
Final Exam

CS3300
Maximum marks = 50, Time: 3hrs

27-Nov-2012

1. [10] Control flow
For the following code, draw the control flow graph; mark the basic blocks
and extended basic blocks. For the first statement in each of the basic blocks,
compute the dominator and post-dominator information.

c = a + b

d = c

e = d * d

L1: f = a + c

g = e

a = g + d

if (a < c) {

h = g + 1

L2: b = g * a

if (h < f) goto L1:

} else {

f = d - g

if (f > a) goto L2

else c = 2

}

2. [10] Register Allocation
Compute the liveness information, draw the interference graph, and do register
allocation using Kempe’s heuristic, assuming four registers.

entry

a = 2
b = 3
d = c
e = a
g = c + 1

a < d

b = b + 1
d = 2 * d

b < 10

d = d + 1
f = a + b
g = e + g

print (b, d, e, g)

exit

Y N

N

Y

1



3. [10] Code Generation
Write the tree patterns for the following instructions with their usual meaning:

instruction form

add ri = rj + rk
mul ri = rj ∗ rk
addi ri = rj + c
load ri = M [rj + c]
store M [rj + c] = ri
MemMove M [ri] = M [rj ]

Draw the intermediate-code tree for the assignment statement x = a[i+1]. As-
sume that, all of the variables are located on stack. Generate machine code
using the maximal munch method. Argue if your generated code is optimal or
optimum. State any assumptions you make.

4. [10] Machine independent Optimizations
Optimize the following code in a step by step manner. At each step, indicate
the optimization applied and the resulting code.
void foo(){

q = 2;

c = q;

b = c + 3;

for (i=0; i < 2 * m; ++i) {

for (j=0; j < 4 * m; ++j) {

y = T[i] * b;

S[i, j] = U[i, j] + V[i, j] * y + c;

goto L2;

S[i, j] = q + T[i] * c;

L2: U[i, j] = y - T[i] * c;

V[i, j] = y - T[i] / c;

}

}

}

5. [10] Machine dependent Optimizations
Optimize the following snippet of the assembly code and generate optimized
code in a step by step manner. At each step, indicate the optimization applied
and the resulting code. All the registers are live at the end of the code. State
all the assumptions that you make.

lw r2 4(r1)

add r6 r2 1

sub r5 r2 r6

lw r3 8(r1)

add r4 r2 r3

sw r3 8(r1)

j L1

nop

nop

add r2 r4 r3

sub r2 r2 1

L1: nop

sw r2 4(r1)

2


