CS6848 - Principles of Programming Languages

Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

- Type rules.
- Simply typed lambda calculus.
- Type soundness proof.

Recursive types

Recursive types

- A data type for values that may contain other values of the same type.
- Also called inductive data types.
- Compared to simple types that are finite, recursive types are not.

```
interface I {
    void sl(boolean a);
    int m1(J a);
}
interface J {
    boolean m2(I b);
}
```

- Infinite graph.
- Can be viewed as directed graphs.
- Useful for defining dynamic data structures such as Lists, Trees.
- Size can grow in response to runtime requirements (user input); compare that to static arrays.

Grammar for recursive types

- We will extend the grammar of our simple types.
-

$$
t::=t_{1} \rightarrow t_{2}|\operatorname{lnt}| \alpha \mid \mu \alpha .\left(t_{1} \rightarrow t_{2}\right)
$$

where

- α is a variable that ranges over types.
- $\mu \alpha . t$ - is a recursive type that allows unfolding.

$$
\mu \alpha . t=t[(\mu \alpha . t) / \alpha]
$$

- Example: Say $u=\mu \alpha$. $(\alpha \rightarrow$ Int $)$. Now unfold
- Once: $u=u \rightarrow \mathrm{Int}$
- Twice: $u=(u \rightarrow$ Int $) \rightarrow$ Int
- ...
- Infinitely: Infinite tree - the type of u.
- A type derived from this grammar will have finite number of distinct subtrees - regular trees.
- Any regular tree can be written as a finite expression using $\mu \mathrm{s}$.

Type derivation, example II

- $Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$
- Y-combinator is also called fixed point combinator or paradoxical combinator.
- When applied to any function g, it produces a fixed point of g.
- That is $Y(E)=E(Y(E))$
-

$$
\begin{array}{rll}
Y(E) & =\beta \quad(\lambda x \cdot E(x x))(\lambda x \cdot E(x x)) \\
& =\beta & E((\lambda x \cdot E(x x))(\lambda x \cdot E(x x))) \\
& =\beta & E(Y(E))
\end{array}
$$

Useless assignment: For the factorial function
$F=\lambda f . \lambda n . i f(z e r o ? n) 1($ mult n (f pred $n)$), show that
(YF) n computes factorial n.
Use the definition of factorial function:
Fact $\mathrm{n}=$ if (zero? n$) 1$ (mult $\mathrm{n}($ Fact (pred n$))$) Ueless assignment II:
Write the Y combinator in Scheme.
v.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Type derivation of Y-combinator

Equality of types

- Y combinator cannot be typed with simple types.
- Use a type $u=\mu \alpha .(\alpha \rightarrow$ Int $)$.
-

$$
\frac{\phi[f: \text { Int } \rightarrow \text { Int }] \vdash(\lambda x . f(x x))(\lambda x . f(x x)): \text { Int }}{\phi \vdash \lambda f .(\lambda x . f(x x))(\lambda x . f(x x)):(\text { Int } \rightarrow \text { Int }) \rightarrow \text { Int })}
$$

- If we can get the type of $\lambda x . f(x x)$ to be type u then using $u=u \rightarrow$ Int like above, we can get the premise.
- Goal $\phi[f:$ Int \rightarrow Int $] \vdash \lambda x . f(x x): u$
-

$$
\frac{\phi[f: \operatorname{Int} \rightarrow \operatorname{int}][x: u] \vdash f: \operatorname{Int} \rightarrow \operatorname{Int} \quad \phi[x: u] \vdash x x: \operatorname{Int}}{\frac{\phi[f: \operatorname{Int} \rightarrow \operatorname{Int}][x: u] \vdash f(x x): \operatorname{Int}}{\phi[f: \operatorname{Int} \rightarrow \operatorname{Int}] \vdash \lambda x: u \cdot f(x x): u}}
$$

- Not all terms can be typed with recursive types either: $\lambda x . x(\operatorname{succ} x)$
- Type soundness theorem can be proved for recursive types as well.

Representation of types - as functions

- Denote an alphabet Σ that contains all the labels and paths of the type tree.
- We can represent such a tree by a function that maps paths to labels - called a term.
- Say we denote left by 0 and right by 1 , for the types discussed before: path $\in\{0,1\}^{*}$.
- And the labels are from the set $\Sigma=\{\operatorname{Int}, \rightarrow\}$.
- A term t over Σ is a partial function

$$
t:\{0,1\}^{*} \rightarrow \Sigma
$$

- The domain $D(t)$ must satisfy:
- $D(t)$ is non-empty and is prefix-closed.
- if $t(\alpha)=\rightarrow$ then $\alpha 0, \alpha 1 \in D(t)$.
- A term t is regular if it has finitely many distinct subterms.

Types as automata

If t is a term then following are equivalent:

- t is regular.
- t is representable by a term automata
- t is describable by a type expression involving μ.

Subtyping

- We want to denote that some types are more informative than other.
- We say $t_{1} \leq t_{2}$ to indicate that every value described by t_{1} is also describled by t_{2}.
- That is, if you have a function that needs a value of type t_{2}, you can give safely pass a value of type t_{1}.
- t_{1} is a subtype of t_{2} or t_{2} is a super type of t_{1}.
- Example: C++ and Java.
-

$$
\text { subsumption } \frac{A \vdash e: t \quad t \leq t^{\prime}}{A \vdash e: t^{\prime}}
$$

\bullet

$$
(T o p) t \leq \top
$$

- T= Java Object class.
- \perp = Subtype of all the classes - undefined type.
- (lambda (x) (zero? x) 4 (error \# mesg))
- $t=\operatorname{lnt}|\perp| T|t \rightarrow t| v \mid \mu v .(t \rightarrow t)$
- Roberto M Amadio. and Luca Cardelli. Subtyping recursive types. In ACM Symposium on Principles of Programming Languages, 1990. - self reading.
- Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive sub-typing. In ACM Symposium on Principles of Programming Languages, 1993.
- The partiy of $\alpha \in\{0,1\}^{*}$ is even - if α has even number of zeros.
- The partiy of $\alpha \in\{0,1\}^{*}$ is odd - if α has odd number of zeros.
- Denote parity of α by $\pi \alpha=0$ if even, 1 if odd.
- We will definte two orders.
- co-variant: $\perp \leq_{0} \rightarrow \leq_{0} T$
- contra-variant: $T \leq_{1} \rightarrow \leq_{1} \perp$

Type ordering

- For two types s, and t, we define $s \leq t$, iff $s(\alpha) \leq_{\pi \alpha} t(\alpha)$ for all $\alpha \in D(s) \cap D(t)$.

- A counter example to $s \leq t: \exists$ a path $\alpha \in D(s) \cap D(t)$, where $s(\alpha) \not Z_{\pi \alpha} t(\alpha)$
- Two trees are ordered if no common path detects a counter example.

Recap product autoamta

- A prduct automata represents interaction between two finite state machines.
The product of p_{1}

If we start from A, C and after the word w we are in the state A,D we know that w contains an even number of $p_{0} \mathrm{~s}$ and odd number of $p_{1} \mathrm{~S}$

Coquand @ University of Gothenburg

- Effect of varying the final state. Union, intersection, or more.

Decision procedure for subtyping

Input: Two types s, t.

Output: If $s \leq t$.

(1) Construct the term automata for s and t.
(2) Construct the product automaton $s \times t$. Size $=$?
(3) Decide, using depth first search, if the product automaton accepts the nonempty set.

- Does there exist a path from the start state to some final state?
(9) If yes, then $s \not \leq t$. Else $s \leq t$.

Compute the time complexity - $O\left(n^{2}\right)$

Modified product automata

- Given two term automata M and N, we will construct a product automata
$A=\left(Q^{A}, \Sigma, q_{0}^{A}, \delta^{A}, F^{A}\right)$
where
- $Q^{A}=Q^{M} \times Q^{N} \times\{0,1\}$
- $\Sigma=\{0,1\}$
- $q_{0}^{A}=\left(q_{0}^{M}, q_{0}^{N}, 0\right)$ - start state of A.
- $\delta^{A}: Q^{A} \times \Sigma \rightarrow Q^{A}$.

For $b, i \in \Sigma, p \in Q^{M}$, and $q \in Q^{N}$, we have $\delta^{A}((p, q, b), i)=\left(\delta^{M}(p, i), \delta^{N}(q, i), b \oplus \pi i\right)$
(\oplus = xor)

- Final states
- Recall: $s \not t$ iff
$\left\{\alpha \in D(s) \cap D(t) \mid s(\alpha) \not \mathbb{Z}_{\pi \alpha} t(\alpha)\right\}$
- Goal: create an automata, where final states are denoted by states that will lead to $\not \subset$.

$$
F^{A}=\left\{(p, q, b) \mid l^{M}(p) \not \unrhd_{b} l^{N}(q)\right\}-l \text { gives the label of that node. }
$$

- $(\perp \rightarrow T)$ and $(T \rightarrow \perp) \not \subset$
- $((\perp \rightarrow \top) \rightarrow(\perp)$ and $((\top \rightarrow \perp) \rightarrow(\perp) \leq$

Example 1

- $\mu \nu .(v \rightarrow \perp)$ and $\mu u .(u \rightarrow \top)$

Term automata

Product automata

- Unreachable states
$\left(\left(\rightarrow_{V}, \top, 1\right)\right),\left(\rightarrow_{V}, \top, 0\right),\left(\top, \rightarrow_{V}, 1\right),\left(\left(\top, \rightarrow_{V}, 0\right)\right),(\rightarrow u, \perp, 1),((\rightarrow u, \perp, 0))$,
$((\perp, \rightarrow u, 1)),(\perp, \rightarrow u, 0)$
- $\mu v .(v \rightarrow \perp) \not \leq \mu u .(u \rightarrow T)$

First order unification

- Goal: To do type inference
- Given: A set of variables and literals and their possible types. - Remember: type = constraint.
- Target: Does the given set of constraints have a solution? And if so, what is the most general solution?
- Unification can be done in linear time: M. S. Paterson and M. N. Wegman, Linear Unification, Journal of Computer and System Sciences, 16:158167, 1978.
- We will instead present a simpler to understand, complex to run algorithm.
- $\mu u .((u \rightarrow u) \rightarrow \perp)$ and $\mu v .((v \rightarrow \perp) \rightarrow \top)$
- Term automata

$$
\mu u .((u \rightarrow u) \rightarrow \perp)
$$

- Product automata - derive. Ans: \leq.

Definitions

- We will stick to simple type experssions generated from the grammar:

$$
t::=t \rightarrow t|\operatorname{lnt}| \alpha
$$

where α ranges over type variables.

- Example:

$$
\begin{gathered}
((\text { Int } \rightarrow \alpha) \rightarrow \beta)[\alpha:=\operatorname{lnt}, \beta:=(\text { Int } \rightarrow \text { Int })]=(\text { Int } \rightarrow \text { Int }) \rightarrow(\text { Int } \rightarrow \text { Int }) \\
\\
\quad((\operatorname{Int} \rightarrow \alpha) \rightarrow \gamma)[\alpha:=\operatorname{Int}, \beta:=(\text { Int } \rightarrow \alpha)]=(\text { Int } \rightarrow \text { Int }) \rightarrow \gamma
\end{gathered}
$$

- We say given a set of type equations, we say a substituion σ is an unifier or solution if for each of the equation of the form $s=t, s \sigma=t \sigma$.
- Substituions can be composed:

$$
t(\sigma o \theta)=(t \sigma) \theta
$$

- A substituion σ is called a most general solution of an equation set provided tha for any other solution θ, there exists a substituon τ such that $\theta=\sigma o \tau$

Unification algorithm

```
Examples
```

Input: G: set of type equations (derived from a given program).
Output: Unification σ
(1) failure $=$ false; $\sigma=\{ \}$.
(2) while $G \neq \phi$ and \neg failure do
(0) Choose and remove an equation e from G. Say e σ is $(s=t)$.
(2) If s and t are variables, or s and t are both Int then continue.
(3) If $s=s_{1} \rightarrow s_{2}$ and $t=t_{1} \rightarrow t_{2}$, then $G=G \cup\left\{s_{1}=t_{1}, s_{2}=t_{2}\right\}$.
(- If ($s=\operatorname{lnt}$ and t is an arrow type) or vice versa then failure $=$ true.
(- If s is a variable that does not occur in t, then $\sigma=\sigma o[s:=t]$.
(- If t is a variable that does not occur in s, then $\sigma=\sigma o[t:=s]$.
(0) If $s \neq t$ and either s is a variable that occurs in t or vice versa then failure $=$ true.
(3) end-while.
(9) if (failure = true) then output "Does not type check". Else o/p σ.

Q: Composability helps?
Q: Cost?

$$
\begin{aligned}
& \alpha=\beta \rightarrow \mathrm{Int} \\
& \beta=\mathrm{Int} \rightarrow \mathrm{Int} \\
& \alpha=\mathrm{Int} \rightarrow \beta \\
& \beta=\alpha \rightarrow \mathrm{Int}
\end{aligned}
$$

- Structural subtyping
- Unification algorithm

