CS6848 - Principles of Programming Languages

Principles of Programming Languages

@ Extensions to simply typed lambda calculus.

V. Krishna Nandivada @ Pairs, Tuples and records
IIT Madras

Parametric Polymorphism - System F System F

@ Definition of System F - an extension of simply typed lambda
calculus.

Lambda calculus recall

@ Lambda abstraction is used to abstract terms out of terms.
@ Application is used to supply values for the abstract types.

@ System F discovered by Jean-Yves Girard (1972)

@ Polymorphic lambda-calculus by John Reynolds (1974)
@ Also called second-order lambda-calculus - allows quantification

over types, along with terms. System F

@ A mechanism for abstracting types of out terms and fill them later.
@ A new form of abstraction:

@ AX.e— parameter is a type.
e Application — ¢[f]
o called type abstractions and type applications (or instantiation).

&

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/13 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/13



o .
@ Expressions:
AX.e)ti]| = [x—t
(AX.e)ln] = [x 1le e=-|AX.ele[f]
SETES @ Values
vi=--|AX.e
o )
id=2AXAx:Xx @ Types
to=---|VX.t
Type of id : VX.X — X e typing context:
applyTwice = AXAf : X — X.Aa: Xf (f a) Au=9lAx 1A, X
Type of applyTwice : VX.(X - X) - X — X

Typing ruies

° °
t lication 1 @ e type abstraction AXFe:h
e application 1 — y i
ype app erfn] — €[] AF AX.e VX0,
[+ o
.y L AF el VX.Z]
type appliation 2 — (AX.e1)[t;] — [X — t1]e) type application

At eit]: [X— nln

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7/13 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/13



Polymorphic st

@ id=AXAx:Xx

id :VXX—X List of uniform members

type application: id [Int ] : Int — Int 0 il & RRGIL = X
@ cons: VX.X — List X — List X
value application: id[Int] 0=0: Int @ isnil?: VX.List X — bool
@ applyTwice = AXAf : X — X.Aa: Xf (f a) @ head: VX.List X — X
@ tail: VX.List X — List X )
ApplyTwicelnts = applyTwice [Int |
applyTwice[Int |(Ax : Int .succ(succx))3
=7
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/13 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/13

(Recall) Type inference algorithm (Hindley-Milner)

Input: G: set of type equations (derived from a given program).
Output: Unification o

@ failure = false; 0 ={}.

@ while G # ¢ and — failure do

Choose and remove an equation e from G. Say ec is (s =1).

If s and r are variables, or s and r are both Int then continue.
lfs=s; >s,andt=1 — 1, then G=GU{s1 =11,50 =12}

If (s =Int and ¢ is an arrow type) or vice versa then failure = t rue.
If s is a variable that does not occur in ¢, then 6 = o o [s :=1].

If 7 is a variable that does not occur in s, then 6 =6 o [t :=35s].

If s £t and either s is a variable that occurs in ¢ or vice versa then
failure = true.

© end-while.
Q if (failure = true) then output “Does not type check”. Else o/p .

@ Recall: Simply typed lambda calculus - we cannot type Ax.x x.
@ How about in System F?
@ selfApp : (VX.X — X) — (VX.X — X)

000000

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/13 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/13



‘Ocours” check

® a=AxAyx @ Ensures that we get finite types.
@ b=Af. (f3) @ If we allow recursive types - the occurs check can be omitted.
@ ¢ = Ax. (+(head x) 3) e Sayin (s=1),s=Aandr=A — B. Resulting type?
?
° d:lf ((f 3),(fly y)) ] Example term*

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/13 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/13



