
CS6848 - Principles of Programming Languages
Flow analysis

V. Krishna Nandivada

IIT Madras

*

Recap

Idea of CPS
Step by step approach to convert scheme to cps.
Algorithm to convert Scheme programs to Tail form.
Algorithm to convert programs in tail form to first-order form.
Algorithm to convert programs in first-order form to imperative
form.

What you should be able to answer (necessary not sufficient)
Given a scheme program convert it to imperative form.

V.Krishna Nandivada (IIT Madras) CS6848 2 / 33

*

Flow analysis - What, Why and How

What
Tell what “flows” into a variable/expression. (instances - values,
type of values, properties of values . . .)
One instance of flow analysis information - finite set of classes.
Say the flow set of an expression e is {A, B, C}.
=⇒ e can evaluate to null or an instance of a class mentioned in
{A, B, C}.

Utility of such flow information:
We can inline a message send (method call), if the flow set for the
receiver is a singleton set.
If the method of a class is not called at all, then we can discard
thus “dead code”.

How
To compute flow sets for each expression, we will do flow analysis.

V.Krishna Nandivada (IIT Madras) CS6848 3 / 33

*

Our focus

We will study flow analysis that will help in inlining.
Our assumptions:

closed-world assumption:
All parts of the program are known at the time of the analysis and
will not change.
open-world assumption:
Some parts of the program are not known or may change. Recall
the principal type inference.

V.Krishna Nandivada (IIT Madras) CS6848 4 / 33

*

Method inlining example

Method inlining is a popular optimization in OO languages: Java,
C++. (Why?)

class A{
void m (Q arg) {

arg.p();
}

}
class B extends A{

void m (Q arg)
{ ... }

}

class Q {
void p()

{ ... }
}
class S extends Q {
void p()

{ ... }
}

A x = new A();
B y = new B();

x.m(new Q());
y.m(new S());

Flow sets for x: A
Flow sets for y: B – can also be inlined
What if there is some code in between?

V.Krishna Nandivada (IIT Madras) CS6848 5 / 33

*

Flow analysis

Goal: Find the call sites for each caller; unique callees are of
interest.
We will use a set based analysis.

The flow set for an expression is a set of class names.
Say the flow set of an expression e is {A, B, C}.
=⇒ e can evaluate to null or an instance of a class mentioned in
{A, B, C}.

Note: Any flow analysis must be an approximation.
Tradeoff - precision and speed.
CHA =⇒ 0-CFA
=⇒ improved precision and cost
CHA - Class hierarchy analysis, CFA - Control Flow Analysis

V.Krishna Nandivada (IIT Madras) CS6848 6 / 33

*

CHA - Class hierarchy analysis

Relies on the type system; and hence the type information.
It is a type based analysis.
Flow set of any expression e:

Say the static type of the expression e is A.
Flow set = all subtypes of the static type.
Example:

V.Krishna Nandivada (IIT Madras) CS6848 7 / 33

*

Revisit the example with CHA

class A{
void m (Q arg) {

arg.p();
}

}
class B extends A{

void m (Q arg)
{ ... }

}

class Q {
void p()

{ ... }
}
class S extends Q {
void p()

{ ... }
}

A x = new A();
B y = new B();

//FS(x)={A, B}
x.m(new Q());
//FS(y)={B}
y.m(new S());

V.Krishna Nandivada (IIT Madras) CS6848 8 / 33

*

0-CFA

Flow insensitive, context insensitive flow analysis.
Can be done O(n3) time.
Does not rely on type system, but is type preserving.
Example: (Say x gets values of type D, E, and G.

V.Krishna Nandivada (IIT Madras) CS6848 9 / 33

*

0-CFA process

1 Generate constraints.
2 Solve constraints.

For each expression e, there is a flow variable JeK.
Example:

Program

new C()

x = e;

e1.m (e2);
and

class C{
B m(A a) {

...
return e; } }

Constraints

C ∈ J new C()K

JxK ⊇ JeK

C ∈ Je1K ⇒ Je2K ⊆ JaK
C ∈ Je1K ⇒ JeK ⊆ Je1.m(e2K

V.Krishna Nandivada (IIT Madras) CS6848 10 / 33

*

0-CFA Constraint generation

Assume that all program variable and argument names are
distinct (rename otherwise).
We will use the notation Jthis−CK for the flow variable for the
“this” in the class C.
Generate constraints based on the syntax.
We are looking at constraints in three forms:

c ∈ X Beginning
X ⊆ Y Propagation
(c ∈ X)⇒ (Y ⊆ Z) conditional

A unique minimal solution is guaranteed.

V.Krishna Nandivada (IIT Madras) CS6848 11 / 33

*

Constraint generation (contd.)

“ID = EXP’’ (assignment)
JEXPK ⊆ JIDK
“this”. Say this occurs in a method in class C:
JCK ∈ Jthis−CK
“new C” (object creation)
JCK ∈ JnewC()K
“EXP.METH (EXP1, ..., EXPn” (message send)
Say C implements a method for the message METH:
retType METH (type1 ID1, ... type n IDn){

return EXP0 }

Generate constraints:

C ∈ JEXPK⇒

JEXP1K⊆ JID1K
...
JEXPnK⊆ JIDnK
JEXP0K⊆ JEXP.METH(EXP1, · · ·EXPn)K

V.Krishna Nandivada (IIT Madras) CS6848 12 / 33

*

Running on the example:

class A{
void m (Q arg) {

arg.p();
}

}
class B extends A{

void m (Q arg)
{ ... }

}

class Q {
void p()

{ ... }
}
class S extends Q {
void p()

{ ... }
}

A x = new A();
B y = new B();

x.m(new Q());
y.m(new S())

Generate constraints
Starting Propagation Conditional

A ∈ JnewA()K JnewA()K ⊆ JxK A ∈ JxK⇒ JnewQ()K⊆ JA.argK
B ∈ JnewB()K JnewB()K ⊆ JyK B ∈ JxK⇒ JnewQ()K⊆ JB.argK
Q ∈ JnewQ()K A ∈ JyK⇒ JnewS()K⊆ JA.argK
S ∈ JnewS()K B ∈ JyK⇒ JnewS()K⊆ JB.argK

V.Krishna Nandivada (IIT Madras) CS6848 13 / 33

*

Constraint generation. Example 2

class A implements I {
I x = new D();
public I m(I f) {

return f.m(x);
}

}

class B implements I {
public I m(I g) {

return this;
}

}

... new A().m(new B()).m(new C()) ...

V.Krishna Nandivada (IIT Madras) CS6848 14 / 33

*

Constraints for example 2

V.Krishna Nandivada (IIT Madras) CS6848 15 / 33

*

Recap

Introduction to flow analysis.
CHA.
Constraint generation for CFA.
Think about how to solve the constraints.

What you should be able to answer? (necessary not sufficient)
Given a Java/C++ program inline methods using CHA.
Given a Java/C++ program generate flow constraints for 0-CFA.

V.Krishna Nandivada (IIT Madras) CS6848 16 / 33

*

Computing Flow sets

For each flow variable, we want to compute the flow set.
We go with the closed world assumption. ⇒ maximal set of
classes present in flow set is finite (the total number of classes).
We use U to denote the maximal set of classes.
The flow set for any expression ∈ P(U).
The set of flow sets for all the expressions ⊆ powerset of a finite
set of classes.

 φ

U

(φ , φ , · · · , φ)

(U, U, · · · , U)

Power set is a lattice (read: properties of lattices).
The top of the lattice corresponds to trivial flow information.

V.Krishna Nandivada (IIT Madras) CS6848 17 / 33

*

Property of conservative flow analysis

The minimal solution is above the optimal information.

We will start with the most trivial solution.
Iteratively improve the solution.

V.Krishna Nandivada (IIT Madras) CS6848 18 / 33

*

Constraint solver

Takes one constraint at a time.
At any point of time it maintains the minimal solution.
Internally constraints are represented as a graph (N,E).

N: set of flow variables.
E: (v→ w ∈ E)⇒ v⊆ w
(Why is it one way?)

The value of a flow variable X is stored in a bit vector B(X)
Initialized to all 0s.

Each bit i (which corresponds to a class), has an associated set of
pending constraints (may be empty) corresponding to the
conditional constraints; given by K(X, i)

For example: C ∈ X⇒ Y ⊆ Z: Y ⊆ Z ∈ K(X, i), where i is the bit
corresponding to class C.
Note: B(i) will be 0.

V.Krishna Nandivada (IIT Madras) CS6848 19 / 33

*

Solver details
Function Insert(i ∈ X)
begin

Propagate(X, i);
end
Function Insert(X ⊆ Y)
begin

Add an edge X→ Y;
foreach i ∈ B(X) do

Propagate(Y, i);
end

end
Function Insert(c ∈ X⇒ Y ⊆ Z)
begin

if B(X,c) then
Insert (Y ⊆ Z);

end
else

K(X,c) = K(X,c)∪{(Y ⊆ Z)}
end

end

Function Propagate(v, i)
begin

if ¬B(v, i) then
B(v, i) = true;
foreach (v→ w) ∈ Edges do

Propagate (w, i);
end
foreach k ∈ K(v, i) do

Insert (k);
end
K(v, i) = {}

end
end

V.Krishna Nandivada (IIT Madras) CS6848 20 / 33

*

Running on example

Generate constraints
Starting Propagation Conditional

A ∈ Jnew A()K Jnew A()K ⊆ JxK A ∈ JxK⇒ Jnew Q()K⊆ JA.argK
B ∈ Jnew B()K Jnew B()K ⊆ JyK B ∈ JxK⇒ Jnew Q()K⊆ JB.argK
Q ∈ Jnew Q()K A ∈ JyK⇒ Jnew S()K⊆ JA.argK
S ∈ Jnew S()K B ∈ JyK⇒ Jnew S()K⊆ JB.argK

V.Krishna Nandivada (IIT Madras) CS6848 21 / 33

*

Useless assignment

Run the 0CFA algorithm on the constraints generated in Example 2.

V.Krishna Nandivada (IIT Madras) CS6848 22 / 33

*

Complexity analysis of the algorithm

Say the size of the program is n.
Number of classes: O(n).
Number of nodes (flow variables): O(n)
Number of edges: O(n2)

Number of constraints added:
At each call site (O(n)), for each class O(n), add O(n) constraints.
O(n3)

Max size of K(v, i), for any given v, and i: O(n).
Work done:

Each bit (class) is propagated along a specific edge at most once –
O(n2). And each propagate may process O(n) Insert functions. =
O(n3)
Each of the constraint may

be inserted into and deleted from a list once
cause the creation of a single edge.

Cost = O(n3).
In practise – mostly linear.

V.Krishna Nandivada (IIT Madras) CS6848 23 / 33

*

Recap

Flow analysis using 0-CFA and some simple improvements.

What you should be able to answer? (necessary not sufficient)
Given a set of flow constraints solve them to get the flow sets.

Reminder
Assignment due in 3 days.

V.Krishna Nandivada (IIT Madras) CS6848 24 / 33

*

Challenges and issues

The algorithm is not very precise.
Several challenges:

huge class libraries.
polymorphic methods.
polymorphic container classes.

Can improve by
dead code detection.
code duplication.

We will study couple of ways.

V.Krishna Nandivada (IIT Madras) CS6848 25 / 33

*

Identify dead code

Idea: Don’t generate constraints for parts of program that is unreachable.
Take the example of library code - most of the code in the libraries is “dead code”
for any program.

Modified solver
L = φ ;
foreach k ∈ constraints (main) do

Insert(k);
end
// Updates the reachable methods of main in Live
while Live is not empty do

m = Get a method from Live;
foreach k ∈ constraints (m) do

Insert(k);
end
// Updates the reachable methods of m in Live

end

Complexity? The algorithm is still O(n3).
Will be efficient in practise.

V.Krishna Nandivada (IIT Madras) CS6848 26 / 33

*

Method duplication

Say A and B implement the interface I.

class C {
I id (I x) { // A polymorphic identity function
return x; // flow set for x = {A, B}

} }
new C().id(new A()).m(5);
new C().id(new B()).m(5);

Is there a way to get the flow set of x to singleton sets?
Create a copy of each method implementation for each syntactic invocation.

class C2 {
I id1 (I x) { // Convert to a monomorphic identity function?
return x; // flow set for x = {A}

}
I id1 (I x) { // Convert to a monomorphic identity function?
return x; // flow set for x = {B}

} }
new C().id1(new A()).m(5);
new C().id2(new B()).m(5);

V.Krishna Nandivada (IIT Madras) CS6848 27 / 33

*

Class duplication

class C{
I x;
C put (I v) { x = v; return this; }
I get() {return x; } // flow set for x = {A, B}

}
new C().put(new A()).get().m(5);
new C().put(new B()).get().m(5);

Is there a way to get the flow set of x to singleton sets?
Create a copy of each class for each syntactic object creation (via new).

class C1{
I x;
C put (I v) { x = v; return this; }
I get() {return x; } // flow set for x = {A}

}
class C2{

I x;
C put (I v) { x = v; return this; }
I get() {return x; } // flow set for x = {B}

}
new C1().put(new A()).get().m(5);
new C2().put(new B()).get().m(5);

V.Krishna Nandivada (IIT Madras) CS6848 28 / 33

*

Closure conversion - a quick revisit

Closure conversion - converting higher order functions to first
order (has an environment that maps variables to values).

Translating Closures to C.
(define f (lambda (x)

(let (g (lambda () x)) g)))

(set! a (f 10))
(a) ?

Value should be 10.
How to translate it to C?

V.Krishna Nandivada (IIT Madras) CS6848 29 / 33

*

Closure conversion to C

Naive translation is problematic.
typedef int (* fp)() ; // function pointer
int g () {

return x ; // Oops: which x is this?
}
fp f(int x) {

return g ;
}

V.Krishna Nandivada (IIT Madras) CS6848 30 / 33

*

Closure conversion to C

No nested functions in C. So use globals.
typedef int (*fp)() ; // function pointer
int globalX;
int g () {

return globalX;
}
fp f(int x) {

globalX = x ;
return g ;

}

Any problem? – a = f(10); b = f(20); a(); b();

V.Krishna Nandivada (IIT Madras) CS6848 31 / 33

*

Closure conversion - revisited

Create an environment and pass free variables.
At each application site - remmeber that it is a closure.
typedef int (*fp)() ; // function pointer
int g(e) {

return e["x"];
}
(fp, env) f(int x) {

return (g, {"x" = x}) ;
}

a = f(10) →
(t1Fp, t2Env) = f(10);
a[0] = t1Fp;
a[1] = t2Env;

b = f(20)→
(t3Fp, t4Env) = f(20);
b[0] = t3Fp;
b[1] = t4Env;

a() → a[0](a[1])
b() → b[0](b[1])

V.Krishna Nandivada (IIT Madras) CS6848 32 / 33

*

Recap

Flow analysis using 0-CFA and some simple improvements.
Closure conversion.

What you should be able to answer? (necessary not sufficient)
Given a set of flow constraints solve them to get the flow sets.
Translate closures in Scheme to C.

Reminder
Assignment due in 3 days.

V.Krishna Nandivada (IIT Madras) CS6848 33 / 33

