1.

Midterm Exam
CS6848

07-Mar-2012

[4] Write the interpreter code for dynamic assignments. Example of dy-
namic assignment:

let x = 4
in let p = lambda (y) (+ x y)
in (+ (x:= 7 during (p 1))
(p 2))

During the invocation of (p 1), the value of x is set to 7, and is reverted
back to 4 for the evaluation of (p 2); giving the answer (8 + 6 = 14).

[2] In the class we have studied small step semantics of simply typed
lambda calculus assuming eager evaluation. Write small step semantics
for simply typed lambda calculus assuming lazy evaluation.

[4] Prove that the following two commands are axiomatically equivalent.
1: do c while (b)

2: c;
if (o) {c};
while (b) {c}

[2] Derive the universal pre-condition and universal post conditions. [Hint:
use the consequence proof rule.]

[8] Prove the type soundness for the simply typed lambda calculus ex-
tended with pairs.

e An expression is derived from the grammar

e € Expression
e = c|(e1, ez)le.1]e.2
c := IntegerConstant

e A value is given by: v ::= ¢|(v1,v9)
e Types: t == Int |t X o

Small step operational semantics The type rules are given below:

using —y .
—vC Ezxpression X Expression
AF612t1 AFBQStQ

i) 7 Pai
(1) (Paz'r B1)(v1,v2).1 =y v1 (7) alr AF (e1,e2) it X ta
(2) (Pair $2)(v1,v2).2 =y v2 Al ety Xt
Proj 1
(3) Proj 1% (8) Proj AFel:t
el —e'.l Al e:t; Xt
Proj 2
e2 —ye.2 (10) Fec:lInt
€1 —v 6/1
5 Eval 1
() " (61762) -V (6,1762)
el
(6) Eval 2 Lve

(Uu 62) —V (Ula 6'2)
Definitions.

e An expression e is stuck if it is not a value and there is no expression
e’ such that e =y €.

e An expression e goes wrong if Je’ : e —7, ¢’ and €’ is stuck.

e An expression is well typed iff there exists a type t such that e : ¢t.

Prove that a well typed expression cannot go wrong.

Bonus [2] Prove that the following type inference algorithm terminates.

Input: G: set of type equations (derived from a given program).
Output: Unification o

(a) failure = false; o = {}.
(b) while G # ¢ and — failure do
i. Choose and remove an equation e from G. Say eo is (s = t).
ii. If s and ¢ are variables, or s and ¢ are both Int then continue.
ii. If s = S1 — S9 andtztl —>t2, then G = GU{Sl :tl,SQ :tQ}.
iv. If (s = Int and ¢ is an arrow type) or vice versa then failure =
true.
v. If s is a variable that does not occur in ¢, then ¢ = o o [s :={].
vi. If ¢ is a variable that does not occur in s, then o =0 o [t := 3.
vii. If s # t and either s is a variable that occurs in ¢ or vice versa
then failure = true.
(c) end-while.
(d) if (failure = true) then output “Does not type check”. Else o/p o.

