
CS6848 - Principles of Programming Languages
Flow analysis

V. Krishna Nandivada

IIT Madras

*

Recap

Idea of CPS
Step by step approach to convert scheme to cps.
Algorithm to convert Scheme programs to Tail form.
Algorithm to convert programs in tail form to first-order form.
Algorithm to convert programs in first-order form to imperative
form.

What you should be able to answer (necessary not sufficient)
Given a scheme program convert it to imperative form.
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Flow analysis - What, Why and How

What
Tell what “flows” into a variable/expression. (instances - values,
type of values, properties of values . . . )
One instance of flow analysis information - finite set of classes.
Say the flow set of an expression e is {A, B, C}.
=⇒ e can evaluate to null or an instance of a class mentioned in
{A, B, C}.

Utility of such flow information:
We can inline a message send (method call), if the flow set for the
receiver is a singleton set.
If the method of a class is not called at all, then we can discard
thus “dead code”.

How
To compute flow sets for each expression, we will do flow analysis.
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Our focus

We will study flow analysis that will help in inlining.
Our assumptions:

closed-world assumption:
All parts of the program are known at the time of the analysis and
will not change.
open-world assumption:
Some parts of the program are not known or may change. Recall
the principal type inference.
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Method inlining example

Method inlining is a popular optimization in OO languages: Java,
C++. (Why?)

class A{
void m (Q arg) {

arg.p();
}

}
class B extends A{

void m (Q arg)
{ ... }

}

class Q {
void p()

{ ... }
}
class S extends Q {
void p()

{ ... }
}

A x = new A();
B y = new B();

x.m(new Q());
y.m(new S());

Flow sets for x: A
Flow sets for y: B – can also be inlined
What if there is some code in between?
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Flow analysis

Goal: Find the call sites for each caller; unique callees are of
interest.
We will use a set based analysis.

The flow set for an expression is a set of class names.
Say the flow set of an expression e is {A, B, C}.
=⇒ e can evaluate to null or an instance of a class mentioned in
{A, B, C}.

Note: Any flow analysis must be an approximation.
Tradeoff - precision and speed.
CHA =⇒ 0-CFA
=⇒ improved precision and cost
CHA - Class hierarchy analysis, CFA - Control Flow Analysis
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CHA - Class hierarchy analysis

Relies on the type system; and hence the type information.
It is a type based analysis.
Flow set of any expression e:

Say the static type of the expression e is A.
Flow set = all subtypes of the static type.
Example:
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Revisit the example with CHA

class A{
void m (Q arg) {

arg.p();
}

}
class B extends A{

void m (Q arg)
{ ... }

}

class Q {
void p()

{ ... }
}
class S extends Q {
void p()

{ ... }
}

A x = new A();
B y = new B();

//FS(x)={A, B}
x.m(new Q());
//FS(y)={B}
y.m(new S());
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0-CFA

Flow insensitive, context insensitive flow analysis.
Can be done O(n3) time.
Does not rely on type system, but is type preserving.
Example: (Say x gets values of type D, E, and G.

V.Krishna Nandivada (IIT Madras) CS6848 9 / 33

*

0-CFA process

1 Generate constraints.
2 Solve constraints.

For each expression e, there is a flow variable JeK.
Example:

Program

new C()

x = e;

e1.m (e2);
and

class C{
B m(A a) {

...
return e; } }

Constraints

C ∈ J new C()K

JxK ⊇ JeK

C ∈ Je1K ⇒ Je2K ⊆ JaK
C ∈ Je1K ⇒ JeK ⊆ Je1.m(e2K
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0-CFA Constraint generation

Assume that all program variable and argument names are
distinct (rename otherwise).
We will use the notation Jthis−CK for the flow variable for the
“this” in the class C.
Generate constraints based on the syntax.
We are looking at constraints in three forms:

c ∈ X Beginning
X ⊆ Y Propagation
(c ∈ X)⇒ (Y ⊆ Z) conditional

A unique minimal solution is guaranteed.
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Constraint generation (contd.)

“ID = EXP’’ (assignment)
JEXPK ⊆ JIDK
“this”. Say this occurs in a method in class C:
JCK ∈ Jthis−CK
“new C” (object creation)
JCK ∈ JnewC()K
“EXP.METH (EXP1, ..., EXPn” (message send)
Say C implements a method for the message METH:
retType METH (type1 ID1, ... type n IDn){

return EXP0 }

Generate constraints:

C ∈ JEXPK⇒


JEXP1K⊆ JID1K
...
JEXPnK⊆ JIDnK
JEXP0K⊆ JEXP.METH(EXP1, · · ·EXPn)K
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Running on the example:

class A{
void m (Q arg) {

arg.p();
}

}
class B extends A{

void m (Q arg)
{ ... }

}

class Q {
void p()

{ ... }
}
class S extends Q {
void p()

{ ... }
}

A x = new A();
B y = new B();

x.m(new Q());
y.m(new S())

Generate constraints
Starting Propagation Conditional

A ∈ JnewA()K JnewA()K ⊆ JxK A ∈ JxK⇒ JnewQ()K⊆ JA.argK
B ∈ JnewB()K JnewB()K ⊆ JyK B ∈ JxK⇒ JnewQ()K⊆ JB.argK
Q ∈ JnewQ()K A ∈ JyK⇒ JnewS()K⊆ JA.argK
S ∈ JnewS()K B ∈ JyK⇒ JnewS()K⊆ JB.argK
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Constraint generation. Example 2

class A implements I {
I x = new D();
public I m(I f) {

return f.m(x);
}

}

class B implements I {
public I m(I g) {

return this;
}

}

... new A().m(new B()).m(new C()) ...
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Constraints for example 2
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Recap

Introduction to flow analysis.
CHA.
Constraint generation for CFA.
Think about how to solve the constraints.

What you should be able to answer? (necessary not sufficient)
Given a Java/C++ program inline methods using CHA.
Given a Java/C++ program generate flow constraints for 0-CFA.

V.Krishna Nandivada (IIT Madras) CS6848 16 / 33



*

Computing Flow sets

For each flow variable, we want to compute the flow set.
We go with the closed world assumption. ⇒ maximal set of
classes present in flow set is finite (the total number of classes).
We use U to denote the maximal set of classes.
The flow set for any expression ∈ P(U).
The set of flow sets for all the expressions ⊆ powerset of a finite
set of classes.

 φ

U

(φ , φ , · · · , φ )

(U, U, · · · , U)

Power set is a lattice (read: properties of lattices).
The top of the lattice corresponds to trivial flow information.
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Property of conservative flow analysis

The minimal solution is above the optimal information.

We will start with the most trivial solution.
Iteratively improve the solution.
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Constraint solver

Takes one constraint at a time.
At any point of time it maintains the minimal solution.
Internally constraints are represented as a graph (N,E).

N: set of flow variables.
E: (v→ w ∈ E)⇒ v⊆ w
(Why is it one way?)

The value of a flow variable X is stored in a bit vector B(X)
Initialized to all 0s.

Each bit i (which corresponds to a class), has an associated set of
pending constraints (may be empty) corresponding to the
conditional constraints; given by K(X, i)

For example: C ∈ X⇒ Y ⊆ Z: Y ⊆ Z ∈ K(X, i), where i is the bit
corresponding to class C.
Note: B(i) will be 0.

V.Krishna Nandivada (IIT Madras) CS6848 19 / 33

*

Solver details
Function Insert(i ∈ X)
begin

Propagate(X, i);
end
Function Insert(X ⊆ Y)
begin

Add an edge X→ Y;
foreach i ∈ B(X) do

Propagate(Y, i);
end

end
Function Insert(c ∈ X⇒ Y ⊆ Z)
begin

if B(X,c) then
Insert ( Y ⊆ Z);

end
else

K(X,c) = K(X,c)∪{(Y ⊆ Z)}
end

end

Function Propagate(v, i)
begin

if ¬B(v, i) then
B(v, i) = true;
foreach (v→ w) ∈ Edges do

Propagate (w, i);
end
foreach k ∈ K(v, i) do

Insert (k);
end
K(v, i) = {}

end
end
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Running on example

Generate constraints
Starting Propagation Conditional

A ∈ Jnew A()K Jnew A()K ⊆ JxK A ∈ JxK⇒ Jnew Q()K⊆ JA.argK
B ∈ Jnew B()K Jnew B()K ⊆ JyK B ∈ JxK⇒ Jnew Q()K⊆ JB.argK
Q ∈ Jnew Q()K A ∈ JyK⇒ Jnew S()K⊆ JA.argK
S ∈ Jnew S()K B ∈ JyK⇒ Jnew S()K⊆ JB.argK
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Useless assignment

Run the 0CFA algorithm on the constraints generated in Example 2.

V.Krishna Nandivada (IIT Madras) CS6848 22 / 33

*

Complexity analysis of the algorithm

Say the size of the program is n.
Number of classes: O(n).
Number of nodes (flow variables): O(n)
Number of edges: O(n2)

Number of constraints added:
At each call site (O(n)), for each class O(n), add O(n) constraints.
O(n3)

Max size of K(v, i), for any given v, and i: O(n).
Work done:

Each bit (class) is propagated along a specific edge at most once –
O(n2). And each propagate may process O(n) Insert functions. =
O(n3)
Each of the constraint may

be inserted into and deleted from a list once
cause the creation of a single edge.

Cost = O(n3).
In practise – mostly linear.
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Recap

Flow analysis using 0-CFA and some simple improvements.

What you should be able to answer? (necessary not sufficient)
Given a set of flow constraints solve them to get the flow sets.

Reminder
Assignment due in 3 days.
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Challenges and issues

The algorithm is not very precise.
Several challenges:

huge class libraries.
polymorphic methods.
polymorphic container classes.

Can improve by
dead code detection.
code duplication.

We will study couple of ways.
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Identify dead code

Idea: Don’t generate constraints for parts of program that is unreachable.
Take the example of library code - most of the code in the libraries is “dead code”
for any program.

Modified solver
L = φ ;
foreach k ∈ constraints (main) do

Insert(k);
end
// Updates the reachable methods of main in Live
while Live is not empty do

m = Get a method from Live;
foreach k ∈ constraints (m) do

Insert(k);
end
// Updates the reachable methods of m in Live

end

Complexity? The algorithm is still O(n3).
Will be efficient in practise.
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Method duplication

Say A and B implement the interface I.

class C {
I id (I x) { // A polymorphic identity function
return x; // flow set for x = {A, B}

} }
new C().id(new A()).m(5);
new C().id(new B()).m(5);

Is there a way to get the flow set of x to singleton sets?
Create a copy of each method implementation for each syntactic invocation.

class C2 {
I id1 (I x) { // Convert to a monomorphic identity function?
return x; // flow set for x = {A}

}
I id1 (I x) { // Convert to a monomorphic identity function?
return x; // flow set for x = {B}

} }
new C().id1(new A()).m(5);
new C().id2(new B()).m(5);
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Class duplication

class C{
I x;
C put (I v) { x = v; return this; }
I get() {return x; } // flow set for x = {A, B}

}
new C().put(new A()).get().m(5);
new C().put(new B()).get().m(5);

Is there a way to get the flow set of x to singleton sets?
Create a copy of each class for each syntactic object creation (via new).

class C1{
I x;
C put (I v) { x = v; return this; }
I get() {return x; } // flow set for x = {A}

}
class C2{

I x;
C put (I v) { x = v; return this; }
I get() {return x; } // flow set for x = {B}

}
new C1().put(new A()).get().m(5);
new C2().put(new B()).get().m(5);
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Closure conversion - a quick revisit

Closure conversion - converting higher order functions to first
order (has an environment that maps variables to values).

Translating Closures to C.
(define f (lambda (x)

(let (g (lambda () x)) g)))

(set! a (f 10))
(a) ?

Value should be 10.
How to translate it to C?
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Closure conversion to C

Naive translation is problematic.
typedef int (* fp)() ; // function pointer
int g () {

return x ; // Oops: which x is this?
}
fp f(int x) {

return g ;
}
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Closure conversion to C

No nested functions in C. So use globals.
typedef int (*fp)() ; // function pointer
int globalX;
int g () {

return globalX;
}
fp f(int x) {

globalX = x ;
return g ;

}

Any problem? – a = f(10); b = f(20); a(); b();
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Closure conversion - revisited

Create an environment and pass free variables.
At each application site - remmeber that it is a closure.
typedef int (*fp)() ; // function pointer
int g(e) {

return e["x"];
}
(fp, env) f(int x) {

return (g, {"x" = x}) ;
}

a = f(10) →
(t1Fp, t2Env) = f(10);
a[0] = t1Fp;
a[1] = t2Env;

b = f(20)→
(t3Fp, t4Env) = f(20);
b[0] = t3Fp;
b[1] = t4Env;

a() → a[0](a[1])
b() → b[0](b[1])
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Recap

Flow analysis using 0-CFA and some simple improvements.
Closure conversion.

What you should be able to answer? (necessary not sufficient)
Given a set of flow constraints solve them to get the flow sets.
Translate closures in Scheme to C.

Reminder
Assignment due in 3 days.
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