Academic Formalities

CS6013 - Modern Compilers: Theory and Practise

 Introduction
V. Krishna Nandivada

IIT Madras

What, When and Why of Compilers

- What:
- A compiler is a program that can read a program in one language and translates it into an equivalent program in another language.
- When
- 1952, by Grace Hopper for A-0.
- 1957, Fortran compiler by John Backus and team

- Why? Study?

- It is good to know how the food you eat, is cooked.
- A programming language is an artificial language designed to communicate instructions to a machine, particularly a computer.
- For a computer to execute programs written in these languages, these programs need to be translated to a form in which it can be executed by the computer.
- Written assignment = 5 marks.
- Programming assignments = 40 marks.
- Midterm = 20 marks, Final = 35 marks.
- Extra marks
- During the lecture time - individuals can get additional 5 marks.
- How? - Ask a good question, answer a chosen question, make a good point! Take 0.5 marks each. Max one mark per day per person.
- Attendance requirement - as per institute norms. Non compliance will lead to 'W' grade.
- Proxy attendance - is not a help; actually a disservice.
- Plagiarism - A good word to know. A bad act to own.
- Fail grade guaranteed.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.
TA : Ashok Gautam, Email: agj@cse

Compilers - A "Sangam"

Compiler construction is a microcosm of computer science

- Artificial Intelligence greedy algorithms, learning algorithms, ...
- Algo graph algorithms, union-find, dynamic programming, ...
- theory DFAs for scanning, parser generators, lattice theory, ...
- systems allocation, locality, layout, synchronization, ...
- architecture pipeline management, hierarchy management, instruction set use, ...
- optimizations Operational research, load balancing, scheduling, ...
Inside a compiler, all these and many more come together. Has probably the healthiest mix of theory and practise.

Course outline

Your friends: Languages and Tools

A rough outline (we may not strictly stick to this).

- Overview of Compilers
- Overview of lexical analysis and parsing.
- Semantic analysis (aka type checking)
- Intermediate code generation
- Data flow analysis
- Constant propagation
- Loop optimizations
- Liveness analysis
- Register Allocation
- Static Single Assignment and Optimizations.
- Code Generation
- Overview of advanced topics.

Start exploring

- Java - familiarity a must - Use eclipse to save you valuable coding and debugging cycles.
- JavaCC, JTB - tools you will learn to use.
- Make Ant Scripts - recommended toolkit.
- Find the course webpage:
http://www.cse.iitm.ac.in/~krishna/cs6013/

Acknowledgement

These frames borrow liberal portions of text verbatim from Antony L. Hosking @ Purdue and Jens Palsberg @ UCLA.

Compilers - A closed area?

Expectations

"Optimization for scalar machines was solved years ago"

Machines have changed drastically in the last 20 years

Changes in architecture \Rightarrow changes in compilers

- new features pose new problems
- changing costs lead to different concerns
- old solutions need re-engineering

Changes in compilers should prompt changes in architecture

- New languages and features

Abstract view

Implications:

- recognize legal (and illegal) programs
- generate correct code
- manage storage of all variables and code
- agreement on format for object (or assembly) code

Big step up from assembler - higher level notations

What qualities are important in a compiler?
(1) Correct code
(2) Output runs fast
(3) Compiler runs fast
(4) Compile time proportional to program size
(5) Support for separate compilation
(6) Good diagnostics for syntax errors
(7) Works well with the debugger
(8) Good diagnostics for flow anomalies
(0) Cross language calls
(10) Consistent, predictable optimization

Each of these shapes your expectations about this course

Traditional two pass compiler

Implications:

- intermediate representation (IR).
- front end maps legal code into IR
- back end maps IR onto target machine
- simplify retargeting
- allows multiple front ends
- multiple passes \Rightarrow better code

A rough statement: Most of the problems in the Front-end are simpler (polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are NP-complete in nature).
Our focus: Mainly back end (95\%) and little bit of front end (5\%).
V.Krishna Nandivada (IT Madras)

Phases inside the compiler

Lexical analysis

character stream

$$
1
$$

Intermediate Code Generator
intermediate representation
$\frac{\text { Machine-Independen }}{\text { Man }}$
Code Optimizer
intermediate representation
Code Generator
target-machine code
$\stackrel{\downarrow}{\text { Machine-Dependent }}$
Machine-Dependent
Code Optimizer
target-machine code
Krishna Nandivada (IIT Madras

Front end responsibilities:

- Recognize syntactically legal code; report errors.
- Recognize semantically legal code; report errors.
- Produce IR.

Back end responsibilities:

- Optimizations, code generation.
Our target
- five out of seven phases.
- glance over lexical and syntax analysis - read yourself or attend the under graduate course, if interested.

More complex syntax

- identifiers
alphabet followed by k alphanumerics (., \$, \& , ...)
- numbers
- integers: 0 or digit from 1-9 followed by digits from 0-9
- decimals: integer '.' digits from 0-9
- reals: (integer or decimal) ' E ' (+ or -) digits from 0-9
- complex: '(' real ',' real ')'

We need a powerful notation to specify these patterns - regular expressions

Generic examples of REs

Let $\Sigma=\{a, b\}$

- $a \mid b$ denotes $\{a, b\}$
- $(a \mid b)(a \mid b)$ denotes $\{a a, a b, b a, b b\}$ i.e., $(a \mid b)(a \mid b)=a a|a b| b a \mid b b$
- $a *$ denotes $\{\varepsilon, a, a a, a a a, \ldots\}$
- $(a \mid b) *$ denotes the set of all strings of a 's and b 's (including ε) i.e., $(a \mid b) *=(a * b *) *$
- $a \mid a * b$ denotes $\{a, b, a b, a a b, a a a b, a a a a b, \ldots\}$

Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it describes a regular language?
Provable fact:
For any $R E r, \exists$ a grammar g such that $L(r)=L(g)$
Grammars that generate regular sets are called regular grammars:
They have productions in one of 2 forms:
(1) $A \rightarrow a A$
(2) $A \rightarrow a$
where A is any non-terminal and a is any terminal symbol

[^0]
Recognizers

From a regular expression we can construct a deterministic finite automaton (DFA)
Recognizer for identifier:

Finite Automata

A non-deterministic finite automaton (NFA) consists of:
(1) a set of states $S=\left\{s_{0}, \ldots, s_{n}\right\}$
(2) a set of input symbols Σ (the alphabet)
(3) a transition function mapping state-symbol pairs to sets of states
(1) a distinguished start state s_{0}
(0) a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case:
(1) no state has a ε-transition, and
(2) for each state s and input symbol a, \exists at most one edge labelled a leaving s
A DFA accepts x iff. \exists a unique path through the transition graph from s_{0} to a final state such that the edges spell x.

Limits of regular languages

(1) DFAs are clearly a subset of NFAs
(2) Any NFA can be converted into a DFA, by simulating sets of simultaneous states:

- each DFA state corresponds to a set of NFA states
- possible exponential blowup

Not all languages are regular
One cannot construct DFAs to recognize these languages:

- $L=\{p(k) q(k)\}$
- $L=\{w c w(r e v \mid w \in \Sigma *\}$

Note: neither of these is a regular expression!
(DFAs cannot count!)
But, this is a little subtle. One can construct DFAs for:

- alternating 0's and 1 's
$(\varepsilon \mid 1)(01) *(\varepsilon \mid 0)$
- sets of pairs of 0's and 1's
(01| 10)+

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4 -tuple (V_{t}, V_{n}, S, P), where:
V_{t} is the set of terminal symbols in the grammar. For our purposes, V_{t} is the set of tokens returned by the scanner.
V_{n}, the nonterminals, is a set of syntactic variables that denote sets of (sub)strings occurring in the language. These are used to impose a structure on the grammar.
S is a distinguished nonterminal ($S \in V_{n}$) denoting the entire set of strings in $L(G)$.
This is sometimes called a goal symbol.
P is a finite set of productions specifying how terminals and non-terminals can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.
The set $V=V_{t} \cup V_{n}$ is called the vocabulary of G

Notation and terminology

Derivations

- $a, b, c, \ldots \in V_{t}$
- $A, B, C, \ldots \in V_{n}$
- $U, V, W, \ldots \in V$
- $\alpha, \beta, \gamma, \ldots \in V^{*}$
- $u, v, w, \ldots \in V_{t} *$

If $A \rightarrow \gamma$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a single-step derivation using $A \rightarrow \gamma$
Similarly, \rightarrow^{*} and \Rightarrow^{+}denote derivations of ≥ 0 and ≥ 1 steps
If $S \rightarrow^{*} \beta$ then β is said to be a sentential form of G
$L(G)=\left\{w \in V_{t^{*}} \mid S \Rightarrow^{+} w\right\}, w \in L(G)$ is called a sentence of G
Note, $L(G)=\left\{\beta \in V * \mid S \rightarrow^{*} \beta\right\} \cap V_{t}{ }^{*}$

Deriving the derivation

We can view the productions of a CFG as rewriting rules. Using our example CFG:

```
\langlegoal\rangle ::= \langleexpr\rangle
```

\langlegoal\rangle ::= \langleexpr\rangle
\langleexpr\rangle ::= \langleexpr\rangle+\langleterm\rangle
\langleexpr\rangle ::= \langleexpr\rangle+\langleterm\rangle
| <expr\rangle-\langleterm\rangle
| <expr\rangle-\langleterm\rangle
| <term>
| <term>
\langleterm\rangle ::= \langleterm\rangle*\langlefactor\rangle
\langleterm\rangle ::= \langleterm\rangle*\langlefactor\rangle
< <term\rangle/\langlefactor\rangle
< <term\rangle/\langlefactor\rangle
<factor>
<factor>
\langlefactor\rangle ::= num
\langlefactor\rangle ::= num
id

```
    id
```

Now, for the string $\mathrm{x}+2$ * y:

$$
\begin{aligned}
\langle\text { goal }\rangle & \Rightarrow\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle *\langle\text { factor }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle *\langle\text { id, } \mathrm{y}\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { factor }\rangle *\langle\text { id, } \mathrm{y}\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { num }, 2\rangle *\langle\text { id, } \mathrm{y}\rangle \\
& \Rightarrow\langle\text { term }\rangle+\langle\text { num, } 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle \\
& \Rightarrow\langle\text { factor }\rangle+\langle\text { num, } 2\rangle *\langle\text { id, } \mathrm{y}\rangle \\
& \Rightarrow\langle\text { id, } \mathrm{x}\rangle+\langle\text { num, } 2\rangle *\langle\text { id, } \mathrm{y}\rangle
\end{aligned}
$$

We have derived the sentence $\mathrm{x}+2 * \mathrm{y}$.
We denote this \langle goal $\rangle \rightarrow^{*}$ id + num $*$ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.

Treewalk evaluation computes $\mathrm{x}+(2 * y)$

Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- may require backtracking
- some grammars are backtrack-free (predictive)

Bottom-up parsers

- start at the leaves and fill in
- start in a state valid for legal first tokens
- as input is consumed, change state to encode possibilities (recognize valid prefixes)
- use a stack to store both state and sentential forms

Left-recursion

Top-down parsers cannot handle left-recursion in a grammar Formally, a grammar is left-recursive if

$$
\exists A \in V_{n} \text { such that } A \Rightarrow^{+} A \alpha \text { for some string } \alpha
$$

Our simple expression grammar is left-recursive

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the start or goal symbol of the grammar.
To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string
(1) At a node labelled A, select a production $A \rightarrow \alpha$ and construct the appropriate child for each symbol of α
(2) When a terminal is added to the fringe that doesn't match the input string, backtrack
(3) Find next node to be expanded (must have a label in V_{n})

The key is selecting the right production in step 1.
If the parser makes a wrong step, the "derivation" process does not terminate.
Why is it bad?

Eliminating left-recursion

To remove left-recursion, we can transform the grammar Consider the grammar fragment:

$$
\begin{array}{cc}
\langle\mathrm{foo}\rangle & ::=\langle\mathrm{foo}\rangle \alpha \\
& \mid \quad \beta
\end{array}
$$

where α and β do not start with \langle foo \rangle
We can rewrite this as:

$$
\begin{array}{ccc}
\langle\text { foo }\rangle & ::= & \beta\langle\text { bar }\rangle \\
\langle\text { bar }\rangle & ::= & \alpha\langle\text { bar }\rangle \\
& \mid & \varepsilon
\end{array}
$$

where \langle bar〉 is a new non-terminal

This fragment contains no left-recursion

How much lookahead is needed？

Predictive parsing

We saw that top－down parsers may need to backtrack when they

select the wrong production

Do we need arbitrary lookahead to parse CFGs？
－in general，yes
－use the Earley or Cocke－Younger，Kasami algorithms
Fortunately
－large subclasses of CFGs can be parsed with limited lookahead
－most programming language constructs can be expressed in a grammar that falls in these subclasses
Among the interesting subclasses are：
$L L(1)$ ：left to right scan，left－most derivation，1－token lookahead； and
$L R(1)$ ：left to right scan，reversed right－most derivation，1－token lookahead

Left factoring

What if a grammar does not have this property？

Sometimes，we can transform a grammar to have this property．
For each non－terminal A find the longest prefix α common to two or more of its alternatives．
if $\alpha \neq \varepsilon$ then replace all of the A productions
$A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \cdots \mid \alpha \beta_{n}$
with

$$
A \rightarrow \alpha A^{\prime}
$$

$$
A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \cdots \mid \beta_{n}
$$

where A^{\prime} is a new non－terminal．
Repeat until no two alternatives for a single non－terminal have a common prefix．

Basic idea：

－For any two productions $A \rightarrow \alpha \mid \beta$ ，we would like a distinct way of choosing the correct production to expand．
－For some RHS $\alpha \in G$ ，define FIRST (α) as the set of tokens that appear first in some string derived from α ．
－That is，for some $w \in V_{t}^{*}, w \in \operatorname{FIRST}(\alpha)$ iff．$\alpha \Rightarrow^{*} w \gamma$ ．
－Key property：
Whenever two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar，we would like

$$
\text { - } \operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\phi
$$

－This would allow the parser to make a correct choice with a lookahead of only one symbol！

Example

There are two non－terminals to left factor：

to left factor：	
〈expr〉 ：$=$	\langle term $\rangle+\langle$ expr \rangle
	\langle term $\rangle-\langle$ expr \rangle
	＜term＞
＜term＞	\langle factor $\rangle *\langle$ term \rangle
	〈factor＞／ term〉
	＜factor＞

Applying the transformation：

| \langle expr \rangle | $::=$ | \langle term $\rangle\left\langle\right.$ expr $\left.^{\prime}\right\rangle$ |
| :--- | :---: | :--- | :--- |
| $\left\langle\right.$ expr $\left.^{\prime}\right\rangle$ | $::=$ | $+\langle$ expr \rangle |
| | \mid | $-\langle$ expr \rangle |
| | \mid | ε |
| \langle term \rangle | $::=$ | \langle factor $\rangle\left\langle\right.$ term $\left.^{\prime}\right\rangle$ |
| $\left\langle\right.$ term $\left.^{\prime}\right\rangle$ | $::=$ | $*\langle$ term \rangle |
| | \mid | $/\langle$ term \rangle |
| | \mid | ε |

Indirect Left-recursion elimination

Generality

Given a left-factored CFG, to eliminate left-recursion:
if $\exists A \rightarrow A \alpha$ then replace all of the A productions $A \rightarrow A \alpha|\beta| \ldots \mid \gamma$
with
$A \rightarrow N A^{\prime}$
$N \rightarrow \beta|\ldots| \gamma$
$A^{\prime} \rightarrow \alpha A^{\prime} \mid \varepsilon$
where N and A^{\prime} are new productions.
Repeat until there are no left-recursive productions.

Self reading

Recursive decent parsing.

Table-driven parsers

FIRST

A parser generator system often looks like:

- This is true for both top-down (LL) and bottom-up (LR) parsers
- This also uses a stack - but mainly to remember part of the input string; no recursion.

FOLLOW

For a non-terminal A, define $\operatorname{FOLLOW}(A)$ as
the set of terminals that can appear immediately to the right of A in some sentential form

Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it.
A terminal symbol has no FOLLOW set.
To build FOLLOW (A) :
(1) Put \$ in FOLLOW $(\langle$ goal $\rangle)$
(2) If $A \rightarrow \alpha B \beta$:
(1) Put first $(\beta)-\{\varepsilon\}$ in $\operatorname{FOLLOW}(B)$
(2) If $\beta=\varepsilon$ (i.e., $A \rightarrow \alpha B$) or $\varepsilon \in \operatorname{FIRST}(\beta)$ (i.e., $\beta \Rightarrow^{*} \varepsilon$) then put $\operatorname{FOLLOW}(A)$ in $\operatorname{FOLLOW}(B)$
Repeat until no more additions can be made

For a string of grammar symbols α, define $\operatorname{FIRST}(\alpha)$ as:

- the set of terminals that begin strings derived from α : $\left\{a \in V_{t} \mid \alpha \Rightarrow^{*} a \beta\right\}$
- If $\alpha \Rightarrow^{*} \varepsilon$ then $\varepsilon \in \operatorname{FIRST}(\alpha)$

FIRST (α) contains the tokens valid in the initial position in α To build $\operatorname{FIRST}(X)$:
(1) If $X \in V_{t}$ then $\operatorname{FIRST}(X)$ is $\{X\}$
(2) If $X \rightarrow \varepsilon$ then add ε to $\operatorname{FIRST}(X)$
(3) If $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$:
(1) Put FIRST $\left(Y_{1}\right)-\{\varepsilon\}$ in $\operatorname{FIRST}(X)$
(2) $\forall i: 1<i \leq k$, if $\varepsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{i-1}\right)$
(i.e., $Y_{1} \cdots Y_{i-1} \Rightarrow^{*} \varepsilon$)
then put $\operatorname{FIRST}\left(Y_{i}\right)-\{\varepsilon\}$ in $\operatorname{FIRST}(X)$
(3) If $\varepsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{k}\right)$ then put ε in $\operatorname{FIRST}(X)$

Repeat until no more additions can be made.

LL(1) grammars

Previous definition

A grammar G is $L L(1)$ iff. for all non-terminals A, each distinct pair of productions $A \rightarrow \beta$ and $A \rightarrow \gamma$ satisfy the condition $\operatorname{FIRST}(\beta) \cap \operatorname{FIRST}(\gamma)=\phi$.

What if $A \Rightarrow^{*} \varepsilon$?
Revised definition

A grammar G is $L L(1)$ iff. for each set of productions

$A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}$:
(1) $\operatorname{FIRST}\left(\alpha_{1}\right), \operatorname{FIRST}\left(\alpha_{2}\right), \ldots, \operatorname{FIRST}\left(\alpha_{n}\right)$ are all pairwise disjoint
(2) If $\alpha_{i} \Rightarrow^{*} \varepsilon$ then
$\operatorname{FIRST}\left(\alpha_{j}\right) \bigcap \operatorname{FOLLOW}(A)=\phi, \forall 1 \leq j \leq n, i \neq j$.
If G is ε-free, condition 1 is sufficient.

LL(1) grammars

LL(1) parse table construction

Provable facts about $\mathrm{LL}(1)$ grammars:
(1) No left-recursive grammar is $\mathrm{LL}(1)$
(2) No ambiguous grammar is LL(1)
(3) Some languages have no $\mathrm{LL}(1)$ grammar
(9) A ε-free grammar where each alternative expansion for A begins with a distinct terminal is a simple $\mathrm{LL}(1)$ grammar.

Example

- $S \rightarrow a S \mid a$ is not $\mathrm{LL}(1)$ because $\operatorname{FIRST}(a S)=\operatorname{FIRST}(a)=\{a\}$
- $S \rightarrow a S^{\prime}$
$S^{\prime} \rightarrow a S^{\prime} \mid \varepsilon$
accepts the same language and is $\mathrm{LL}(1)$

Example

Our long-suffering expression grammar:

$$
\begin{aligned}
& S \rightarrow E_{1} \\
& E \rightarrow T E_{2}^{\prime}
\end{aligned}\left|\begin{array}{l}
E^{\prime} \rightarrow+E_{3}\left|-E_{4}\right| \varepsilon_{5} \\
T \rightarrow F T_{6}^{\prime}
\end{array}\right| \begin{aligned}
& T^{\prime} \rightarrow * T_{7}\left|/ T_{8}\right| \varepsilon_{9} \\
& F \rightarrow \text { num }_{10} \mid \text { id } d_{11}
\end{aligned}
$$

	FIRST	FOLLOW	id	num	$+$	-	*	1	\$
S	num, id	\$	1	1	-	-	-	-	-
E	num,id	\$	2	2	-	-	-	-	-
E^{\prime}	$\varepsilon,+,-$	\$	-	-	3	4	-	-	5
T	num, id	$+,-, \$$	6	6	-	-	-	-	-
T^{\prime}	$\varepsilon, *, /$	$+,-, \$$	-	-	9	9	7	8	9
F	num, id	$+,-, *, /, \$$	11	10	-	-	-	-	-
id	id	-							
num	num	-							
*	*	-							
1	1	-							
+	+	-							
-	-	-							

Another example of painful left-factoring

Revision 1/4

- Here is a typical example where a programming language fails to be LL(1):

```
stmt }->\mathrm{ asginment | call | other
```

assignment \rightarrow id $:=\exp$
call \rightarrow id (exp-list)

- This grammar is not in a form that can be left factored. We must first replace assignment and call by the right-hand sides of their defining productions:
statement \rightarrow id $:=\exp \mid$ ide(exp-list) | other a
- We left factor:

```
statement }->\mathrm{ id stmt' | other
```

stmt' \rightarrow := exp (exp-list)

- See how the grammar obscures the language semantics.

Revision 2/4: FIRST and FOLLOW sets

Revision 3/4: Parse Table

	FIRST	FOLLOW
S	$\{$ num, id $\}$	$\{\$\}$
E	$\{$ num, $i \mathrm{id}\}$	$\{\$\}$
E^{\prime}	$\{\varepsilon,+,-\}$	$\{\$\}$
T	$\{$ num, id $\}$	$\{+,-, \$\}$
T^{\prime}	$\{\varepsilon, *, /\}$	$\{+,-, \$\}$
F	$\{$ num, id $\}$	$\{+,-, *, /, \$\}$
id	$\{$ id $\}$	-
num	$\{$ num $\}$	-
$*$	$\{*\}$	-
$/$	$\{/\}$	-
+	$\{+\}$	-
-	$\{-\}$	-

	id	num	+	-	$*$	$/$	$\$$
S	$S \rightarrow E$	$S \rightarrow E$	-	-	-	-	-
E	$E \rightarrow T E^{\prime}$	$E \rightarrow T E^{\prime}$	-	-	-	-	-
E^{\prime}	-	-	$E^{\prime} \rightarrow+E$	$E^{\prime} \rightarrow-E$	-	-	$E^{\prime} \rightarrow \varepsilon$
T	$T \rightarrow F T^{\prime}$	$T \rightarrow F T^{\prime}$	-	-	-	-	-
T^{\prime}	-	-	$T^{\prime} \rightarrow \varepsilon$	$T^{\prime} \rightarrow \varepsilon$	$T^{\prime} \rightarrow * T$	$T^{\prime} \rightarrow / T$	$T^{\prime} \rightarrow \varepsilon$
F	$F \rightarrow$ id	$F \rightarrow$ num	-	-	-	-	-

- Build the parse table.

Revision 4/4: Building the parse tree

Input: a string w and a parsing table M for G

```
tos }\overleftarrow{\mathrm{ Stack[tos] }}
Stack[++tos] \leftarrow root node
Stack[++tos] \leftarrow Start Symbol
token }\leftarrow next_token(
repeat
    X }\leftarrow\mathrm{ Stack[tos]
        if X is a terminal or EOF then
            if X = token then
            pop X
                ooken }\leftarrow\mathrm{ next_token()
            else pop and
        else /* X is a non-terminal */
        if M[X,token] = X }->\mp@subsup{Y}{1}{}\mp@subsup{Y}{2}{}\cdots\mp@subsup{Y}{k}{}\mathrm{ then
            l
            build node for each child and
            make it a child of node for X
            push }\mp@subsup{n}{k}{},\mp@subsup{Y}{k}{},\mp@subsup{n}{k-1}{},\mp@subsup{Y}{k-1}{},\cdots,\mp@subsup{n}{1}{},
        M push n ( , Yk,
until X = EOF
```


Some definitions

Recall

- For a grammar G, with start symbol S, any string α such that $S \Rightarrow^{*} \alpha$ is called a sentential form
- If $\alpha \in V_{t}^{*}$, then α is called a sentence in $L(G)$
- Otherwise it is just a sentential form (not a sentence in $L(G)$)

A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.
A right-sentential form is a sentential form that occurs in the rightmost derivation of some sentence.

Bottom-up parsing

Goal:

Given an input string w and a grammar G, construct a parse tree by starting at the leaves and working to the root.
id *

* id

id

Example

Consider the grammar

$$
\begin{array}{l|lll}
1 & S & \rightarrow & \mathrm{a} A B \mathrm{e} \\
2 & A & \rightarrow & A \mathrm{bc} \\
3 & & \mid & \mathrm{b} \\
4 & B & \rightarrow & \mathrm{~d}
\end{array}
$$

and the input string abbcde

Prod'n.	Sentential Form
3	$a \mathrm{~b} b \mathrm{bcde}$
2	$a \operatorname{Abc} \mathrm{de}$
4	$a A \square \mathrm{~d}$
1	aABe
-	S

The trick appears to be scanning the input and finding valid sentential forms.

Handles

Example

Theorem：

If G is unambiguous then every right－sentential form has a unique handle．
Proof：（by definition）
（1）G is unambiguous \Rightarrow rightmost derivation is unique
（2）\Rightarrow a unique production $A \rightarrow \beta$ applied to take γ_{i-1} to γ_{i}
（3）\Rightarrow a unique position k at which $A \rightarrow \beta$ is applied
（4）\Rightarrow a unique handle $A \rightarrow \beta$

Handle－pruning

The process to construct a bottom－up parse is called handle－pruning． To construct a rightmost derivation

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n}=w
$$

we set i to n and apply the following simple algorithm
for $i=n$ downto 1
（1）find the handle $A_{i} \rightarrow \beta_{i}$ in γ_{i}
replace β_{i} with A_{i} to generate γ_{i-1}
This takes $2 n$ steps，where n is the length of the derivation token is \＄

The left－recursive expression grammar（original form）

$1 \mid$ goal $\rangle::=\langle$ expr \rangle	Prod＇n	Sentential Form
$2\langle$ expr $\rangle::=\langle$ expr $\rangle+\langle$ term \rangle	－	＜goal＞
$3 \quad \mid\langle$ expr $\rangle-\langle$ term \rangle	1	\langle expr \rangle
4 ｜〈term〉	3	$\overline{\langle\text { expr }\rangle}-\langle$ term \rangle
$5\langle$ term $\rangle:=\langle$ term $\rangle *\langle$ factor \rangle	5	$\overline{\langle\text { expr }\rangle-\langle\text { term }\rangle} *\langle$ factor \rangle
$6 \mid$｜${ }^{\text {term }\rangle /\langle\text { factor }\rangle}$	9	\langle expr $\rangle-\overline{\langle\text { term }\rangle * \text { id }}$
$7 \quad \mid$ 〈factor〉	7	\langle expr $\rangle-\langle$ factor $\rangle *$ id
$8\langle$ factor $\rangle::=$ num	8	\langle expr $\rangle-\underline{\text { num } * i d ~}$
$9 \quad \mid$ id	4	\langle term $\rangle-\overline{\text { num }} *$ id
	7	$\overline{\langle\text { factor }\rangle}-$ num＊id
	9	$\overline{i d}-\mathrm{num} *$ id

Stack implementation

One scheme to implement a handle－pruning，bottom－up parser is called a shift－reduce parser．
Shift－reduce parsers use a stack and an input buffer
（1）initialize stack with \＄
（2）Repeat until the top of the stack is the goal symbol and the input
a）find the handle
if we don＇t have a handle on top of the stack，shift an input symbol onto the stack
b）prune the handle
if we have a handle $A \rightarrow \beta$ on the stack，reduce
i）pop $|\beta|$ symbols off the stack
ii）push A onto the stack

$1 \mid S \rightarrow E$	Stack	Input	\|Action
$2 E \rightarrow E+T$	\$	id - num * id	S
$3 \mid E-T$	\$id	- num * id	R9
$4 \mid T$	\$ $\$$ factor ${ }^{\text {/ }}$ (term)	- num * id	R7
$4{ }^{4} T$	\$\term>	- num * id	R4
$5 T \rightarrow T * F$	\$ $\overline{\text { expr }}$	- num * id	S
$6 \mid T / F$	\$ expr> -	num * id	S
$7 \mid F$	\$ \langle expr \rangle - num	* id	R8
$8 F \rightarrow$ num	\$ \langle expr \rangle - \langle factor \rangle	* id	R7
$8 \mid F \rightarrow$ num	\$ \langle expr $\rangle-\overline{\langle\text { term }\rangle}$	* id	S
9 \| id		id	S
	$\begin{aligned} & \$\langle\text { expr }\rangle-\langle\text { term }\rangle * \frac{i d}{} \\ & \$\langle\text { expr }\rangle-\langle\text { term }\rangle *\langle\text { factor }\rangle \end{aligned}$		$\begin{aligned} & \text { R9 } \\ & \text { R5 } \end{aligned}$
	\$ \langle expr $\rangle-\overline{\text { <term }\rangle}$		R3
	\$ expr>		R1
	\$ $\overline{\text { goal }}$ ¢		A

Shift-reduce parsers are simple to understand
A shift-reduce parser has just four canonical actions:
(1) shift - next input symbol is shifted onto the top of the stack
(2) reduce - right end of handle is on top of stack; locate left end of handle within the stack;
pop handle off stack and push appropriate non-terminal LHS
\bigcirc
accept - terminate parsing and signal success
(9) error - call an error recovery routine

Key insight: recognize handles with a DFA:

- DFA transitions shift states instead of symbols
- accepting states trigger reductions

LR parsing

The skeleton parser:

```
push som
repeat forever
    S \leftarrow top of stack
    if action[s,token] = "shift si" then
        push si
    else if action[s,token] = "reduce A->\beta"
        then
        pop | | | states
        s'\leftarrow top of stack
        push goto[s',A]
    else if action[s, token] = "accept" then
        return
    else error()
```

"How many ops?": k shifts, l reduces, and 1 accept, where k is length of input string and l is length of reverse rightmost derivation

Example using the tables
$\mathrm{LR}(k)$ grammars

Stack	Input	Action
\$ 0	id* id+id\$	s4
\$ 04	*id+id\$	r6
\$ 03	*id+id\$	s6
\$ 036	id+id\$	s4
\$ 0364	+ id \$	r6
\$ 0363	+id\$	r5
\$0368	+ id \$	r4
\$ 02	+id\$	s5
\$ 025	id\$	s4
\$ 0254	\$	r6
\$ 0253	\$	r5
\$ 0252	\$	r3
\$ 0257	\$	r2
\$ 01	\$	acc

Why study LR grammars?

$\mathrm{LR}(1)$ grammars are often used to construct parsers.
We call these parsers $\operatorname{LR}(1)$ parsers.

- virtually all context-free programming language constructs can be expressed in an LR(1) form
- LR grammars are the most general grammars parsable by a deterministic, bottom-up parser
- efficient parsers can be implemented for $\mathrm{LR}(1)$ grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers
$\mathrm{LL}(k)$: recognize use of a production $A \rightarrow \beta$ seeing first k symbols derived from β
$\operatorname{LR}(k)$: recognize the handle β after seeing everything derived from β plus k lookahead symbols

LR parsing

(1) $\operatorname{SLR}(1)$

- simple, fast construction
(2) $\operatorname{LR}(1)$
- slow, large construction
- $\operatorname{LALR}(1)$

Informally, we say that a grammar G is $\mathrm{LR}(k)$ if, given a rightmost derivation

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n}=w
$$

we can, for each right-sentential form in the derivation:
(1) isolate the handle of each right-sentential form, and
(2) determine the production by which to reduce
by scanning γ_{i} from left to right, going at most k symbols beyond the right end of the handle of γ_{i}.

Three common algorithms to build tables for an "LR" parser:

- smallest class of grammars
- smallest tables (number of states)
- full set of LR(1) grammars
- largest tables (number of states)
- intermediate sized set of grammars
- same number of states as $\operatorname{SLR}(1)$
- canonical construction is slow and large
- better construction techniques exist

An LR(1) parser for either Algol or Pascal has several thousand states, while an $\operatorname{SLR}(1)$ or $\operatorname{LALR}(1)$ parser for the same language may have several hundred states.

Right Recursion:

- needed for termination in predictive parsers
- requires more stack space
- right associative operators

Left Recursion:

- works fine in bottom-up parsers
- limits required stack space
- left associative operators

Rule of thumb:

- right recursion for top-down parsers
- left recursion for bottom-up parsers

Parsing review

Closing remarks

- Recursive descent

A hand coded recursive descent parser directly encodes a grammar (typically an LL(1) grammar) into a series of mutually recursive procedures. It has most of the linguistic limitations of LL(1).

- $\mathrm{LL}(k)$

An $\operatorname{LL}(k)$ parser must be able to recognize the use of a production after seeing only the first k symbols of its right hand side.

- LR (k)

An $\mathrm{LR}(k)$ parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with k symbols of lookahead.

[^0]: These are also called type 3 grammars (Chomsky)

