CS6013 - Modern Compilers: Theory and Practise
 SSA and optimizations

V. Krishna Nandivada

IIT Madras

What is SSA?

- Each assignment to a temporary is given a unique name
- All of the uses reached by that assignment are renamed
- Easy for straight-line code

$$
\begin{aligned}
v & \leftarrow 4 \\
& \leftarrow v+5 \\
& \leftarrow v 0 \\
& \leftarrow 4 \\
& \leftarrow 6 \\
& \leftarrow v_{0}+5 \\
& \leftarrow v+7
\end{aligned} \begin{aligned}
v_{1} & \leftarrow 6 \\
& \leftarrow v_{1}+7
\end{aligned}
$$

- What about control flow?
$\Rightarrow \phi$-nodes
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, Efficiently Computing Static Single Assignment Form and the Control Dependence Graph, ACM TOPLAS 13(4):451-490, Oct 1991

Copyright © 2012 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

A sparse program representation for data-flow.

Advantages of SSA over use-def chains

- More compact representation

- Easier to update?
- Each use has only one definition
- Definitions explicitly merge values

May still reach multiple ϕ-nodes

What is SSA?

"Flavors" of SSA

Where do we place ϕ-nodes?

- [Condition:]

If two non-null paths $x \rightarrow^{+} z$ and $y \rightarrow^{+} z$ converge at node z, and nodes x and y contain assignments to t (in the original program), then a ϕ-node for t must be inserted at z (in the new program)

- [minimal]

As few as possible subject to condition

- [pruned]

As few as possible subject to condition, and no dead ϕ-nodes

Dominators revisited

Recall

- d dominates v, d DOM v, in a CFG iff all paths from Entry to v include d
- d strictly dominates v

$$
d \operatorname{DOM!~} v \Longleftrightarrow d \operatorname{DOM} v \text { and } d \neq v
$$

$\operatorname{DOM}(v)=$ Dominator of v
$\operatorname{DOM}^{-1}(v)=$ Dominated by v

Dominance Frontiers

The dominance frontier of v is the set of nodes $\operatorname{DF}(v)$ such that:

- v dominates a predecessor of $w \in \operatorname{DF}(v)$, but
- v does not strictly dominate $w \in \operatorname{DF}(v)$

$$
\operatorname{DF}(v)=\{w \mid(\exists u \in \underline{\operatorname{PRED}(}))[v \operatorname{DOM} u] \wedge v \overline{\operatorname{DOM!}} w\}
$$

- Computing DF:

Let

$$
\begin{aligned}
& \underline{\operatorname{SUCC}(S)}=\bigcup_{s \in S} \underline{\operatorname{SUCC}}(s) \\
& \operatorname{DOM!^{-1}(v)}=\operatorname{DOM}^{-1}(v)-\{v\}
\end{aligned}
$$

Then

$$
\operatorname{DF}(v) \quad=\underline{\operatorname{SUCC}}\left(\operatorname{DOM}^{-1}(v)\right)-\text { DOM! }^{-1}(v)
$$

Dominance Frontier: Example

Iterated Dominance Frontier

$\mathrm{DF}(8)=$
DF(9) =
$\mathrm{DF}(2)=$
$\operatorname{DF}(\{8,9\})=$
DF(10) =
$\operatorname{DF}(\{2,8,9,10\})=$

Extend the dominance frontier mapping from nodes to sets of nodes:

$$
\operatorname{DF}(S)=\bigcup_{n \in S} \operatorname{DF}(n)
$$

The iterated dominance frontier $\mathrm{DF}+(S)$ is the limit of the sequence:

$$
\begin{aligned}
& \mathrm{DF}_{1}(S)=\operatorname{DF}(S) \\
& \mathrm{DF}_{i+1}(S)=\operatorname{DF}\left(S \cup \mathrm{DF}_{i}(S)\right)
\end{aligned}
$$

Theorem:
The set of nodes that need ϕ-nodes for any temporary t is the iterated dominance frontier DF $+(S)$, where S is the set of nodes that define t

Inserting ϕ-nodes (minimal SSA)

```
foreach }t\in\mathrm{ Temporaries do
    S\leftarrow{n|t\in\operatorname{Def(n)}}\cupEntry;
    Compute DF + (S);
    foreach n\inDF+(S) do
        Insert a }\phi\mathrm{ -node for }t\mathrm{ at }n\mathrm{ ;
    end
end
```

Input: Set of blocks S
Output: DF $+(S)$
begin
workList $\leftarrow\}$;
$\mathrm{DF}+(S) \leftarrow\{ \} ;$
foreach $n \in S$ do

workList \leftarrow workList $\cup\{n\}$;
end
while workList $\neq\{ \}$ do
take n from workList;
foreach $c \in \operatorname{DF}(n)$ do
if $c \notin \mathrm{DF}+(S)$ then
$\mathrm{DF}+(S) \leftarrow \mathrm{DF}+(S) \cup\{c\} ;$
workList \leftarrow workList $\cup\{c\}$;
end
end
end
end

Inserting fewest ϕ-nodes (pruned SSA)

Renaming the temporaries

Compute global liveness: nodes where each temporary is live-in

```
foreach \(t \in\) Temporaries do
    if \(t \in \overline{\text { Globals }}\) then
        \(S \leftarrow\{n \mid t \in \operatorname{Defs}(n)\} \cup\) Entry;
        Compute DF \(+(S)\);
        foreach \(n \in \mathrm{DF}+(S)\) do
            if \(t\) live-in at \(n\) then
                Insert a \(\phi\)-node for \(t\) at \(n\);
            end
        end
    end
end
```


Renaming the temporaries

begin

foreach $t \in$ Temporaries do count $[t] \leftarrow 0 ;$ stack $[t] \leftarrow$ empty; stack $[t]$.push (0);
Call Rename(Entry);
end
Rename(n) begin
foreach statement $I \in n$ do
if stack $\neq \phi$ then
foreach $t \in U \operatorname{ses}(I)$ do $i \leftarrow \operatorname{stack[}[]$.top; replace use of t with t_{i} in I;
foreach $t \in \operatorname{Defs}(I)$ do
$i \leftarrow++$ count $[t] ;$ stack $[t]$.push (i);
replace def of t with t_{i} in I;
foreach $s \in \operatorname{SUCC}(n)$ do
given n is the j th predecessor of s;
foreach $\phi \in s$ do
given t is the j th operand of ϕ;
$i \leftarrow \operatorname{stack}[t]$.top;
replace j th operand of ϕ with t_{i};
foreach $c \in \operatorname{Children}(n)$ do Rename(c); foreach statement $I \in n, t \in \operatorname{Defs}(I)$ do stack[t].pop();

Issues in translation - critical edge split

Translation - the swap problem
Translating out ϕ nodes.

- The compiler inserts copy statements in the predecessors.
- Is it always safe?
- What if the predecessor has more than one successor?

- $i=1$;
loop
$y=i$
$i=i+1$
endloop
$z=i$
V.Krishna Nandivada (IIT Madras)

(Swap problem) Normal Form, Optimized SSA, Incorrect Translation

- The definition of ϕ function:
- When a block executes all of its ϕ functions execute concurrently before any other statement in the block.
- All the ϕ-functions simultaneously read their appropriate input parameters and simultaneously redefine their targets.

- Simply splitting a critical edge does not help.
- One simple way:
- Step 1: Copy each of the ϕ function arguments to its own temporary name.
- Step 2: Copy the temps to the appropriate ϕ-function targets.
- Disadvantage: Doubles the number of copy operations.
- Way out - Introduce copy only when required.
- Detect cases in which ϕ-functions reference the targets of other ϕ functions in the same block.
- For each cycle of references - introduce copy instructions.

Sparse Conditional Constants

Sparse Conditional constants

- SSA edge: Data flow (def-use) edges in a program in SSA form.
- Basic idea: Instead of passing all the constants from all the control flow edges, pass constants from SSA edges.
- Resulting analysis - faster.

Self reading: Wegman \& Zadeck, Constant Propagation with Conditional Branches, TOPLAS 13(2):181-210, Apr 1991

- Works on two worklists:
- FlowWorkList (contains program flow edges) and
- SSAWorkList (contains SSA edges).
- Each flow edge has an executable flag - tells if the ϕ function at the destination is to be evaluated because of this flow edge initialized to false.

Initialization and termination

- Initialize the FlowWorkList to contain the edges exiting the start node of the program.
- The SSAWorkList is initially empty.
- Halt execution when both worklists become empty.
- Execution may proceed by processing items from either worklist.

Processing flow edges

- if e is a flow edge from FlowWorkList then
- if ExecutableFlag $(e)=$ false then
- ExecutableFlag(e) = true
- Perform Visit- ϕ for all ϕ-nodes at destination node.
- on the destination node, if only one incoming flow-edges is executable then this this is the first visit to the node
- If first visit Perform VisitExpression at the destination node
- if the dest node contains one outgoing CFGedge then add the edge to FlowWorkList

