Complexity of Matrix Rank and Rigidity

Jayalal Sarma M.N.

IMSc, Chennai

Joint work with
Meena Mahajan(IMSc)

IRISS 2007

Jan 5, 2007

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.
- The smallest r such that $M=A B$ where $A \in \mathbb{F}^{n \times r}$ is an $B \in \mathbb{F}^{r \times n}$ matrix.

RANK BOUND: Given a matrix M and a value r, is $\operatorname{rank}(M)<r$?.

Computing the Rank

Some motivation ...

- From Linear Algebra: Computation of the number of solutions of a system of linear equations.
- From Control Theory: Rank of a matrix can be used to determine whether a linear system is controllable, or observable.
- From Algorithmics: Some natural algorithmic problems can be expressed in terms of rank computation and determinant computation.
- From Complexity Theory : In the context of seperating complexity classes, it might facilitate application of the well developed algebraic techniques.

Complexity Theoretic Preliminaries

Classes based on Turing machine (TM) models

- L: Languages accepted by log-space bounded deterministic Turing machines.
- NL: Languages accepted by log-space bounded non-deterministic Turing machines.
- $\mathrm{C}_{=} \mathrm{L}$: Languages accepted by a non-deterministic Turing machine such that x is in the language if and only if $\#$ of accepting paths $=\#$ of rejecting paths.

Complexity Theoretic Preliminaries

Classes based on Turing machine (TM) models

- L: Languages accepted by log-space bounded deterministic Turing machines.
- NL: Languages accepted by log-space bounded non-deterministic Turing machines.
- $\mathrm{C}_{=} \mathrm{L}$: Languages accepted by a non-deterministic Turing machine such that x is in the language if and only if $\#$ of accepting paths $=\#$ of rejecting paths.

Circuits are DAGs with \wedge, \vee and \neg gates at the vertices.

- AC^{0} : poly size constant depth and unbounded fanin circuits.
- TC^{0} : AC^{0} with "majority" gates

The Zoo below P

Computing the Rank

- The natural approach takes exponential time.
- Can be computed in Polynomial time : Gaussian elimination, LU decomposion, SV decomposition. But they are inherently sequential.
- Rank can be computed in NC. Elegant parallel algorithm ([Mul87]) by relating the problem to testing if some coefficients of the characterstic polynomial are zeros.
- Refined complexity bounds by [ABO96]. Upperbound testing exactly characterises $\mathrm{C}_{=} \mathrm{L}$.

Computing the rank of special matrices

- Several applications have inherent structure for the matrices.
- Complexity theoretic characterisations.

Restrictions we are interested in :

- $M=\left[a_{i, j}\right]$ is diagonally dominant if

$$
\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right|
$$

Fun fact: If dominance is strict for all i, M is non-singular.

- Diagonal matrices : Non-zero entries only on the main diagonal.

Characterising Log space

Theorem

Computing the rank of symmetric non-negative diagonally dominant matrices is complete for the complexity class L.

- Membership: The proof uses a nice combinatorial characterisation of the dimension of the null-space of the matrix due to [Dah99]. We can reduce the problem to counting the number of bipartite components in a graph.
- Hardness :The problem of testing reachability in undirected forests where there are exactly two components is L-complete. We reduce this problem to rank computation on symmetric non-negative diagonally dominant matrices.

For Special Matrices...

Matrix type	RANK BOUND	SINGULAR
General	$\mathrm{C}_{=}$L-complete $[$ABO96]	$\mathrm{C}_{=}$L-complete $[$ABO96 $]$
Sym.Non-neg.	$\mathrm{C}=$ L-complete $[$ ABO96 $]$	$\mathrm{C}_{=}$L-complete $[$ABO96 $]$

For Special Matrices...

Matrix type	RANK BOUND	SINGULAR
General	$\mathrm{C}_{=}$L-complete [ABO96]	$\mathrm{C}_{=}$L-complete $[$[ABO96]
Sym.Non-neg.	C=L-complete [ABO96]	$\mathrm{C}_{=}$L-complete $[$[ABO96]
Sym.Non-neg. Diag. Dom.	L-complete	L-complete
Diag	TC^{0}-complete	in AC^{0}

How close is M to a rank r matrix?

Definition (Rigidity)

Given a matrix M and $r<n$, rigidity of the matrix $M\left(R_{M}(r)\right)$ is the number of entries of the matrix that we need to change to bring the rank below r.

- A natural linear algebraic optimisation problem, that arises in control theory.
- Interesting in a circuit complexity theory setting. Highly rigid linear transformations(matrices) have some "nice" size-depth tradeoff in circuits computing them [Val77].
- Different variations of the problem, norm bounded change.

Computing Rigidity

$\operatorname{RIGID}(M, r, k)$: Given a matrix M, values r and k, is $R_{M}(r) \leq k$.

- Over any finite field \mathbb{F}, RIgID is in NP. The algorithm will simply guess the positions and the changed values and simply verify if the rank has gone down.
- Over \mathbb{F}_{2}, RIGID is NP-complete [Des]. The hardness comes from a reduction from a problem in the coding theory setting : the nearest neighbour decoding problem.
- Over infinite fields the only upperbound we know is r.e.
- If k is constant, restriced to boolean matrices, RIGID is C=L-complete.

Bounded Rigidity

Industrial applications: Too much change involves too much cost.

- Given a matrix M and $r<n$, bounded rigidity of the matrix $M\left(R_{M}(b, r)\right)$ is the number of entries of the matrix that we need to change to bring the rank below r, if the change allowed per entry is atmost b.
- B-RIGid (M, r, k, b) : Given a matrix M, values b, r and k, is $R_{M}(b, r) \leq k ?$
- Another formulation : Define an interval of matrices $[A]$ where

$$
m_{i j}-b \leq a_{i j} \leq m_{i j}+b
$$

Question: Is there a rank r matrix $B \in[A]$ such that $M-B$ has atmost k non-zero entries?

Why should there be?

Consider the matrix

$$
\left[\begin{array}{ccccc}
2^{k} & 0 & 0 & 0 & 0 \\
0 & 2^{k} & 0 & 0 & 0 \\
0 & 0 & 2^{k} & 0 & 0 \\
0 & 0 & 0 & 2^{k} & 0 \\
0 & 0 & 0 & 0 & 2^{k}
\end{array}\right]
$$

- $R_{M}(b, n-1)$ is undefined unless $b \geq \frac{2^{k}}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test, whether $R_{M}(b, r)$ is defined ?

Why should there be?

Consider the matrix

$$
\left[\begin{array}{ccccc}
2^{k} & 0 & 0 & 0 & 0 \\
0 & 2^{k} & 0 & 0 & 0 \\
0 & 0 & 2^{k} & 0 & 0 \\
0 & 0 & 0 & 2^{k} & 0 \\
0 & 0 & 0 & 0 & 2^{k}
\end{array}\right]
$$

- $R_{M}(b, n-1)$ is undefined unless $b \geq \frac{2^{k}}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test, whether $R_{M}(b, r)$ is defined ?

It is NP-hard.

A restricted case

For a given matrix M, bound b, testing whether $R_{M}(b, n-1)$ is defined, is NP-complete.

- Membership: The bound b defines an interval for each entry of the matrix.
Determinant is a multilinear polynomial on the entries of the matrix.
Now use the following lemma:

Lemma (Zero-on-an-edge)

For a multilinear polynomial $p\left(x_{1}, x_{2} \ldots x_{t}\right)$, consider the hypercube defined by the interval of each of the x_{i} s. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube.

- NP algorithm : Guess the "nice" singular matrix and verify.
- Hardness: A reduction from MAX-CUT problem.

Open Problems

- Is there a characterisation of other small complexity classes (like NL) using the rank/determinant computation?
- An NP upperbound for the general version of rigidity.
- An NP upperbound for bounded rigidity - a generalisation of the zero-on-an-edge lemma to arbitrary rank.

Thank You

Eric Allender，Robert Beals，and Mitsunori Ogihara．
The complexity of matrix rank and feasible systems of linear equations．
In STOC 96，pages 161－167， 1996.
围 G．Dahl．
A note on nonnegative diagonally dominant matrices．
Linear Algebra and Applications，317：217－224，April 1999.
固 Amit Jayant Deshpande．
Private Communication（Sep 2006）．
in K．Mulmuley．
A fast parallel algorithm to compute the rank of a matrix over an arbitrary field．
Combinatorica，7：101－104， 1987.
圊 L．G．Valiant．
Graph theoretic arguments in low－level complexity．
In MFCS 1977，pages 162－176， 1977.

