Academic Formalities

CS3300 - Language Translators

@ Written assignments = 10 (Aug) + 10 (Oct) marks.

@ Midterm = 40 marks, Final = 40 marks.
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.

Basic Blocks and CFG

V. Krishna Nandivada

IIT Madras
TAs: Praveen:cs12d013@smail.
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 2/28
Code generation and Optimization Challenges in the back end
character stream o The |npUt tO the baCkel’]d (What'?)
— 11 : @ The target program — instruction set, constraints, relocatable or
exical Analyzer _ . K .
token giream ® Front-end: _ _ _ not (adv/disadv?), machine code or assembly?
1 o Tells us the input program is syntactically @ Instruction selection (undecidable): maps groups of IR instructions
{ —] correct. o to one or more machine instructions. Why not say each IR
o o Semantic analysis gives some guarantees instruction maps to one more more machine level instructions?
| Semantic Analyze] about semantic correctness. e Easy, if we don’t care about the efficiency.
syt e o Generates IR. e Choices may be involved (add / inc); may involve understanding of
Intermediate Code Generator @ Back-end the context in which the instruction appears.
intermediate r*epf“rsenf‘dﬁ‘m Py One or more phases Of Code generation o Reg|ster A||Ocatlon (N P'Complete) Intermedlate COde haS
[| e Zero or more passes of code optimization temporaries. Need to translate them to registers (fastest storage).
ntermaedliate toprecentation e Requirement 1: translated program must o Finite number of registers. _ _
TTGJ—ﬁ preserve semantics of the input program. o If canngt allocate on registers, store in the memory — will be
P Ta—. o Requirement 2: translated program must be expensive. . . . _
i of “high” quality (?) - undecidable. e Sub problems: R_egister allocation, register assignment, spill
\ Code Optimirer 1 o Requirement 3: Run “efficiently” (?) location, coalescing. All NP-complete.

T
target-machine code

@ Evaluation order: Order of evaluation of instructions may impaqf
the code efficiency (e.g., distance between load and use).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 3/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 4/28

Control flow analysis Basic blocks

source
code

tokens

Scanner Parser

A graph representation of intermediate code.
Table

l syntactic structure

e Basic block properties

RuRnLe IR | Optimizer — T ceneigior @ The flow of control can only enter the basic block through the first
L | | instruction in the block.
Pedse” @ No jumps into the middle of the block.

@ Control leaves the block without halting / branching (except may

o Cod timizati ires that the compiler has a global
0d® oM Zaton TeqUIres tha P g be the last instruction of the block).

“understanding” of how programs use the available resources.
@ |t has to understand how the control flows (control-flow analysis) in

the program and how the data is manipulated (data-flow analysis) The basic blocks become the nodes of a flow graph, whose edges
@ Control-flow analysis: flow of control within each procedure. indicate which blocks can follow which other blocks.
@ Data-flow analysis: understanding how the data is manipulateddfi™

the program.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 5/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 6/28

Example -flow chart and controkflow

unsigned int fib(m)

unsigned int m;

1
1 receive m (val)
{ unsigned int f0 = 0, f1 = 1, £2, i; 2 £0 <« 0 2
if m<=1) A 3 fl « 1 3 [fLe1 |
return m; 4 if m <= 1 goto L3 *
Y 5 i« 2 s !) Y
if i <= 4 B2 B3
else { 6 Ll: if i <= m goto L2 s
for (i = 2; i <= m; i++) { 7 return f2 " EEEE—
£2 = £0 + f1; 8 L2: £2 <« £0 + f1 L . N
0 = f1; 9 0 « f1 { ¢ . “
f1 = £2; 10 f1 « £2 7 * | Y
} 11 i<« i+ 9 |B5| IBsI
return f2; 12 goto L1
} 13 L3: return m 10
e . 11 iei+1
@ receive specifies the reception of a parameter. Why do we want to —

have an explicit receive instruction?To specify the parameter name and
the parameter-passing discipline (by-value, by-result, value-result,
reference); also gives a definition point.unknown and undefined

@ The high-level abstractions might be lost in the IR.

@ Control-flow analysis can expose control structures not obvious in the
high level code. Possible?Loops constructed from i f and goto

@ What is the control structure? Obvious?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 7128 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 8/28

Deep dive - Basic block Example 2

Basic block definition

@ A basic block is a maximal sequence of instructions that can be entered 1) 1 f 1
only at the first of them 2 =1)
. . . , 3) t1=10x*1i
@ The basic block can be exited only from the last of the instructions of the 4) t2 = t1 +
basic block. 5) t3 =8 * t2
@ Implication:First instruction can be a) first instruction of a routine,b) for i=1 10 do 6) t4 =13 - 88
target of a branch, c) instruction following a branch or a return. e 7) alta] = 0.0
First | o lled the lead the BB for j=1 ... 10 do 8 j=j+1
@ First instruction is called the leader of the BB. ali, 3] = 0.0; 9) if j <= 10 goto (3)
How to construct the basic block? 10) i=41i+1
@ Identify all the leaders in the program. for i=1 ... 10 do g) if i <= 10 goto (2)
. oo i =1
@ For each leader: include in its basic block all the instructions from the afi,i] = 1.0; 133 11:5 -1
leader to the next leader (next leader not included) or the end of the 14) t6 = 88 * 5
routine, in sequence. 15) alt6] = 1.0

What about function calls? ; 16) i=1+1

@ In most cases it is not considered as a branch+return. Why? 17) if i <= 10 goto (13)

@ Problem with setjmp() and longjmp()? [self-study]

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 9/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 10/28

Next use information Compute next-use information

@ Goal: when the value of a variable will be used next.

Ll: x = @ We want to compute next use information within a basic block.

@ Many uses : For example: knowing that a variable (assigned a
register) is not used any further, helps reassign the register to
some other variable. Any other?

@ Procedure calls — each procedure call is in a basic block for itself.
Other options?

L2: y = x
Statement 1.2 uses the value of x computed (defined) at L.1.

We also say x is live at 1.2.

@ For each three-address statement x = y + z, what is the next use of
x, y, and z?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 11/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 12/28

Algorithm to compute next use information CFG - Control flow graph

Input: A basic block B of three-address statements. We assume that the
symbol table initially shows all non-temporary variables in B as being
live on exit.

Output: Ateachstatementl. : x = y op zin B, we attach to L the

Definition:
liveness and next-use information of x, vy, and z.) o
begin @ A rooted directed graph G = (N,E), where N is given by the set of
List Ist = Starting at last statement in B and list of instructions obtained by basic blocks + two special BBs: entry and exit.

scan backwards to the beginning of B;

foreach statement.: x = v op z €lsrdo
Attach to statement L the information currently found in the symbol
table regarding the next use and liveness of x, v, and z; @ An edge(s) from entry node to the initial basic block(s?)
In the symbol table, set x to “not Ilve.” and “no next use.’; @ From each final basic blocks (with no successors) to exit BB.
In the symbol table, set y and z to “live” and the next uses of y and z
toL;

end

end

Q: Can we interchange last two steps?

@ And edge connects two basic blocks »; and b, if control can pass
from b; to b,.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 13/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 14/28

CFG continued Extended basic block

Extended basic block
@ a maximal sequence of

@ successor and predecessor — defined in a natural way.

@ A basic block is called branch node - if it has more than one instructions beginning with a

successor. leader that contains no join
@ join node — has more than one predecessor. nodes other than its first node. L -2 ____
@ For each basic block b: @ Has asingleentry,but S

possible multiple exit points.
Succ(b)={neN|Jec Esuchthate=b—n} QL T

@ Some optimizations are more [——3--
Pred(b) = {n S N\Ele cFE SUCh that e=n— b} effective on eXtended baSiC

@ Aregion is a strongly connected subgraph of a flow-graph. blocks.
@ How to build an EBB, for a

given basic block? T/ T T
| i)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 15/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 16/28

r__________
w
~

Basic blocks - what do we get?

@ entry and exit are added for
reasons to be explained later.

@ We can identify loops by using
dominators
@ anode A in the flowgraph dominates
a node B if every path from entry
node to B includes A.
e This relations is antisymmetric,
reflexive, and transitive.

| 85 | | B ||e backedge: An edge in the flow graph,
whose head dominates its tail
(example - edge from B6 to B4.

@ A loop consists of all nodes
dominated by its entry node (head of
the back edge) and having exactlys
one back edge in it.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 17/28

Computing all the dominators

procedure Dom_Comp(N,Pred,r) returns Node —> set of Node

N: in set of Node
Pred: in Node —> set of Node
r: in Node
begin Y B1 N
D, T: set of Node l L
n, p: Node
change := true: boolean B2
Domin: Node —> set of Node
Domin(r) := {r}
for each n € N - {r} do L “
Domin(n) := N Y
od Y
repeat B5 .m
change := false
* for each n € N - {r} do
T :=N
for each p € Pred(n) do
T n= Domin(p)
od Compute the dominators.
D:={n}uT i Domin (i)
if D # Domin(n) then
change := true entry {entry}
Domin(n) := D B1 {entry,B1}
A : B2 {entry,B1,B2}
fi B3 {entry,B1,B3}
od B4 {entry,B1,B3,B4}
until !change B5 {entry,B1,B3,B4,B5}
return Domin B6 {entry,B1,B3,B4,B6}
ond |1 Dom_Comp exit {entry,B1,exit}
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 19/28

Dominators and Postdominators

@ Goal: To determine loops in the flowgraph.
Dominance relation:

@ Node d dominates node i (written d dom i), if every possible execution path from
entry to i includes d.

@ This relations is antisymmetric (a dom b, b dom a = a = b), reflexive (a dom a),
and transitive (if a dom b and b dom c, then a dom c.

@ We write dom(a) to denote the dominators of a.
Immediate dominance:
@ A subrelation of dominance.

@ Fora#g, we say a idom b iff a dom b and there does not exist a node ¢ such that
¢ # a and ¢ # b, for which a dom ¢ and ¢ dom b.

@ We write idom(a) to denote the immediate dominator of @ — note it is unique.
Strict dominance:

@ d sdom i, if d dominates i and d # i.
Post dominance:

@ p pdom i, if every possible execution path from i to exit includes p.

@ Opposite of dominance (i domp), in the reversed CFG (edges reversed, ent
and exit exchanged).
V.Krishna Nandivada (lIT Madras)

CS3300 - Aug 2012 18/28

Identifying loops

@ Back edge: an edge in the flowgraph, whose head dominates its
tail.(Counter example)

Has a loop, but no back edge — hence not a natural loop.
@ Given a back edge m — n, the natural loop of m — n is
@ the subgraph consisting of the set of nodes containing » and all the
nodes from which m can be reached in the flowgraph without
passing through n, and
@ the edge set connecting all the nodes in its node set.
© Node 7 is called the loop header.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 20/28

Algorithm to compute natural loops Approaches to Control flow Analysis

procedure Nat_Loop(m,n,Pred) returns set of Node Two main approaches to control-flow analysis of single routines.
m, n: in Ned .. .
Prod: in Node —> set of Node @ Both start by determining the basic blocks that make up the
begin H
Loop: set of Node routine.
3==°k=ﬂszq“em of Node @ Construct the control-flowgraph.
Py q: ode
Stack =={r1 , First approach:
Loop = {m,n i . .
if m # n then @ Use dominators to discover loops; to be used in later
,, Sreck e) optimizations.
while Stack # [] do)
|1 add predecessors of m that aze 2ot predecesscrs of B ° Sufﬂmgnt for many optimizations (.o.nes that do iterative data-flow
Il to the set of nodes in the loop; since n dominates m, analysis, or ones that work on individual loops only).
Il this only adds nodes in the loop . i
p := Stacki-1 Second approach (interval analysis):
Stack e= -1 .
for each q Pred(p) do @ Analyzes the overall structure of the routine.
if q ¢ Loop then) . . .
Loop U= {q} @ Decomposes the routine into nested regions - called intervals.
Stack e= . . .
o ek @ The resulting nesting structure is called a control tree.
e s @ A sophisticated variety of interval analysis is called structural
return Loop analysis.
end |l Nat_Loop

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 21/28 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 22/28

