
CS3300 - Language Translators
Basic Blocks and CFG

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Written assignments = 10 (Aug) + 10 (Oct) marks.
Midterm = 40 marks, Final = 40 marks.
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.

TAs: Praveen:cs12d013@smail.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 2 / 28

*

Code generation and Optimization

Front-end:
Tells us the input program is syntactically
correct.
Semantic analysis gives some guarantees
about semantic correctness.
Generates IR.

Back-end
One or more phases of code generation
Zero or more passes of code optimization
Requirement 1: translated program must
preserve semantics of the input program.
Requirement 2: translated program must be
of “high” quality (?) - undecidable.
Requirement 3: Run “efficiently” (?)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 3 / 28

*

Challenges in the back end

The input to the backend (What?).
The target program – instruction set, constraints, relocatable or
not (adv/disadv?), machine code or assembly?
Instruction selection (undecidable): maps groups of IR instructions
to one or more machine instructions. Why not say each IR
instruction maps to one more more machine level instructions?

Easy, if we don’t care about the efficiency.
Choices may be involved (add / inc); may involve understanding of
the context in which the instruction appears.

Register Allocation (NP-complete): Intermediate code has
temporaries. Need to translate them to registers (fastest storage).

Finite number of registers.
If cannot allocate on registers, store in the memory – will be
expensive.
Sub problems: Register allocation, register assignment, spill
location, coalescing. All NP-complete.

Evaluation order: Order of evaluation of instructions may impact
the code efficiency (e.g., distance between load and use).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 4 / 28

*

Control flow analysis

code
object

code
source

IRIR

tokens

syntactic structure

Scanner

Routines
Semantic

Parser

Optimizer Code
Generator

Table

Symbol

Code optimization requires that the compiler has a global
“understanding” of how programs use the available resources.
It has to understand how the control flows (control-flow analysis) in
the program and how the data is manipulated (data-flow analysis)
Control-flow analysis: flow of control within each procedure.
Data-flow analysis: understanding how the data is manipulated in
the program.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 5 / 28

*

Basic blocks

A graph representation of intermediate code.

Basic block properties
The flow of control can only enter the basic block through the first
instruction in the block.
No jumps into the middle of the block.
Control leaves the block without halting / branching (except may
be the last instruction of the block).

The basic blocks become the nodes of a flow graph, whose edges
indicate which blocks can follow which other blocks.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 6 / 28

*

Example

receive specifies the reception of a parameter. Why do we want to
have an explicit receive instruction?To specify the parameter name and
the parameter-passing discipline (by-value, by-result, value-result,
reference); also gives a definition point.unknown and undefined

What is the control structure? Obvious?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 7 / 28

*

Example - flow chart and control-flow

The high-level abstractions might be lost in the IR.

Control-flow analysis can expose control structures not obvious in the
high level code. Possible?Loops constructed from if and goto

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 8 / 28

*

Deep dive - Basic block
Basic block definition

A basic block is a maximal sequence of instructions that can be entered
only at the first of them

The basic block can be exited only from the last of the instructions of the
basic block.

Implication:First instruction can be a) first instruction of a routine,b)
target of a branch, c) instruction following a branch or a return.

First instruction is called the leader of the BB.

How to construct the basic block?

Identify all the leaders in the program.

For each leader: include in its basic block all the instructions from the
leader to the next leader (next leader not included) or the end of the
routine, in sequence.

What about function calls?

In most cases it is not considered as a branch+return. Why?

Problem with setjmp() and longjmp()? [self-study]
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 9 / 28

*

Example 2

for i=1 ... 10 do
for j=1 ... 10 do

a[i,j] = 0.0;

for i=1 ... 10 do
a[i,i] = 1.0;

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 10 / 28

*

Next use information

Goal: when the value of a variable will be used next.
L1: x = ...
...
L2: y = x

Statement L2 uses the value of x computed (defined) at L1.

We also say x is live at L2.
For each three-address statement x = y+ z, what is the next use of
x, y, and z?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 11 / 28

*

Compute next-use information

We want to compute next use information within a basic block.
Many uses : For example: knowing that a variable (assigned a
register) is not used any further, helps reassign the register to
some other variable. Any other?
Procedure calls – each procedure call is in a basic block for itself.
Other options?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 12 / 28

*

Algorithm to compute next use information

Input: A basic block B of three-address statements. We assume that the
symbol table initially shows all non-temporary variables in B as being
live on exit.

Output: At each statement L : x = y op z in B, we attach to L the
liveness and next-use information of x, y, and z.

begin
List lst = Starting at last statement in B and list of instructions obtained by
scan backwards to the beginning of B;
foreach statement L: x = y op z ∈ lst do

Attach to statement L the information currently found in the symbol
table regarding the next use and liveness of x, y, and z;
In the symbol table, set x to “not live” and “no next use.”;
In the symbol table, set y and z to “live” and the next uses of y and z
to L ;

end
end
Q: Can we interchange last two steps?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 13 / 28

*

CFG - Control flow graph

Definition:
A rooted directed graph G = (N,E), where N is given by the set of
basic blocks + two special BBs: entry and exit.
And edge connects two basic blocks b1 and b2 if control can pass
from b1 to b2.
An edge(s) from entry node to the initial basic block(s?)
From each final basic blocks (with no successors) to exit BB.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 14 / 28

*

CFG continued

successor and predecessor – defined in a natural way.
A basic block is called branch node - if it has more than one
successor.
join node – has more than one predecessor.
For each basic block b:

Succ(b) = {n ∈ N|∃e ∈ E such that e = b → n}
Pred(b) = {n ∈ N|∃e ∈ E such that e = n → b}

A region is a strongly connected subgraph of a flow-graph.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 15 / 28

*

Extended basic block

Extended basic block
a maximal sequence of
instructions beginning with a
leader that contains no join
nodes other than its first node.
Has a single entry, but
possible multiple exit points.
Some optimizations are more
effective on extended basic
blocks.
How to build an EBB, for a
given basic block?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 16 / 28

*

Basic blocks - what do we get?

entry and exit are added for
reasons to be explained later.
We can identify loops by using
dominators

a node A in the flowgraph dominates
a node B if every path from entry
node to B includes A.
This relations is antisymmetric,
reflexive, and transitive.

back edge: An edge in the flow graph,
whose head dominates its tail
(example - edge from B6 to B4.
A loop consists of all nodes
dominated by its entry node (head of
the back edge) and having exactly
one back edge in it.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 17 / 28

*

Dominators and Postdominators

Goal: To determine loops in the flowgraph.

Dominance relation:
Node d dominates node i (written d dom i), if every possible execution path from
entry to i includes d.
This relations is antisymmetric (a dom b, b dom a ⇒ a = b), reflexive (a dom a),
and transitive (if a dom b and b dom c, then a dom c.
We write dom(a) to denote the dominators of a.

Immediate dominance:
A subrelation of dominance.
For a 6=β , we say a idom b iff a dom b and there does not exist a node c such that
c 6= a and c 6= b, for which a dom c and c dom b.
We write idom(a) to denote the immediate dominator of a – note it is unique.

Strict dominance:
d sdom i, if d dominates i and d 6= i.

Post dominance:
p pdom i, if every possible execution path from i to exit includes p.
Opposite of dominance (i domp), in the reversed CFG (edges reversed, entry
and exit exchanged).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 18 / 28

*

Computing all the dominators

Compute the dominators.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 19 / 28

*

Identifying loops

Back edge: an edge in the flowgraph, whose head dominates its
tail.(Counter example)

Has a loop, but no back edge – hence not a natural loop.
Given a back edge m → n, the natural loop of m → n is

1 the subgraph consisting of the set of nodes containing n and all the
nodes from which m can be reached in the flowgraph without
passing through n, and

2 the edge set connecting all the nodes in its node set.
3 Node n is called the loop header.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 20 / 28

*

Algorithm to compute natural loops

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 21 / 28

*

Approaches to Control flow Analysis

Two main approaches to control-flow analysis of single routines.
Both start by determining the basic blocks that make up the
routine.
Construct the control-flowgraph.

First approach:
Use dominators to discover loops; to be used in later
optimizations.
Sufficient for many optimizations (ones that do iterative data-flow
analysis, or ones that work on individual loops only).

Second approach (interval analysis):
Analyzes the overall structure of the routine.
Decomposes the routine into nested regions - called intervals.
The resulting nesting structure is called a control tree.
A sophisticated variety of interval analysis is called structural
analysis.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 22 / 28

