguments in low-level complexity. In Proc. 6th MFCS, volume 53 of LNCS, pages 162-176.
Springer, Berlin, 1977.

