Complexity of Changing Matrix Rank

Jayalal Sarma M.N.
The Institute of Mathematical Sciences(IMSc), Chennai, India

WCDPCA 2007
Moscow, Russia
August 29-31, 2007

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.
- The smallest r such that $M=A B$ where $A \in \mathbb{F}^{n \times r}, B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is $\operatorname{rank}(M)<r$?

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.
- The smallest r such that $M=A B$ where $A \in \mathbb{F}^{n \times r}, B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is $\operatorname{rank}(M)<r$?
Motivations from linear algebra, control theory, from algorithmics, complexity theory. In the context of seperating complexity classes, it might facilitate application of well developed algebraic techniques.

A Natural Optimisation Question

How "close" is M to a rank r matrix N ?

- How does one define "closeness"? Various options are norm of $M-N$, hamming weight of $M-N$.
- Representation of the "close" Matrix.
- Bounds, Complexity of computing them, Approximations.

Several practical applications:

- Low dimensional representation of large volumes of data.
- Netflix problem : DVD rental table is of "low" rank.
- Arises in feedback control system.

Under various norms...

- Frobenius Norm:

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m}\left|a_{i, j}\right|^{2}}
$$

Studied under the name low-rank approximations. Sampling based approximations are known [Des07].

- General Matrix Norms:

$$
\|A\|_{\alpha, \beta}=\max _{\|x\|_{\alpha=1}}\|A x\|_{\beta}
$$

Nothing better is known.

- Related : p-norms (subspace approximation) : For a k-dimensional linear subspace H such that for column vectors $v_{1} \ldots v_{n}$ minimize:

$$
\left(\sum_{i} d\left(v_{i}, H\right)^{p}\right)^{\frac{1}{p}}
$$

Hamming is different

Definition (Rigidity)

Given a matrix M and $r \leq n$, rigidity of the matrix $M\left(R_{M}(r)\right)$ is the number of entries of the matrix that we need to change to bring the rank below r.
[Val77] Interesting in a circuit complexity theory setting. If for some $\epsilon>0$ there exists a $\delta>0$ such that an $n \times n$ matrix M_{n} has rigidity $R_{M_{n}}(\epsilon n) \geq n^{1+\delta}$ over a field \mathbb{F}, then the transformation $x \rightarrow M x$ cannot be computed by linear size logarithmic depth linear circuits.
[Raz89] For an explicit infinite sequence of (0,1)-matrices $\left\{M_{n}\right\}$ over a finite field \mathbb{F}, if $R_{M}(r) \geq \frac{n^{2}}{2^{(\log r)^{o(1)}}}$ for some $r \geq 2^{(\log \log n)^{\omega(1)}}$, then there is an explicit language $L_{M} \notin \mathrm{PH}^{c c}$, where $\mathrm{PH}^{c c}$ is the analog of PH in the communication complexity setting.

Lower bounds attempts

Find an explicit family of matrices $\left\{M_{n}\right\}$ such that

$$
R_{M_{n}}(\epsilon n) \geq n^{1+\delta}
$$

For any $r, \operatorname{rank}(M)-r \leq R_{M}(r) \leq(n-r)^{2}$

Matrices	$\Omega()$.	References
Vandermonde	$\frac{n^{2}}{r}$	Razborov '89, Pudlak '94 Shparlinsky '97, Lokam '99
Hadamard	$\frac{n^{2}}{r}$	Kashin-Razborov '98
Parity Check	$\frac{n^{2}}{r} \log \left(\frac{n}{r}\right)$	Friedman '93 Pudlak-Rodl '94
$\sqrt{p_{i j}}$	n^{2}	Lokam '06

Computing Rigidity - How "natural" is Valiant's proof?

- Razborov-Rudich defined the concept of natural proofs for lower-bound proofs. They defined the notion of a combinatorial property being Γ-natural against a class Δ.
- Valiant's reduction [Val77] identifies "high rigidity" as a a combinatorial property of the matrices (which defines the function computed) based on which he proves linear size lower bounds for log-depth circuits. Among the $n \times n$ matrices, the density of "rigid" matrices is high.
- Two requirements:
- The notion of natural proofs in arithmetic circuits?
- Tighten the default parameters : polynomial factors.

Computing Rigidity

$\operatorname{RIGID}(M, r, k)$: Given a matrix M, values r and k, is $R_{M}(r) \leq k$?

Field \mathbb{F}	restriction	bound
\mathbb{F}	-	in NP
\mathbb{F}_{2}	-	NP -complete [Des07]
\mathbb{Z} or \mathbb{Q}	Boolean, constant k	$\mathrm{C}_{=}$L-complete
\mathbb{Z} or \mathbb{Q}	constant k	$\mathrm{C}_{=}$L-hard
\mathbb{F}_{p}	constant k	Mod $_{p}$ L-complete
\mathbb{Q}	$r=n$	$C_{=}$L-complete witness-search in $L^{\text {GapL }}$
\mathbb{Z}	$r=n$ and $k=1$	in L GapL

For constant k, for 0-1 matrices, RIGID $_{k} \leq_{m}$ SINGULAR

$\operatorname{RIGID}(M, r, k)$: we need to test if if there is a set of $0 \leq s \leq k$ entries of M, which, when flipped, yield a matrix of rank below r. The number of such sets is bounded by $\sum_{s=0}^{k}\binom{n}{s}=t \in n^{O(1)}$. Let the corresponding matrices be $M_{1}, M_{2} \ldots M_{t}$; these can be generated from M in logspace. Now,

$$
\begin{aligned}
(M, r) \in \operatorname{RIGID}(k) & \Longleftrightarrow \exists i:\left(M_{i}, r\right) \in \operatorname{RanK} \operatorname{BOUND}(\mathbb{Z}) \\
& \Longleftrightarrow \exists i:\left(N_{i}, r\right) \in \operatorname{SINGULAR} \\
& \Longleftrightarrow\left(N^{\prime}, r^{\prime}\right) \in \operatorname{RaNK} \operatorname{BOUND}(\mathbb{Z})
\end{aligned}
$$

where $N_{i} \mathrm{~s}$ can be obtained in logspace from $M_{i} \mathrm{~s}$ and N^{\prime} and r^{\prime} can be generated using standard techniques.

For constant k, for 0-1 matrices, SINGULAR \leq_{m} RIGID $_{k}$

For constant k, for 0-1 matrices, SINGULAR \leq_{m} RIGID $_{k}$

$\operatorname{RIGID}(M, n, 0)$ tests if the matrix is singular.
To prove it for arbitrary k, tensor it with I_{k+1}, the rigidity gets amplified by a factor of k.

$M \in \operatorname{Singular}(\mathbb{Z}) \Longrightarrow$

$$
\begin{aligned}
& (N, n(k+1)-k) \in \operatorname{RIGID}(N, n(k+1)-k, 0) \\
& \subseteq \operatorname{RIGID}(N, n(k+1)-k, k)
\end{aligned}
$$

$M \notin \operatorname{singular}(\mathbb{Z})$ \qquad

$$
(N, n(k+1)-k) \notin \operatorname{RIGID}(N, n(k+1)-k, k)
$$

NP-hardness over \mathbb{F}_{2}

Nearest Codeword Problem(NCP): Fix a linear code $\mathcal{C}:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ over \mathbb{F}_{2} with generator matrix $G_{m \times n}$, a received vector y, and distance k, check if there is a codeword x such that $\Delta(x, y) \leq k$.

NCP is NP-hard.
Reduction: Given $\operatorname{NCP}(G, k, y)$ define M as

Claim : $R_{M}(m-1) \leq k \Longleftrightarrow N C P(G, k, y)$.

Inapproximability results for RIGID

Theorem
Over \mathbb{F}_{2}, for any constant $\alpha>1$, given a matrix $M \in \mathbb{F}_{2}^{m \times n}$ of rank r, deciding if $R_{M}(r-1) \leq k$ or $R_{M}(r-1) \geq \alpha k$ is NP-hard.

Theorem

Assuming NP is not contained in DTIME $\left(n^{\log n}\right)$, over \mathbb{F}_{2}, for any $\epsilon>0$, for $\alpha \leq 2^{n \log ^{0.5-\epsilon}}$, given a matrix $M \in \mathbb{F}_{2}^{m \times n}$, of rank r it is impossible to distinguish between the following two cases:

1. $R_{M}(r-1) \leq k$.
2. $R_{M}(r-1) \geq \alpha k$.

The Minrank problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.
MinRank: Given a matrix M with entries from $\mathbb{E} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
(\mathrm{E}, \mathrm{~S})-\operatorname{minrank}_{\mathbb{F}}(M)=\min _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in S^{k}} \operatorname{rank}_{\mathbb{F}}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right)
$$

The Minrank problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.
MinRank: Given a matrix M with entries from $\mathbb{E} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
(\mathrm{E}, \mathrm{~S})-\operatorname{minrank}_{\mathbb{F}}(M)=\min _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in S^{k}} \operatorname{rank}_{\mathbb{F}}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right)
$$

rank computed over \mathbb{F}	Entries of M from E	Solution from S	Complexity
\mathbb{Q}	\mathbb{Q}	\mathbb{Z}	Undecidable
\mathbb{F}_{2}	\mathbb{F}_{2}	\mathbb{F}_{2}	NP-complete
\mathbb{F}	\mathbb{F}	\mathbb{F}	in NP
\mathbb{R}	\mathbb{Q}	\mathbb{R}	NP-hard, PSPACE

The Minrank problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.
MinRank: Given a matrix M with entries from $\mathbb{E} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
\begin{gathered}
(\mathrm{E}, \mathrm{~S})-\operatorname{minrank}_{\mathbb{F}}(M)=\min _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in S^{k}} \operatorname{rank}_{\mathbb{F}}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right) \\
\operatorname{RIGID} \in \mathrm{NP}^{1-\text { Minrank }}
\end{gathered}
$$

1-Minrank: Every variable occurs exactly once.
Guess the entries of the matrix to be changed and replace them with distinct variables.

The Minrank problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.
MinRank: Given a matrix M with entries from $\mathbb{E} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
\begin{gathered}
(\mathrm{E}, \mathrm{~S})-\operatorname{minrank}_{\mathbb{F}}(M)=\min _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in S^{k}} \operatorname{rank}_{\mathbb{F}}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right) \\
\operatorname{RIGID} \in \mathrm{NP}^{1-\text { Minrank }}
\end{gathered}
$$

1-Minrank: Every variable occurs exactly once.
Guess the entries of the matrix to be changed and replace them with distinct variables.
We don't know much for the 1-Minrank problem either.

Bounded Rigidity

Definition (Bounded Rigidity)

Given a matrix M and $r<n$, bounded rigidity of the matrix M ($R_{M}(b, r)$) is the number of entries of the matrix that we need to change to bring the rank below r, if the change allowed per entry is atmost b.

- B-RIGId (M, r, k, b) : Given a matrix M, values b, r and k, is $R_{M}(b, r) \leq k ?$
- Another formulation: Define an interval of matrices $[A]$ where

$$
m_{i j}-b \leq a_{i j} \leq m_{i j}+b
$$

Question: Is there a rank r matrix $B \in[A]$ such that $M-B$ has atmost k non-zero entries?

Why should there be?

Consider the matrix

$$
\left[\begin{array}{ccccc}
2^{k} & 0 & 0 & 0 & 0 \\
0 & 2^{k} & 0 & 0 & 0 \\
0 & 0 & 2^{k} & 0 & 0 \\
0 & 0 & 0 & 2^{k} & 0 \\
0 & 0 & 0 & 0 & 2^{k}
\end{array}\right]
$$

- $R_{M}(b, n-1)$ is undefined unless $b \geq \frac{2^{k}}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether $R_{M}(b, r)$ is defined ?

Why should there be?

Consider the matrix

$$
\left[\begin{array}{ccccc}
2^{k} & 0 & 0 & 0 & 0 \\
0 & 2^{k} & 0 & 0 & 0 \\
0 & 0 & 2^{k} & 0 & 0 \\
0 & 0 & 0 & 2^{k} & 0 \\
0 & 0 & 0 & 0 & 2^{k}
\end{array}\right]
$$

- $R_{M}(b, n-1)$ is undefined unless $b \geq \frac{2^{k}}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether $R_{M}(b, r)$ is defined ?

It is NP-hard.

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_{M}(b, n-1)$ is defined, is NP-complete. Membership:

- The bound b defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of M.
- Zero-on-an-edge Lemma: For a multilinear polynomial $p\left(x_{1}, x_{2} \ldots x_{t}\right)$, consider the hypercube defined by the interval of each of the $x_{i} \mathrm{~s}$. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_{M}(b, n-1)$ is defined, is NP-complete. Membership:

- The bound b defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of M.
- Zero-on-an-edge Lemma: For a multilinear polynomial $p\left(x_{1}, x_{2} \ldots x_{t}\right)$, consider the hypercube defined by the interval of each of the $x_{i} s$. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

- NP algorithm: Guess the edge of the hypercube where the zero occurs and verify if the signs of determinant at each end point are opposite.

NP-completeness for a restricted case

Hardness: The interval $[M-\theta J, M+\theta J$] is singular if and only if $R_{M}(n, \theta)$ is defined.
By a reduction from MAXCUT problem, [PR93] showed that that checking interval singularity is NP-hard. Hence the hardness follows in our case too.

Increasing the Rank: MaxRank problem

MaxRank: Given a matrix M with entries from $\mathbb{F} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
\operatorname{MaxRank}(M)=\max _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in \mathbb{F}^{k}} \operatorname{rank}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right)
$$

Increasing the Rank: MaxRank problem

MaxRank: Given a matrix M with entries from $\mathbb{F} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
\operatorname{MaxRank}(M)=\max _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in \mathbb{F}^{k}} \operatorname{rank}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right)
$$

- Over \mathbb{Z}, there is a randomized polynomial time algorithm which can test if MaxRank is less than k.
- Over \mathbb{F}_{2}, the problem is NP-complete.

Increasing the Rank: MaxRank problem

MaxRank: Given a matrix M with entries from $\mathbb{F} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
\operatorname{MaxRank}(M)=\max _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in \mathbb{F}^{k}} \operatorname{rank}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right)
$$

- Over \mathbb{Z}, there is a randomized polynomial time algorithm which can test if MaxRank is less than k.
- Over \mathbb{F}_{2}, the problem is NP-complete.

Max version ofrigid $\in N^{1-M a x r a n k}$
1-Maxrank: Every variable occurs exactly once.

Increasing the Rank: MaxRank problem

MaxRank: Given a matrix M with entries from $\mathbb{F} \cup\left\{x_{1} \ldots x_{k}\right\}$,

$$
\operatorname{MaxRank}(M)=\max _{\left(\alpha_{1}, \ldots \alpha_{k}\right) \in \mathbb{F}^{k}} \operatorname{rank}\left(M\left(\alpha_{1}, \ldots \alpha_{k}\right)\right)
$$

- Over \mathbb{Z}, there is a randomized polynomial time algorithm which can test if MaxRank is less than k.
- Over \mathbb{F}_{2}, the problem is NP-complete.

Max version ofrigid $\in \mathrm{NP}^{1-\text { Maxrank }}$
1-Maxrank: Every variable occurs exactly once.
MaxRank is in P (Geelen '93).

Open Problems

- A better upper bound for computing rigidity over \mathbb{Q}.
- Is there an efficient algorithm when r is a constant?
- An NP upper bound for bounded rigidity - a generalisation of the zero-on-an-edge lemma to arbitrary rank.

Thank You

R Jonathan F．Buss，Gudmund Skovbjerg Frandsen，and Jeffrey Shallit．
The computational complexity of some problems of linear algebra（extended abstract）．
In Proc．STACS，volume 1200 of LNCS，pages 451－462， 1997.
JCSS 1999， 58 pp 572－596．
圊 Amit Deshpande．
Sampling－based dimension reduction algorithms．
PhD thesis，MIT，May 2007.
圊 S．Poljak and J．Rohn．
Checking robust nonsingularity is NP－hard．
Math．Control Signals Systems，6：1－9， 1993.
A．A．Razborov．
On rigid matrices．
manuscript in russian， 1989.

五
L．G．Valiant．
Graph theoretic arguments in low－level complexity．

In Proc. 6th MFCS, volume 53 of LNCS, pages 162-176. Springer, Berlin, 1977.

