
CS6848 - Principles of Programming Languages
Exceptions

V. Krishna Nandivada

IIT Madras

*

Recap

Flow analysis using 0-CFA and some simple improvements.
Closure conversion (revisit).

What you should be able to answer? (necessary not sufficient)
Given a set of flow constraints solve them to get the flow sets.
Translate closures in Scheme to C.

Reminder
Assignment due in 3 days.
Four more classes to go (Last instructional day for CS6848 - 18th
April)
Final exam on 28th May
Portion - Post mid-term.

V.Krishna Nandivada (IIT Madras) CS6848 2 / 1

*

Exceptions

Real-world programming – a function needs to signal to its caller
(or some one in the call chain) that it is not able perform some
task. Examples:

Division by zero, array out of bounds, out of memory, etc.
One option is to return a special value. Issue:

Every caller has to now look for the special value explicitly.
Option 2: Automatic transfer of program control. Multiple variants
exist:

Abort the program when an exception occurs.
“throw” the exception – trap + recover (aka “caught”)
Pass programmer specified data along with the exception –
Programmer defined exceptions.

V.Krishna Nandivada (IIT Madras) CS6848 3 / 1

*

Extending simply typed lambda calculus with errors

Errors - abort the program.
Recall: Extending the language requires - extension to syntax,
values, type rules and operational semantics.
Expressions

e ::= · · · |error

Values – we don’t add any new values (discussion to follow)
Types. What should be the type of error?Do we need any
special types?

V.Krishna Nandivada (IIT Madras) CS6848 4 / 1

*

Type rules

There is no restriction on the return type of a function.
Any function can throw an error.
So for each function s→ t, we want the type of error : t
For the program to typecheck:

If we allow subtyping: then error :⊥.
If we allow polymorphism: then error : ∀X.X

V.Krishna Nandivada (IIT Madras) CS6848 5 / 1

*

Operational semantics

We need rules for only application.

error e→ error AppError1
v error→ error AppError2

Summary: abandon the work if there is an error (during the
evaluation of the argument or the function).
Q: Can we get a situation where we get: error error ?

NO. Because, error is not a value.

Also note, the evaluation order.

V.Krishna Nandivada (IIT Madras) CS6848 6 / 1

*

Modification to type soundness

Recall: Progress lemma: If e is a closed expression, and A ` e : t
then either e is a value or error, or there exists e′ such that
e→V e′.

V.Krishna Nandivada (IIT Madras) CS6848 7 / 1

*

Exceptions. Variant 2

Let us “catch” the exception and do something relevant.

Extension to syntax

e ::= · · · |try e with e

New typing rules:

Type-Try-With
A ` e1 : t A ` e2 : t

A ` try e1 with e2 : t

V.Krishna Nandivada (IIT Madras) CS6848 8 / 1

*

Operational semantics

Evaluating expressions that don’t result in error.

try v with e→ v

Evaluating an expression that evaluates to an error.

try error with e→ e

Step
e1→ e′1

try e1 with e2→ try e′1 with e2

V.Krishna Nandivada (IIT Madras) CS6848 9 / 1

*

Exceptions variant 3 - User defined

The program point where the exception is thrown may want to
pass information.
The handler may use this information - to take relevant action
(such as recovery, reversal, display some relevant message, and
so on).

Extension to syntax

e ::= · · · |throw e |try e with e

New typing rules:

Type-throw
A ` e1 : t

A ` throw e1 : t

Type-Try-With
A ` e1 : t A ` e2 : t1→ t

A ` try e1 with e2 : t

V.Krishna Nandivada (IIT Madras) CS6848 10 / 1

*

Operational semantics

Application of a throw.

(throw v)e→ throw v

throw as an argument.

v1(throw v2)→ throw v2

throw of throw
throw (throw v)→ throwv

Step throw.
e1→ e2

throw e1→ throw e2

V.Krishna Nandivada (IIT Madras) CS6848 11 / 1

*

Operational semantics (contd)

try with no exception.

try v with e→ v

Evaluating an expression that throws an expression

try throw v with e→ ev

Step try.
e1→ e′1

try e1 with e2→ try e′1 with e2

V.Krishna Nandivada (IIT Madras) CS6848 12 / 1

*

Recap

Exceptions

Reason about programs with exceptions.
Type rules and operational semantics for languaes with
exceptions.

V.Krishna Nandivada (IIT Madras) CS6848 13 / 1

