Optimization of Basic blocks DAG representation of basic blocks

Recall: DAG representation of expressions

@ leaves corresponding to atomic operands, and interior nodes
corresponding to operators.

e ltis a linear piece of code. @ A node N has multiple parents - N is a common subexpression.
@ Analyzing and optimizing is easier. © Example: (a + a x (b - ¢)) + ((b - c) xd)
@ Has local scope - and hence effect is limited. 4
@ Substantial enough, not to ignore it. . / \ N
@ Can be seen as part of a larger (global) optimization problem. AN AN
< N / .
b / \ [
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DAG construction for a basic block Optimizations on the DAG

@ There is a node in the DAG for each of the initial values of the
variables appearing in the basic block.

@ There is a node N associated with each statement s within the

block. The children of N are those nodes corresponding to @ Common subexpression elimination.
statements that are the last definitions, prior to s, of the operands @ Eliminate dead code.
used by s. @ Code reordering.

. . @ Algebraic optimizations.
@ Node N is labeled by the operator applied at s, and also attached

to N is the list of variables for which it is the last definition within
the block.

@ Certain nodes are designated output nodes. These are the nodes
whose variables are live on exit from the block; ~

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 3/26 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 4/26



Construct the DAG. Example Example (contd)

= Db + c
c c
d=a-d
c =d+ c
b,d b,d
// if Db is live
a dp a dg b = d
bo co bo o Q: How to know if b is live after the

basic block?

V)
[

0O 0 0O o
|

0O O v O

0 0 Q0
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Limitations of the DAG based CSE Dead code elimination

@ Delete any root from DAG that has no ancestors and is not live out

(+) e
(has no live out variable associated).
o @ Repeat previous step till no change.
. O D

=Db +
of e‘e
bo Co do

@ The two occurrences of the sub-expressions b + ¢ computes the

same value. @ Assume a and b are live out.
@ Value computed by a and e are the same. @ Remove first e and then c.

@ How to handle the algebraic identities?

O Q 0O o

o Q o O
|

Q o aQ

bo co do

@ a and b remain.

@ Q: Do the sub-expressions always compute the same value?
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CSE via Algebraic identities Similarities in the semantics - identity, inverse, zero

X *+ 1 =1 % x =Xx identity, examples?

@ Recall: In common sub-expression elimination, we want to reuse
nodes that compute the same value. a && true

@ Recall: We mainly focussed on syntactic similarities.
@ Q: Can we go beyond that?

true && a = a

a || false = false || a = a

Goal: apply arithmetic identities to eliminate computation.
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Similarities in the semantics - strength Algebraic properties

@ Commutative: Say the operator * is commutative. x *y =y * x

xX"2 = X * X
@ Associative: a+ (b-c)=(a+b)-c
2 x X = X + x = x << 1 (?) a=D>b + c
e=c+d+ Db
x/2 = x * 0.5 =x > 1 (?) N
a =b + c
Constant folding t =c +d
a =t +b
2 % 0.123456789101112131415 = 0.246913578202224262830 -> (assuming t is not used anywhere else)
a=>b + c
Chapernowne’s constant e =a + d
@Qa=b -1; c=a+1 — c =D

Goal: identify equivalence module strength reduction operations.
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In general the problem is that of checking equivalence of two
expressions — Undecidable!

A rough idea:

@ When creating the DAG, create the node for expression that has
the most reduced strength.
@ For each expression e,
o Take all “sub-expressions” that “build” the operands of e.
e Build a new large expression using these sub-expressions.
e Simplify the large expression.
e Check if the simplified expression (or part thereof) or any variations
thereof can be found in the tree.
e Build sub-tree for the rest.
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Representing Array accesses in the DAG

killed

Q: Is afi] a common
sub-expression? 29 io Jo Yo
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@ The language manual may restrict.
e Fortran: you can evaluate any equivalent expression, but cannot
violate the integrity of paranthesis.
o Thusx » v — x » z = x * (y — z)
e Buta + (b - c) # (a + b) - ¢

@ Keep a language manual handy if you are writing a compiler!

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 14/26

Array representation (2)

b =a+ 12 _
x = b[1i] killed
b[j] =y

Q: Say, elements of ’a’ are 4bytes
size 12 ap i Jo Yo

Home reading: How to handle pointers.
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Peephole optimization Peephole optimization

@ A local optimization technique.

o o ) @ The “peephole” is typically small. Why?
@ Simplistic in nature, but effective in practise.

@ The code in the peephole need not be contiguous.

@ Idea: ) . .
o Keep a sliding window (called peephole) @ Each improvement may lead to additional improvements.
o Replace instruction sequences within the peephole by a by an @ In general, we may have to make multiple passes.

efficient (shorter / faster / ...) sequence.
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Eliminating redundant loads and stores Eliminating unreachable code

@ An unlabelled statement after an unconditional jump — can be

removed.
Load a, RO goto L2
Store RO, a INCR RO
L2:
. . . @ Eliminating jumps over jumps:
Delete the pair of instructions. Always? gJump jump
if class == 2010 goto L1
. . . . goto L2
What if there is a label on the store instruction? .
Ll: print 22
L2:
We need to be sure that the Store instruction and Load are N
executed as a pair.
P if class !'= 2010 goto L2
) print 22
Why would we have such stupid code? L2

@ What can constant propagation do?
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Flow-of-control optimizations Algebraic simplification and strength reduction

@ Naive code generation creates many jumps.
@ Jumps to jumps can be short circuited!
goto L1

@ Eliminate identity operations.
@ Replace x? by xx*x, and so on.

@ Replace fixed-point mult by a power of two (by left-shift) and
divison by a power of two (by right shift).

Ll goto 1.2 @ Replace floating-point divison by multiplication!

Ll: goto L2
Can be replaced with
goto L2

Further optimizations on L1 are possible.
Similar situation with conditional jumps
if (cond) goto L1

Ll: goto L2
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Machine specific peephole optimization Peephole procedure

@ First make a list of patterns that you want to replace with a list of
@ Use auto-incremenet / auto-decrement if available. target patterns.
add r1, (r2)+ — r1 =r1 + M[r2]; r2 = r2+d Identify the pattern in the code and do the replacement.
@ A cool PA-RISC instruction called sh2add Iterate till you are done.

°
°
r2=r1"5— sh2addrt, r,r2 @ Can be efficiently done on an DAG.
@ PA-RISC instruction ADDBT, <= r2, rl, L1 o No guarantees about optimality.

(*]

Most of the peephole optimizations guarantee improvement.
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