Complexity of Changing Matrix Rank

Jayalal Sarma M.N.

The Institute of Mathematical Sciences(IMSc), Chennai, India

> WCDPCA 2007 Moscow, Russia August 29-31, 2007

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• The smallest r such that M = AB where $A \in \mathbb{F}^{n \times r}$, $B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is rank(M) < r?

Matrix Rank

Rank of a matrix $M \in \mathbb{F}^{n \times n}$ has the following equivalent definitions.

- The size of the largest submatrix with a non-zero determinant.
- The number of linearly independent rows/columns of a matrix.

• The smallest r such that M = AB where $A \in \mathbb{F}^{n \times r}$, $B \in \mathbb{F}^{r \times n}$. RANK BOUND: Given a matrix M and a value r, is rank(M) < r?

Motivations from linear algebra, control theory, from algorithmics, complexity theory. In the context of seperating complexity classes, it might facilitate application of well developed algebraic techniques.

A Natural Optimisation Question

How "close" is M to a rank r matrix N?

- How does one define "closeness"? Various options are norm of M N, hamming weight of M N.
- Representation of the "close" Matrix.
- Bounds, Complexity of computing them, Approximations.

Several practical applications:

• Low dimensional representation of large volumes of data.

- Netflix problem : DVD rental table is of "low" rank.
- Arises in feedback control system.

Under various norms...

• Frobenius Norm:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{i=1}^m |a_{i,j}|^2}$$

Studied under the name *low-rank approximations*. Sampling based approximations are known [Des07].

• General Matrix Norms:

$$||A||_{lpha,eta} = \max_{||x||_{lpha}=1} ||Ax||_{eta}$$

Nothing better is known.

 Related : p-norms (subspace approximation) : For a k-dimensional linear subspace H such that for column vectors v₁...v_n minimize:

$$\left(\sum_{i} d(v_{i}, H)^{p}\right)^{\frac{1}{p}}$$

Hamming is different

Definition (Rigidity)

Given a matrix M and $r \leq n$, rigidity of the matrix $M(R_M(r))$ is the number of entries of the matrix that we need to change to bring the rank below r.

[Val77] Interesting in a circuit complexity theory setting. If for some $\epsilon > 0$ there exists a $\delta > 0$ such that an $n \times n$ matrix M_n has rigidity $R_{M_n}(\epsilon n) \ge n^{1+\delta}$ over a field \mathbb{F} , then the transformation $x \to Mx$ cannot be computed by linear size logarithmic depth linear circuits.

[Raz89] For an explicit infinite sequence of (0,1)-matrices $\{M_n\}$ over a finite field \mathbb{F} , if $R_M(r) \geq \frac{n^2}{2^{(\log r)^{o(1)}}}$ for some $r \geq 2^{(\log \log n)^{\omega(1)}}$, then there is an explicit language $L_M \notin PH^{cc}$, where PH^{cc} is the analog of PH in the communication complexity setting.

Lower bounds attempts

Find an explicit family of matrices $\{M_n\}$ such that

$$R_{M_n}(\epsilon n) \geq n^{1+\delta}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For any
$$r$$
, rank $(M) - r \leq R_M(r) \leq (n - r)^2$

Matrices	Ω(.)	References	
Vandermonde	$\frac{n^2}{r}$	Razborov '89, Pudlak '94	
	,	Shparlinsky '97, Lokam '99	
Hadamard	$\frac{n^2}{r}$	Kashin-Razborov '98	
Parity Check	$\frac{n^2}{r}\log(\frac{n}{r})$	Friedman '93	
	, ,,,	Pudlak-Rodl '94	
$\sqrt{p_{ij}}$	n ²	Lokam '06	

Computing Rigidity - How "natural" is Valiant's proof?

- Razborov-Rudich defined the concept of natural proofs for lower-bound proofs. They defined the notion of a combinatorial property being Γ-natural against a class Δ.
- Valiant's reduction [Val77] identifies "high rigidity" as a a combinatorial property of the matrices (which defines the function computed) based on which he proves linear size lower bounds for log-depth circuits. Among the n × n matrices, the density of "rigid" matrices is high.
- Two requirements:
 - The notion of natural proofs in arithmetic circuits?
 - Tighten the default parameters : polynomial factors.

Computing Rigidity

RIGID(M, r, k): Given a matrix M, values r and k, is $R_M(r) \le k$?

Field \mathbb{F}	restriction	bound	
F	-	in NP	
\mathbb{F}_2	-	NP -complete [Des07]	
$\mathbb Z$ or $\mathbb Q$	Boolean, constant <i>k</i>	$C_{=}L$ -complete	
$\mathbb Z$ or $\mathbb Q$	constant <i>k</i>	$C_{=}L$ -hard	
\mathbb{F}_{p}	constant <i>k</i>	Mod _p L-complete	
Q	r = n	$C_{=}L$ -complete	
		witness-search in L ^{GapL}	
Z	r = n and $k = 1$	in L ^{GapL}	

(ロト・日本)・モン・モン・モー のへの

For constant k, for 0-1 matrices, $\operatorname{RIGID}_k \leq_m \operatorname{SINGULAR}$

RIGID(M, r, k): we need to test if if there is a set of $0 \le s \le k$ entries of M, which, when flipped, yield a matrix of rank below r. The number of such sets is bounded by $\sum_{c=0}^{k} {n \choose c} = t \in n^{O(1)}$. Let the corresponding matrices be $M_1, M_2 \dots M_t$; these can be

$$S = 0$$

generated from M in logspace. Now,

$$(M, r) \in \operatorname{RIGID}(k) \iff \exists i : (M_i, r) \in \operatorname{RANK} \operatorname{BOUND}(\mathbb{Z}) \\ \iff \exists i : (N_i, r) \in \operatorname{SINGULAR} \\ \iff (N', r') \in \operatorname{RANK} \operatorname{BOUND}(\mathbb{Z})$$

where N_i s can be obtained in logspace from M_i s and N' and r' can be generated using standard techniques.

For constant k, for 0-1 matrices, SINGULAR $\leq_m \text{RIGID}_k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For constant k, for 0-1 matrices, SINGULAR $\leq_m \text{RIGID}_k$

RIGID(M, n, 0) tests if the matrix is singular. To prove it for arbitrary k, tensor it with I_{k+1} , the rigidity gets amplified by a factor of k.

$$\begin{array}{ll} M \in \text{SINGULAR}(\mathbb{Z}) & \Longrightarrow \\ & (N, n(k+1) - k) \in \text{RIGID}(N, n(k+1) - k, 0) \\ & \subseteq \text{RIGID}(N, n(k+1) - k, k) \\ M \not\in \text{SINGULAR}(\mathbb{Z}) & \Longrightarrow \\ & (N, n(k+1) - k) \notin \text{RIGID}(N, n(k+1) - k, k) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NP-hardness over \mathbb{F}_2

NEAREST CODEWORD PROBLEM(NCP): Fix a linear code $\mathcal{C}: \{0,1\}^m \to \{0,1\}^n$ over \mathbb{F}_2 with generator matrix $G_{m \times n}$, a received vector y, and distance k, check if there is a codeword x such that $\Delta(x, y) \leq k$.

NCP is NP-hard. REDUCTION: Given NCP(G, k, y) define M as

Claim : $R_M(m-1) \leq k \iff NCP(G, k, y)$.

Inapproximability results for RIGID

Theorem

Over \mathbb{F}_2 , for any constant $\alpha > 1$, given a matrix $M \in \mathbb{F}_2^{m \times n}$ of rank r, deciding if $R_M(r-1) \le k$ or $R_M(r-1) \ge \alpha k$ is NP-hard.

Theorem

Assuming NP is not contained in DTIME($n^{\log n}$), over \mathbb{F}_2 , for any $\epsilon > 0$, for $\alpha \leq 2^{n \log^{0.5-\epsilon}}$, given a matrix $M \in \mathbb{F}_2^{m \times n}$, of rank r it is impossible to distinguish between the following two cases:

1. $R_M(r-1) \le k$. 2. $R_M(r-1) \ge \alpha k$.

The MINRANK problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$. MINRANK: Given a matrix M with entries from $\mathbb{E} \cup \{x_1 \dots x_k\}$,

$$(\mathsf{E},\mathsf{S})-\mathsf{minrank}_{\mathbb{F}}(M)=\min_{(\alpha_1,\ldots,\alpha_k)\in S^k}\mathsf{rank}_{\mathbb{F}}(M(\alpha_1,\ldots,\alpha_k))$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

The **MINRANK** problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.

MINRANK: Given a matrix M with entries from $\mathbb{E} \cup \{x_1 \dots x_k\}$,

$$(\mathsf{E},\mathsf{S})-\mathsf{minrank}_{\mathbb{F}}(M)=\min_{(\alpha_1,\ldots,\alpha_k)\in S^k}\mathsf{rank}_{\mathbb{F}}(M(\alpha_1,\ldots,\alpha_k))$$

rank computed	Entries of	Solution	Complexity
over ${\mathbb F}$	M from E	from S	
Q	Q	\mathbb{Z}	Undecidable
\mathbb{F}_2	\mathbb{F}_2	\mathbb{F}_2	NP-complete
F	F	F	in NP
\mathbb{R}	Q	\mathbb{R}	NP-hard, PSPACE

The MINRANK problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.

MINRANK: Given a matrix M with entries from $\mathbb{E} \cup \{x_1 \dots x_k\}$,

$$(\mathsf{E},\mathsf{S})-\mathsf{minrank}_{\mathbb{F}}(M)=\min_{(lpha_1,\ldots lpha_k)\in S^k} \mathsf{rank}_{\mathbb{F}}(M(lpha_1,\ldots lpha_k))$$

 $\texttt{RIGID} \in \mathsf{NP}^{1-\textit{Minrank}}$

1-Minrank : Every variable occurs exactly once.

Guess the entries of the matrix to be changed and replace them with distinct variables.

The $\operatorname{MINRANK}$ problem

Let \mathbb{F} be a field. with $E, S \subseteq \mathbb{F}$.

MINRANK: Given a matrix M with entries from $\mathbb{E} \cup \{x_1 \dots x_k\}$,

$$(\mathsf{E},\mathsf{S})-\mathsf{minrank}_{\mathbb{F}}(M)=\min_{(lpha_1,\ldots lpha_k)\in S^k} \mathsf{rank}_{\mathbb{F}}(M(lpha_1,\ldots lpha_k))$$

 $\texttt{RIGID} \in \mathsf{NP}^{1-\textit{Minrank}}$

1-Minrank : Every variable occurs exactly once.

Guess the entries of the matrix to be changed and replace them with distinct variables.

We don't know much for the 1-Minrank problem either.

Bounded Rigidity

Definition (Bounded Rigidity)

Given a matrix M and r < n, bounded rigidity of the matrix M $(R_M(b, r))$ is the number of entries of the matrix that we need to change to bring the rank below r, if the change allowed per entry is atmost b.

- B-RIGID(M, r, k, b): Given a matrix M, values b, r and k, is $R_M(b, r) \le k$?
- Another formulation : Define an interval of matrices [A] where

$$m_{ij} - b \leq a_{ij} \leq m_{ij} + b$$

Question : Is there a rank r matrix $B \in [A]$ such that M - B has atmost k non-zero entries?

Why should there be?

Consider the matrix

$$\left[\begin{array}{ccccc} 2^k & 0 & 0 & 0 & 0 \\ 0 & 2^k & 0 & 0 & 0 \\ 0 & 0 & 2^k & 0 & 0 \\ 0 & 0 & 0 & 2^k & 0 \\ 0 & 0 & 0 & 0 & 2^k \end{array}\right]$$

- $R_M(b, n-1)$ is undefined unless $b \ge \frac{2^k}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether R_M(b, r) is defined ?

Why should there be?

Consider the matrix

$$\left[\begin{array}{ccccc} 2^k & 0 & 0 & 0 & 0 \\ 0 & 2^k & 0 & 0 & 0 \\ 0 & 0 & 2^k & 0 & 0 \\ 0 & 0 & 0 & 2^k & 0 \\ 0 & 0 & 0 & 0 & 2^k \end{array}\right]$$

- $R_M(b, n-1)$ is undefined unless $b \ge \frac{2^k}{n}$.
- Question : For a given matrix M, bound b, target rank r, can we efficiently test whether R_M(b, r) is defined ?

It is NP-hard.

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_M(b, n-1)$ is defined, is NP-complete.

Membership:

- The bound *b* defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of *M*.
- ZERO-ON-AN-EDGE LEMMA: For a multilinear polynomial $p(x_1, x_2 \dots x_t)$, consider the hypercube defined by the interval of each of the x_i s. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

NP-completeness for a restricted case

For a given matrix M, bound b, testing whether $R_M(b, n-1)$ is defined, is NP-complete.

Membership:

- The bound *b* defines an interval for each entry of the matrix.
- Determinant: a multilinear polynomial in the entries of *M*.
- ZERO-ON-AN-EDGE LEMMA: For a multilinear polynomial $p(x_1, x_2 \dots x_t)$, consider the hypercube defined by the interval of each of the x_i s. If there is a zero of the polynomial in the hypercube then there is a zero on an edge of the hypercube

• NP algorithm : Guess the edge of the hypercube where the zero occurs and verify if the signs of determinant at each end point are opposite.

NP-completeness for a restricted case

HARDNESS: The interval $[M - \theta J, M + \theta J]$ is singular if and only if $R_M(n, \theta)$ is defined. By a reduction from MAXCUT problem, [PR93] showed that that checking interval singularity is NP-hard. Hence the hardness

follows in our case too.

Increasing the Rank : ${\rm MAXRANK}$ problem

MAXRANK: Given a matrix M with entries from $\mathbb{F} \cup \{x_1 \dots x_k\}$,

$$\mathsf{MaxRank}(\mathit{M}) = \max_{(lpha_1, \ldots lpha_k) \in \mathbb{F}^k} \mathit{rank}(\mathit{M}(lpha_1, \ldots lpha_k))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Increasing the Rank : MAXRANK problem

MAXRANK: Given a matrix M with entries from $\mathbb{F} \cup \{x_1 \dots x_k\}$,

$$\mathsf{MaxRank}(M) = \max_{(\alpha_1, \dots, \alpha_k) \in \mathbb{F}^k} \mathsf{rank}(M(\alpha_1, \dots, \alpha_k))$$

• Over ℤ, there is a randomized polynomial time algorithm which can test if MaxRank is less than *k*.

• Over \mathbb{F}_2 , the problem is NP-complete.

Increasing the Rank : MAXRANK problem

MAXRANK: Given a matrix M with entries from $\mathbb{F} \cup \{x_1 \dots x_k\}$,

$$\mathsf{MaxRank}(M) = \max_{(\alpha_1, \dots, \alpha_k) \in \mathbb{F}^k} \mathsf{rank}(M(\alpha_1, \dots, \alpha_k))$$

- Over ℤ, there is a randomized polynomial time algorithm which can test if MaxRank is less than *k*.
- Over \mathbb{F}_2 , the problem is NP-complete.

Max version of RIGID $\in NP^{1-Maxrank}$

1-Maxrank : Every variable occurs exactly once.

Increasing the Rank : MAXRANK problem

MAXRANK: Given a matrix M with entries from $\mathbb{F} \cup \{x_1 \dots x_k\}$,

$$\mathsf{MaxRank}(M) = \max_{(\alpha_1, \dots, \alpha_k) \in \mathbb{F}^k} \mathsf{rank}(M(\alpha_1, \dots, \alpha_k))$$

- Over ℤ, there is a randomized polynomial time algorithm which can test if Ma×Rank is less than *k*.
- Over \mathbb{F}_2 , the problem is NP-complete.

Max version of RIGID $\in NP^{1-Maxrank}$

1-Maxrank : Every variable occurs exactly once. MAXRANK is in P (Geelen '93).

Open Problems

- A better upper bound for computing rigidity over \mathbb{Q} .
- Is there an efficient algorithm when r is a constant?
- An NP upper bound for bounded rigidity a generalisation of the zero-on-an-edge lemma to arbitrary rank.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and Jeffrey Shallit.

The computational complexity of some problems of linear algebra (extended abstract).

In *Proc. STACS*, volume 1200 of *LNCS*, pages 451–462, 1997. JCSS 1999, 58 pp 572-596.

Amit Deshpande.

Sampling-based dimension reduction algorithms. PhD thesis, MIT, May 2007.

S. Poljak and J. Rohn.

Checking robust nonsingularity is NP-hard. *Math. Control Signals Systems*, 6:1–9, 1993.

A. A. Razborov.

On rigid matrices. manuscript in russian, 1989.

L. G. Valiant.

Graph theoretic arguments in low-level complexity.

In *Proc. 6th MFCS*, volume 53 of *LNCS*, pages 162–176. Springer, Berlin, 1977.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?