
Midterm Exam

CS6848

07-Mar-2012

1. [4] Write the interpreter code for dynamic assignments. Example of dy-
namic assignment:

let x = 4

in let p = lambda (y) (+ x y)

in (+ (x:= 7 during (p 1))

(p 2))

During the invocation of (p 1), the value of x is set to 7, and is reverted
back to 4 for the evaluation of (p 2); giving the answer (8 + 6 = 14).

2. [2] In the class we have studied small step semantics of simply typed
lambda calculus assuming eager evaluation. Write small step semantics
for simply typed lambda calculus assuming lazy evaluation.

3. [4] Prove that the following two commands are axiomatically equivalent.

1: do c while (b)

2: c;

if (b) {c};

while (b) {c}

4. [2] Derive the universal pre-condition and universal post conditions. [Hint:
use the consequence proof rule.]

5. [8] Prove the type soundness for the simply typed lambda calculus ex-
tended with pairs.

• An expression is derived from the grammar

e ∈ Expression
e ::= c|(e1, e2)|e.1|e.2
c ::= IntegerConstant

1

• A value is given by: v ::= c|(v1, v2)

• Types: t ::= Int |t1 × t2

Small step operational semantics
using →V .
→V⊆ Expression× Expression

(Pair β1)(v1, v2).1→V v1(1)

(Pair β2)(v1, v2).2→V v2(2)

Proj 1
e→V e′

e.1→ e′.1
(3)

Proj 2
e→V e′

e.2→V e′.2
(4)

Eval 1
e1 →V e′1

(e1, e2)→V (e′1, e2)
(5)

Eval 2
e2 →V e′2

(v1, e2)→V (v1, e
′
2)

(6)

The type rules are given below:

Pair
A ` e1 : t1 A ` e2 : t2
A ` (e1, e2) : t1 × t2

(7)

Proj 1
A ` e : t1 × t2
A ` e.1 : t1

(8)

Proj 2
A ` e : t1 × t2
A ` e.2 : t2

(9)

` c : Int(10)

Definitions.

• An expression e is stuck if it is not a value and there is no expression
e′ such that e→V e′.

• An expression e goes wrong if ∃e′ : e→∗V e′ and e′ is stuck.

• An expression is well typed iff there exists a type t such that ` e : t.

Prove that a well typed expression cannot go wrong.

6. Bonus [2] Prove that the following type inference algorithm terminates.

Input: G: set of type equations (derived from a given program).
Output: Unification σ

(a) failure = false; σ = {}.
(b) while G 6= φ and ¬ failure do

i. Choose and remove an equation e from G. Say eσ is (s = t).

ii. If s and t are variables, or s and t are both Int then continue.

iii. If s = s1 → s2 and t = t1 → t2, then G = G∪ {s1 = t1, s2 = t2}.
iv. If (s = Int and t is an arrow type) or vice versa then failure =

true.

v. If s is a variable that does not occur in t, then σ = σ o [s := t].

vi. If t is a variable that does not occur in s, then σ = σ o [t := s].

vii. If s 6= t and either s is a variable that occurs in t or vice versa
then failure = true.

(c) end-while.

(d) if (failure = true) then output “Does not type check”. Else o/p σ.

2

