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Matrix Rank

Rank of a matrix M ∈ F
n×n has the following equivalent

definitions.

I The size of the largest submatrix with a non-zero determinant.

I The number of linearly independent rows/columns of a matrix.

I The smallest r such that M = AB where A ∈ F
n×r is an

B ∈ F
r×n matrix.

rank bound: Given a matrix M and a value r , is rank(M) < r?.



Computing the Rank

Some motivation ...

I From Linear Algebra : Computation of the number of
solutions of a system of linear equations.

I From Control Theory : Rank of a matrix can be used to
determine whether a linear system is controllable, or
observable.

I From Algorithmics : Some natural algorithmic problems can
be expressed in terms of rank computation and determinant
computation.

I From Complexity Theory : In the context of seperating
complexity classes, it might facilitate application of the well
developed algebraic techniques.



Complexity Theoretic Preliminaries

Classes based on Turing machine (TM) models

I L : Languages accepted by log-space bounded deterministic
Turing machines.

I NL : Languages accepted by log-space bounded
non-deterministic Turing machines.

I C=L : Languages accepted by a non-deterministic Turing
machine such that x is in the language if and only if
# of accepting paths = # of rejecting paths.
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Circuits are DAGs with ∧, ∨ and ¬ gates at the vertices.

I AC0 : poly size constant depth and unbounded fanin circuits.

I TC0 : AC0 with “majority” gates
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Computing the Rank

I The natural approach takes exponential time.

I Can be computed in Polynomial time :
Gaussian elimination, LU decomposion, SV decomposition.
But they are inherently sequential.

I Rank can be computed in NC.
Elegant parallel algorithm ([Mul87]) by relating the problem
to testing if some coefficients of the characterstic polynomial
are zeros.

I Refined complexity bounds by [ABO96]. Upperbound testing
exactly characterises C=L.



Computing the rank of special matrices

I Several applications have inherent structure for the matrices.

I Complexity theoretic characterisations.

Restrictions we are interested in :

I M = [ai ,j ] is diagonally dominant if

|aii | ≥
∑

j 6=i

|aij |

Fun fact : If dominance is strict for all i , M is non-singular.

I Diagonal matrices : Non-zero entries only on the main
diagonal.



Characterising Log space

Theorem
Computing the rank of symmetric non-negative diagonally

dominant matrices is complete for the complexity class L.

I Membership: The proof uses a nice combinatorial
characterisation of the dimension of the null-space of the
matrix due to [Dah99]. We can reduce the problem to
counting the number of bipartite components in a graph.

I Hardness :The problem of testing reachability in undirected
forests where there are exactly two components is L-complete.
We reduce this problem to rank computation on symmetric
non-negative diagonally dominant matrices.



For Special Matrices...

Matrix type rank bound singular

General C=L-complete C=L-complete
[ABO96] [ABO96]

Sym.Non-neg. C=L-complete C=L-complete
[ABO96] [ABO96]
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Sym.Non-neg.
Diag. Dom. L-complete L-complete

Diag TC0-complete in AC0



How close is M to a rank r matrix?

Definition (Rigidity)

Given a matrix M and r < n, rigidity of the matrix M (RM(r)) is
the number of entries of the matrix that we need to change to
bring the rank below r .

I A natural linear algebraic optimisation problem, that arises in
control theory.

I Interesting in a circuit complexity theory setting. Highly rigid
linear transformations(matrices) have some “nice” size-depth
tradeoff in circuits computing them [Val77].

I Different variations of the problem, norm bounded change.



Computing Rigidity

rigid(M, r , k): Given a matrix M, values r and k, is RM(r) ≤ k.

I Over any finite field F, rigid is in NP. The algorithm will
simply guess the positions and the changed values and simply
verify if the rank has gone down.

I Over F2, rigid is NP-complete [Des]. The hardness comes
from a reduction from a problem in the coding theory setting :
the nearest neighbour decoding problem.

I Over infinite fields the only upperbound we know is r .e.

I If k is constant, restriced to boolean matrices, rigid is
C=L-complete.



Bounded Rigidity

Industrial applications : Too much change involves too much cost.

I Given a matrix M and r < n, bounded rigidity of the matrix
M (RM(b, r)) is the number of entries of the matrix that we
need to change to bring the rank below r , if the change
allowed per entry is atmost b.

I b-rigid(M, r , k, b): Given a matrix M, values b, r and k, is
RM(b, r) ≤ k?

I Another formulation : Define an interval of matrices [A] where

mij − b ≤ aij ≤ mij + b

Question : Is there a rank r matrix B ∈ [A] such that M − B

has atmost k non-zero entries?



Why should there be?

Consider the matrix

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2k 0 0 0 0
0 2k 0 0 0
0 0 2k 0 0
0 0 0 2k 0
0 0 0 0 2k













I RM(b, n − 1) is undefined unless b ≥ 2k

n
.

I Question : For a given matrix M, bound b, target rank r , can
we efficiently test, whether RM(b, r) is defined ?
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It is NP-hard.



A restricted case

For a given matrix M, bound b, testing whether RM(b, n − 1) is
defined, is NP-complete.

I Membership: The bound b defines an interval for each entry
of the matrix.
Determinant is a multlilinear polynomial on the entries of the
matrix.
Now use the following lemma:

Lemma (Zero-on-an-edge)

For a multilinear polynomial p(x1, x2 . . . xt), consider the

hypercube defined by the interval of each of the xi s. If there is a

zero of the polynomial in the hypercube then there is a zero on an

edge of the hypercube.

I NP algorithm : Guess the “nice” singular matrix and verify.

I Hardness: A reduction from MAX-CUT problem.



Open Problems

I Is there a characterisation of other small complexity classes
(like NL) using the rank/determinant computation?

I An NP upperbound for the general version of rigidity.

I An NP upperbound for bounded rigidity - a generalisation of
the zero-on-an-edge lemma to arbitrary rank.



Thank You
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