CS6848 - Principles of Programming Languages

Flow analysis

V. Krishna Nandivada

IIT Madras

Flow analysis - What, Why and How

What

@ Tell what “flows” into a variable/expression. (instances - values,
type of values, properties of values ...)

@ One instance of flow analysis information - finite set of classes.
@ Say the flow set of an expression e is {A, B, C}.

@ — ¢ can evaluate to null or an instance of a class mentioned in
{A, B, C}.

Utility of such flow information:

@ We can inline a message send (method call), if the flow set for the
receiver is a singleton set.

@ If the method of a class is not called at all, then we can discard
thus “dead code”.

How
@ To compute flow sets for each expression, we will do flow analy®

V.Krishna Nandivada (IIT Madras) CS6848 3/33

@ |dea of CPS
@ Step by step approach to convert scheme to cps.
@ Algorithm to convert Scheme programs to Tail form.
@ Algorithm to convert programs in tail form to first-order form.
@ Algorithm to convert programs in first-order form to imperative
form.

What you should be able to answer (necessary not sufficient)

@ Given a scheme program convert it to imperative form.

V.Krishna Nandivada (IIT Madras) CS6848 2/33

Our focus

@ We will study flow analysis that will help in inlining.
@ Our assumptions:

o closed-world assumption:
All parts of the program are known at the time of the analysis and
will not change.

e open-world assumption:
Some parts of the program are not known or may change. Recall
the principal type inference.

V.Krishna Nandivada (IIT Madras) CS6848 4/33

Method inlining example Flow analysis

@ Method inlining is a popular optimization in OO languages: Java,

C++. (Why?) @ Goal: Find the call sites for each caller; unique callees are of
interest.
class A{ class O { @ We will use a set based analysis.
void m (Q arg) { d pl) e The flow set for an expression is a set of class names.
arg.p(); voia p A X = new A(); e Say the flow set of an expression e is {A, B, C}.
e = new B(): @ = ¢ can evaluate to null or an instance of a class mentioned in
} By e ()i
) } {A, B, C}.
class B extends Af{ Claz?ds e(Ttends O U n(new 00)); @ Note: Any flow analysis must be an approximation.
] Vo1l ..
void m (Q arg) { P } y.m(new S()); @ Tradeoff - precision and speed.
RN) @ CHA — 0-CFA

= improved precision and cost

© Flow sets for x: & @ CHA - Class hierarchy analysis, CFA - Control Flow Analysis

@ Flow sets for y: B —can also be inlined
@ What if there is some code in between?

V.Krishna Nandivada (IIT Madras) CS6848 5/33 V.Krishna Nandivada (IIT Madras) CS6848 6/33

CHA - Class hierarchy analysis Revisit the example with CHA

@ Relies on the type system; and hence the type information.

@ ltis a type based analysis.
@ Flow set of any expression e:

e Say the static type of the expression e is A. class A{
o Flow set = all subtypes of the static type. void m (Q arg) { class Q { A x = new A();
e Example: arg.p(); void p() B y = new B();
class hierarchy (excerpt) } } o
Cx; C J class S extends Q { //ES (x)=(A, B}
/4 \\ class B extends A{ void p () x.m(new Q());
void m (Q arg) //ES (y)={B}

static type of x /l{\ E { ...} \ b y.m(new S());
}

F G

Flow set for x = { C, D, E, F, G }

V.Krishna Nandivada (IIT Madras) CS6848 7133 V.Krishna Nandivada (lIT Madras) CS6848 8/33

0-CFA

@ Flow insensitive, context insensitive flow analysis.

@ Can be done O(n?) time.

@ Does not rely on type system, but is type preserving.
@ Example: (Say x gets values of type D, E, and G.

class hierarchy (excerpt)
Cx; C

static type of x Q
F (0

Flow set for x = { D, E, G }

V.Krishna Nandivada (IIT Madras) CS6848 9/33

0-CFA Constraint generation

@ Assume that all program variable and argument names are
distinct (rename otherwise).

@ We will use the notation [this —] for the flow variable for the
“this” in the class C.
@ Generate constraints based on the syntax.
@ We are looking at constraints in three forms:
c€X Beginning
X C Y Propagation
(ceX)=(YC2Z) -conditional
@ A unique minimal solution is guaranteed.

V.Krishna Nandivada (IIT Madras) CS6848 11/33

0-CFA process

@ Generate constraints.
@ Solve constraints.

@ For each expression e, there is a flow variable [e].

@ Example:
Program Constraints
new C() C € [new c()]
X = e; [x] 2 [e]

el.m (e2);
and Cc € [el] = [e2]
class C{ Cc € [el] = [e]
B m(A a) {

[a]
[el.m(e2]

N 1N

return e; } }
V.Krishna Nandivada (IIT Madras) CS6848 10/33

Constraint generation (contd.)

@ “ID = EXP’’ (assignment)
[ExP] C [1D]

@ “this”. Say this occurs in a method in class C:
[c] € [this—C]

@ “new C” (object creation)
[c] € [newc()]

@ “EXP.METH (EXP1, ..., EXPn”(message send)
Say c implements a method for the message METH:

retType METH (typel ID1,
return EXPO }

. type-n IDn) {

Generate constraints:
[ExP1] C [ID1]
CElEXPI= 0 [ExPa] € [iDn]
[EXPO] C [EXP.METH(EXP1,---EXPn)]

V.Krishna Nandivada (lIT Madras) CS6848 12/33

Running on the example: Constraint generation. Example 2

class Af{ class O { class A implements I {
void m (Q arg) { void p() I x = new D();
arg.p(); (P) A x = new A(); public I m(I f) {
} } B y = new B(); return f.m(x);
} }
class B extends A{ Clas? S extends Q f x.m(new Q()); }
) void p ()
void m (Q arg) {) y.m(new S())
{ ...} } class B implements I {
}G t traint public I m(I g) {
enerate constraints -
Starting Propagation Conditional) return this;
A € [newad()] [newra()] C[x] 2 €[x]= [rewo()] < [a.arq])
B € [newB()] [newB()] C[y] B €[x]= [rewo()] C[B.arg]
0 € [newQ()] A €[y] = [news()] C [a.arg]
s € [news()] B € [y] = [news()] C [B.arg] § - new AQLminew BO).mnew €O
V.Krishna Nandivada (IIT Madras) CS6848 13/33 V.Krishna Nandivada (IIT Madras) CS6848 14 /33
Constraints for example 2 Recap
€ [x]
€ [this-B|
€ [new AQ] B € [new BO)]
€ [new CO] D € [new DO)J
A= {Hgﬂf] @ Introduction to flow analysis.
[f.mx)] C [f.nx)] @ CHA
Beﬂfﬂ:{IIXJIQIIg]I |
[this-B] C [£.m(x)] @ Constraint generation for CFA.
nj:wAéz% cl @ Think about how to solve the constraints.

nfewmfg [new AO m(new B0 What you should be able to answer? (necessary not sufficient)

{ new B()]] c @ Given a Java/C++ program inline methods using CHA.

this-B] C [new A().m(new BO)] @ Given a Java/C++ program generate flow constraints for 0-CFA.
[new AQ). m(new BO)] =

[new C()] C

[f.m(x)] C [new A() m(new B()) .m(new CO)]
[new AQ). m(new BO)] =
{ [new cO] C [g]

[this-B] C [new A(Q) .m(new B()) .m(new C())]

V.Krishna Nandivada (IIT Madras) CS6848 15/33 V.Krishna Nandivada (IIT Madras) CS6848 16/33

Computing Flow sets

@ For each flow variable, we want to compute the flow set.

@ We go with the closed world assumption. = maximal set of
classes present in flow set is finite (the total number of classes).

@ We use U to denote the maximal set of classes.

@ The flow set for any expression € P(U).

@ The set of flow sets for all the expressions C powerset of a finite
set of cle}]sses.

(U’ ’4.,’U)

v @9 9)

@ Power set is a lattice (read: properties of lattices).
@ The top of the lattice corresponds to trivial flow information.

V.Krishna Nandivada (IIT Madras) CS6848 17/33

Constraint solver

@ Takes one constraint at a time.
@ At any point of time it maintains the minimal solution.

@ Internally constraints are represented as a graph (N, E).
e N: set of flow variables.
e E:(vo>w€eE)=vCw
(Why is it one way?)
@ The value of a flow variable X is stored in a bit vector B(X)
o Initialized to all Os.

@ Each bit i (which corresponds to a class), has an associated set of
pending constraints (may be empty) corresponding to the
conditional constraints; given by K(X,i)

e Forexample: Ce X=Y CZ: Y CZec K(X,i), where i is the bit
corresponding to class C.
e Note: B(i) will be 0.

V.Krishna Nandivada (IIT Madras) CS6848 19/33

Property of conservative flow analysis

@ The minimal solution is above the optimal information.

computable information
(too large sets)

optimal information

@ We will start with the most trivial solution.
@ lteratively improve the solution.

V.Krishna Nandivada (IIT Madras) CS6848 18/33

Solver details

Function Insert(i € X)
begin
| Propagate(X,i);
end
Function Insert(X C Y)
begin
Add an edge X — 7;
foreach i € B(X) do
| Propagate(Y.,i);
end
end
Function Insert(ce X =Y C Z)
begin
if B(X,c) then
| Insert (Y CZ);
end
else
| K(X,c)=K(X,c)U{(Y C2)}
end
end

V.Krishna Nandivada (IIT Madras)

Function Propagate(v,i)

begin

if -B(v,i) then

B(v,i) = true;

foreach (v — w) € Edges do
| Propagate (w, i);

end

foreach k € K(v,i) do
| Insert (k);

end

K(v,i)={}

end

end

CS6848 20/33

Running on example Useless assignment

Generate constraints

Starting Propagation Conditional
A € [new A()] [newa()] C[x] A €[x]=[new Q)] C[A.arg] Run the OCFA algorithm on the constraints generated in Example 2.
B € [new B()] [newB()]C[y] B €[x]= [new Q()]C [B.arg]
Q € [new Q)] A €[y]=[new s()]C[a.axrd]
S € [new s()] B € [y] = [new s()] C[B.arg]
V.Krishna Nandivada (IIT Madras) CS6848 21/33 V.Krishna Nandivada (IIT Madras) CS6848 22/33

Complexity analysis o the aigoritn

@ Say the size of the program is n.

@ Number of classes: O(n).

@ Number of nodes (flow variables): O(n)
@ Number of edges: O(n?)

@ Number of constraints added: @ Flow analysis using 0-CFA and some simple improvements.
gt(:f;Ch call site (O(n)), for each class O(n), add O(r) constraints. What you should be able to answer? (necessary not sufficient)
o Max size of K(v,i), for any given v, and i: O(n). @ Given a set of flow constraints solve them to get the flow sets.
@ Work done: Reminder
e Each bit (class) is propagated along a specific edge at most once — @ Assignment due in 3 days.
O(n?). And each propagate may process O(n) Insert functions. =
o(n?)

e Each of the constraint may
@ be inserted into and deleted from a list once
@ cause the creation of a single edge.

@ Cost = O(r?).
@ In practise — mostly linear.

V.Krishna Nandivada (IIT Madras) CS6848 23/33 V.Krishna Nandivada (IIT Madras) CS6848 24 /33

Challenges and issues Identify dead code

@ Idea: Don'’t generate constraints for parts of program that is unreachable.
@ Take the example of library code - most of the code in the libraries is “dead code”
for any program.
@ The algorithm is not very precise. Modified solver
@ Several challenges: L=9¢; , ,
) . foreach k € constraints (main) do
e huge class libraries. | Insert(k);
e polymorphic methods. ’

end
° polymorphlc container classes. // Updates the reachable methods of main in Live

@ Can improve by while Live is not empty do
o dead code detection. m = Get a method from Live;
e code duplication. foreach k € ?onstralnts (m) do
| Insert(k);
@ We will study couple of ways. end
// Updates the reachable methods of m in Live
end

@ Complexity? The algorithm is still O(n?).
@ Will be efficient in practise.

V.Krishna Nandivada (IIT Madras) CS6848 25/33 V.Krishna Nandivada (IIT Madras) CS6848 26/33

Method duplication Class duplication

@ Say A and B implement the interface I.

class C{
class C { I x;)
I id (I %) { // A polymorphic identity function C put (I v) { x =v; return this; }
return x; // flow set for x = {A, B} I get() {return x; } // flow set for x = {A, B}
}
o}
new C().id(new A()).m(5); new C () .put (new A()).get().m(5);
new C().id(new B()).m(5); new C().put(new B()).get().m(5);
@ Is there a way to get the flow set of x to singleton sets? @ Is there a way to get the flow set of x to singleton sets?
@ Create a copy of each method implementation for each syntactic invocation. @ Create a copy of each class for each syntactic object creation (via new).
class C2 { class C1{
I idl (I x) { // Convert to a monomorphic identity function? I %)
return x; // flow set for x = {A} C put (I v) { x = v; return this; }
} I get() {return x; } // flow set for x = {A}
I idl (I x) { // Convert to a monomorphic identity function? }
return x; // flow set for x = {B} class C2{
by I x;
new C().idl (new A()).m(5); C put (I v) { x = v; return this; }
new C().id2 (new B()).m(5); I get() {return x; } // flow set for x = {B}
}
V.Krishna Nandivada (IIT Madras) CS6848 27/33 V.Krishna Nandivada (lIT Madras) CS6848 28/33

new C2 () .put (new B()).get () .m(5);

Closure conversion - a quick revisit Closure conversion to C

@ Closure conversion - converting higher order functions to first

order (has an environment that maps variables to values). @ Naive translation is problematic.
Trans'ating Closures to C. typedef int (=% fp)) s // function pointer
@ (define f (lambda (x) int g O Ao . . .
(let (g (lambda () %)) g))) return x ; // Oops: which x is this?
}
(set! a (f 10)) fp f(int x) {
(a) ? return g ;

@ Value should be 10. }

@ How to translate it to C?

V.Krishna Nandivada (IIT Madras) CS6848 29/33 V.Krishna Nandivada (IIT Madras) CS6848 30/33

Closure conversion to C Closure conversion - revisited

@ Create an environment and pass free variables.
@ At each application site - remmeber that it is a closure.

@ No nested functions in C. So use globals. typedef int (xfp) () ; // function pointer
typedef int (xfp) () ; // function pointer int g(e) {
int globalX; return e["x"];
int g () A }
return globalX; (fp, env) f(int x) {
} return (g, {"x" = x}) ;
fp f£(int x) { }
globalX = x ; (tlFp, t2Env) = £(10);
return g ; ®@a = f(10) — al[0] = tlFp;
} all]l] = t2Env;
(t3Fp, t4Env) = £(20);
2 _a_ b= . . .
@ Any problem? — a = f(10); b = f(20); a(); b(); ob = £(20) = bL0] - +3Fp;

b[l] = t4Env;
@ a() — al0](alll])
@ b() — bl0] (b[l])

V.Krishna Nandivada (lIT Madras) CS6848 32/33

V.Krishna Nandivada (IIT Madras) CS6848 31/33

@ Flow analysis using 0-CFA and some simple improvements.
@ Closure conversion.

What you should be able to answer? (necessary not sufficient)
@ Given a set of flow constraints solve them to get the flow sets.
@ Translate closures in Scheme to C.

Reminder
@ Assignment due in 3 days.

V.Krishna Nandivada (IIT Madras) CS6848 33/33

