
*

Opening remarks

So far
Basic blocks.
Control Flow Graphs.
Dominators, Loops
Liveness analysis
Register allocation (linear scan, Kempe, spilling)
Optimizations in the basic block.
Peephole optimizations

Announcements:
Assignment 6 is due in ten days.

Today
Runtime management - Procedure calling

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 1 / 1

*

Runtime management

Copyright c©2001 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 2 / 1

*

Parameter passing

Call-by-value
store values, not addresses
never restore on return
arrays, structures, strings are a problem

Call-by-reference
pass address
access to formal is indirect reference to actual

Call-by-value-result
store values, not addresses
always restore on return
arrays, structures, strings are a problem

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 3 / 1

*

Parameter passing - varargs

What about variable length argument lists?
1 if caller knows that callee expects a variable number

1 caller can pass number as 0th parameter
2 callee can find the number directly

2 if caller doesn’t know anything about it
1 callee must be able to determine number
2 first parameter must be closest to FP

Consider printf :
number of parameters determined by the format string
it assumes the numbers match

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 4 / 1



*

MIPS procedure call convention

Registers:
Number Name Usage

0 zero Constant 0
1 at Reserved for assembler

2, 3 v0, v1 Expression evaluation, scalar function results
4–7 a0–a3 first 4 scalar arguments

8–15 t0–t7 Temporaries, caller-saved; caller must save to pre-
serve across calls

16–23 s0–s7 Callee-saved; must be preserved across calls
24, 25 t8, t9 Temporaries, caller-saved; caller must save to pre-

serve across calls
26, 27 k0, k1 Reserved for OS kernel

28 gp Pointer to global area
29 sp Stack pointer
30 s8 (fp) Callee-saved; must be preserved across calls
31 ra Expression evaluation, pass return address in calls

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 5 / 1

*

MIPS procedure call convention

Philosophy:

Use full, general calling sequence only when necessary; omit
portions of it where possible (e.g., avoid using fp register
whenever possible)

Classify routines as:
non-leaf routines: routines that call other routines
leaf routines: routines that do not themselves call other routines

leaf routines that require stack storage for locals
leaf routines that do not require stack storage for locals

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 6 / 1

*

MIPS procedure call convention

The stack frame

high memory

low memory

argument n

argument 1

saved $ra

argument build

virtual frame pointer ($fp)

stack pointer ($sp)

temporaries

static link

locals

fra
m

e
s
iz

e

fr
a

m
e

 o
ff

s
e

t

other saved registers

The “locals” can be accessed by a callee.
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 7 / 1

*

MIPS procedure call convention

Pre-call:
1 Pass arguments: use registers $a0 . . . $a3; remaining arguments

are pushed on the stack along with save space for $a0 . . . $a3
2 Save caller-saved registers if necessary
3 Execute a jal instruction: jumps to target address (callee’s first

instruction), saves return address in register $ra

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 8 / 1



*

MIPS procedure call convention

Prologue:
1 Leaf procedures that use the stack and non-leaf procedures:

1 Allocate all stack space needed by routine:
local variables
saved registers
sufficient space for arguments to routines called by this routine

subu $sp,framesize
2 Save registers ($ra, etc.):

sw $31,framesize+frameoffset($sp)
sw $17,framesize+frameoffset-4($sp)
sw $16,framesize+frameoffset-8($sp)
where framesize and frameoffset (usually negative) are
compile-time constants

2 Emit code for routine

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 9 / 1

*

MIPS procedure call convention

Epilogue:
1 Copy return values into result registers (if not already there)
2 Restore saved registers
lw reg,framesize+frameoffset-N($sp)

3 Get return address
lw $31,framesize+frameoffset($sp)

4 Clean up stack
addu $sp,framesize

5 Return
j $31

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 10 / 1

*

Closing remarks

What did we do today?
Runtime management
Parameter passing

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2012 11 / 1


