Midterm Exam
 CS6848

07-Mar-2012

1. [4] Write the interpreter code for dynamic assignments. Example of dynamic assignment:
```
let x = 4
in let p = lambda (y) (+ x y)
    in (+ (x:= 7 during (p 1))
            (p 2))
```

During the invocation of (p 1), the value of x is set to 7 , and is reverted back to 4 for the evaluation of (p 2); giving the answer $(8+6=14)$.
2. [2] In the class we have studied small step semantics of simply typed lambda calculus assuming eager evaluation. Write small step semantics for simply typed lambda calculus assuming lazy evaluation.
3. [4] Prove that the following two commands are axiomatically equivalent.

1: do c while (b)
2: c;
if (b) $\{c\}$;
while (b) \{c\}
4. [2] Derive the universal pre-condition and universal post conditions. [Hint: use the consequence proof rule.]
5. [8] Prove the type soundness for the simply typed lambda calculus extended with pairs.

- An expression is derived from the grammar

$$
\begin{aligned}
& e \in \text { Expression } \\
& e::=c\left|\left(e_{1}, e_{2}\right)\right| e .1 \mid e .2 \\
& c::=\text { IntegerConstant }
\end{aligned}
$$

- A value is given by: $v::=c \mid\left(v_{1}, v_{2}\right)$
- Types: $t::=\operatorname{Int} \mid t_{1} \times t_{2}$

Small step operational semantics using \rightarrow_{V}.
$\rightarrow_{V} \subseteq$ Expression \times Expression
(1) $\quad($ Pair $\beta 1)\left(v_{1}, v_{2}\right) \cdot 1 \rightarrow_{V} v_{1}$
(2) $\quad($ Pair $\beta 2)\left(v_{1}, v_{2}\right) \cdot 2 \rightarrow_{V} v_{2}$
(5) \quad Eval $1 \frac{e_{1} \rightarrow_{V} e_{1}^{\prime}}{\left(e_{1}, e_{2}\right) \rightarrow_{V}\left(e_{1}^{\prime}, e_{2}\right)}$
(6) Eval $2 \frac{e_{2} \rightarrow_{V} e_{2}^{\prime}}{\left(v_{1}, e_{2}\right) \rightarrow_{V}\left(v_{1}, e_{2}^{\prime}\right)}$

Definitions.

- An expression e is stuck if it is not a value and there is no expression e^{\prime} such that $e \rightarrow_{V} e^{\prime}$.
- An expression e goes wrong if $\exists e^{\prime}: e \rightarrow_{V}^{*} e^{\prime}$ and e^{\prime} is stuck.
- An expression is well typed iff there exists a type t such that $\vdash e: t$.

Prove that a well typed expression cannot go wrong.
6. Bonus [2] Prove that the following type inference algorithm terminates.

Input: G: set of type equations (derived from a given program).
Output: Unification σ
(a) failure $=$ false; $\sigma=\{ \}$.
(b) while $G \neq \phi$ and \neg failure do
i. Choose and remove an equation e from G. Say $e \sigma$ is $(s=t)$.
ii. If s and t are variables, or s and t are both Int then continue.
iii. If $s=s_{1} \rightarrow s_{2}$ and $t=t_{1} \rightarrow t_{2}$, then $G=G \cup\left\{s_{1}=t_{1}, s_{2}=t_{2}\right\}$.
iv. If ($s=\operatorname{lnt}$ and t is an arrow type) or vice versa then failure $=$ true.
v . If s is a variable that does not occur in t, then $\sigma=\sigma o[s:=t]$.
vi. If t is a variable that does not occur in s, then $\sigma=\sigma o[t:=s]$.
vii. If $s \neq t$ and either s is a variable that occurs in t or vice versa then failure $=$ true .
(c) end-while.
(d) if (failure $=$ true) then output "Does not type check". Else o/p σ.

