
CS6013 - Modern Compilers: Theory and Practise
Introduction to Tools

V. Krishna Nandivada

IIT Madras

*

Opening remarks

What have we done so far?
Compiler overview.
Scanning and parsing.

Announcement:
Assignment 1 is out, due in one week. Qs?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 2 / 28

*

Outline

1 Introduction to Tools
JavaCC
Visitor Pattern
Java Tree Builder

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 3 / 28

*

The Java Compiler Compiler (JavaCC)

Can be thought of as “Lex and Yacc for Java.”
It is based on LL(k) rather than LALR(1).
Grammars are written in EBNF.
The Java Compiler Compiler transforms an EBNF grammar into
an LL(k) parser.
TheJavaCC grammar can have embedded action code writtenin
Java, just like a Yacc grammar can have embedded action code
written in C.
The lookahead can be changed by writing LOOKAHEAD(. . .).
The whole input is given in just one file (not two).

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 4 / 28

*

JavaCC input

One file
header
token specification for lexical analysis
grammar

Example of a token specification:

TOKEN : {
< INTEGER_LITERAL: (["1"-"9"] (["0"-"9"])* | "0") >

}

Example of a production:

void StatementListReturn() :
{}
{

(Statement())* "return" Expression() ";"
}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 5 / 28

*

Generating a parser with JavaCC

javacc fortran.jj // generates a parser with a specified name

// Sample Main.java
public class Main {

public static void main(String [] args) {
try {

new FortranParser(System.in).Goal();
System.out.println("Program parsed successfully");

}
catch (ParseException e) {

System.out.println(e.toString());
}

}
}

javac Main.java // Main.java contains a call of the parser
java Main < prog.f // parses the program prog.f

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 6 / 28

*

Outline

1 Introduction to Tools
JavaCC
Visitor Pattern
Java Tree Builder

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 7 / 28

*

The Visitor Pattern

The visitor design pattern is a way of separating an algorithm from
an object structure on which it operates.
Implication: the ability to add new operations to existing object
structures without modifying those structures.
Interesting in object oriented programming and software
engineering.

Requirements
The set of classes must be fixed in advance, and
each class must have an accept method.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 8 / 28

*

Motivate Visitor by summing an integer list

interface List {}

class Nil implements List {}

class Cons implements List {
int head;
List tail;

}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 9 / 28

*

1/3 approach: instanceof and type casts

List l; // The List-object
int sum = 0;
boolean proceed = true;
while (proceed) {

if (l instanceof Nil)
proceed = false;

else if (l instanceof Cons) {
sum = sum + ((Cons) l).head;
l = ((Cons) l).tail;
// Notice the two type casts!

}
}

Adv: The code is written without touching the classes Nil and Cons.
Drawback: The code constantly uses explicit type cast and
instanceof operations.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 10 / 28

*

2/3 approach: dedicated methods

The first approach is NOT object-oriented!
Classical method to access parts of an object: dedicated methods
which both access and act on the subobjects.

interface List {
int sum();

}

We can now compute the sum of all components of a given
List-object ll by writing ll.sum().

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 11 / 28

*

2/3 approach: dedicated methods (contd)

class Nil implements List {
public int sum() {

return 0;
}

}
class Cons implements List {

int head;
List tail;
public int sum() {

return head + tail.sum();
}

}

Adv: The type casts and instanceof operations have disappeared,
and the code can be written in a systematic way.
Drawback: For each new operation, new dedicated methods
have to be written, and all classes must be recompiled.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 12 / 28

*

3/3 approach: Visitor pattern

The Idea:
Divide the code into an object structure and a Visitor.
Insert an accept method in each class. Each accept method takes
a Visitor as argument.
A Visitor contains a visit method for each class (overloading!) A
visit method for a class C takes an argument of type C.

interface List {
void accept(Visitor v);

}
interface Visitor {

void visit(Nil x);
void visit(Cons x);

}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 13 / 28

*

3/3 approach: Visitor pattern

The purpose of the accept methods is to invoke the visit method in
the Visitor which can handle the current object.

class Nil implements List {
public void accept(Visitor v) {

v.visit(this);
}

}
class Cons implements List {

int head;
List tail;
public void accept(Visitor v) {

v.visit(this);
}

}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 14 / 28

*

3/3 approach: Visitor pattern

The control flow goes back and forth between the visit methods in
the Visitor and the accept methods in the object structure.

class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil x) {}
public void visit(Cons x) {

sum = sum + x.head;
x.tail.accept(this);

}
}
.....
SumVisitor sv = new SumVisitor();
l.accept(sv);
System.out.println(sv.sum);

The visit methods describe both
1) actions, and 2) access of subobjects.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 15 / 28

*

3/3 approach: Visitor pattern control flow

interface List {
void accept(Visitor v); }

interface Visitor {
void visit(Nil x);
void visit(Cons x); }

class Nil implements List {
public void accept(Visitor v) {

v.visit(this); } }
class Cons implements List {
int head;
List tail;
public void accept(Visitor v) {

v.visit(this); } }

class SumVisitor implements Visitor {
int sum = 0;
public void visit(Nil x) {}
public void visit(Cons x) {

sum = sum + x.head;
x.tail.accept(this); } }

.....
SumVisitor sv = new SumVisitor();
l.accept(sv);

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 16 / 28

*

Comparison

detail Frequent type casts Frequent recompilation
1. Instanceof + type-cast Yes No
2. Dedicated methods No Yes
3. Visitor pattern No No

The Visitor pattern combines the advantages of the two other
approaches.

Advantage of Visitors: New methods without recompilation!

Requirement for using Visitors: All classes must have an accept
method.

Tools that use the Visitor pattern:

JJTree (from Sun Microsystems), the Java Tree Builder (from Purdue
University), both frontends for The JavaCC from Sun Microsystems.

ANTLR generates default visitors for its parse trees.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 17 / 28

*

Visitors: Summary

Visitor makes adding new operations easy. Simply write a new
visitor.
A visitor gathers related operations. It also separates unrelated
ones.
Adding new classes to the object structure is hard. Key consid-
eration: are you most likely to change the algorithm applied over
an object structure, or are you most like to change the classes of
objects that make up the structure.
Visitors can accumulate state.
Visitor can break encapsulation. Visitor’s approach assumes that
the interface of the data structure classes is powerful enough to let
visitors do their job. As a result, the pattern often forces you to
provide public operations that access internal state, which may
compromise its encapsulation.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 18 / 28

*

Fun Assignment 1

Write the three versions of code corresponding to each of the
above discussed approaches.
Populate the lists with ‘N’ number of elements.
Print the Sum of elements.
Convince yourself about the programmability with Visitor pattern.
See which of the three approaches is more efficient?
Vary ‘N’ - 10; 100; 1000; 100,0000; 10,00,000.
Make a table and report the numbers.
Write a paragraph or two reasoning about the performance.
Mention any thoughts on performance improvement.

The best answer(s) will be recognized.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 19 / 28

*

Outline

1 Introduction to Tools
JavaCC
Visitor Pattern
Java Tree Builder

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 20 / 28

*

Java Tree builder

The Java Tree Builder (JTB) has been developed here at Purdue
(my ex group).
JTB is a frontend for The Java Compiler Compiler.
JTB supports the building of syntax trees which can be traversed
using visitors. Q: Why is it interesting?
JTB transforms a bare JavaCC grammar into three components:

a JavaCC grammar with embedded Java code for building a syntax
tree;
one class for every form of syntax tree node; and
a default visitor which can do a depth-first traversal of a syntax tree.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 21 / 28

*

The Java Tree Builder

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 22 / 28

*

Invoking JTB

jtb fortran.jj // generates jtb.out.jj
javacc jtb.out.jj // generates a parser with a specified name
// Sample Main.java:
public class Main {

public static void main(String [] args) {
try {

Node root = new FortranParser(System.in).Goal();
System.out.println("Program parsed successfully");
root.accept(new GJNoArguDepthFirst());

}
catch (ParseException e) {

System.out.println(e.toString());
}

}
}

javac Main.java //Main.java contains a call of the parser
and calls to visitors

java Main < prog.f //builds a syntax tree for prog.f, and
executes the visitors

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 23 / 28

*

(simplified) Example
For example, consider the Java production

void Assignment() : {}
{PrimaryExpression() AssignmentOperator() Expression()}

JTB produces:

Assignment Assignment () :
{ PrimaryExpression n0;
AssignmentOperator n1;
Expression n2; {} }

{ n0=PrimaryExpression()
n1=AssignmentOperator()
n2=Expression()
{ return new Assignment(n0,n1,n2); }

}

Notice that the production returns a syntax tree represented as an
Assignment object.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 24 / 28

*

(simplified) Example

JTB produces a syntax-tree-node class for Assignment:

public class Assignment implements Node {
PrimaryExpression f0; AssignmentOperator f1;
Expression f2;
public Assignment(PrimaryExpression n0,

AssignmentOperator n1,
Expression n2)

{ f0 = n0; f1 = n1; f2 = n2; }
public void accept(visitor.Visitor v) {

v.visit(this);
} }

Notice the accept method; it invokes the method visit for
Assignment in the default visitor.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 25 / 28

*

(simplified) Example

The default visitor looks like this:

public class DepthFirstVisitor implements Visitor {
...
//
// f0 -> PrimaryExpression()
// f1 -> AssignmentOperator()
// f2 -> Expression()
//
public void visit(Assignment n) {

n.f0.accept(this);
n.f1.accept(this);
n.f2.accept(this);

} }

Notice the body of the method which visits each of the three
subtrees of the Assignment node.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 26 / 28

*

(simplified) Example (multiple visitors in action)

Here is an example of a program which operates on syntax trees for Java
programs. The program prints the right-hand side of every assignment. The
entire program is six lines:

public class VprintAssignRHS extends DepthFirstVisitor {
void visit(Assignment n) {

VPrettyPrinter v = new VPrettyPrinter();
n.f2.accept(v); v.out.println();
n.f2.accept(this);

} }

When this visitor is passed to the root of the syntax tree, the depth-first
traversal will begin, and when Assignment nodes are reached, the method
visit in VprintAssignRHS is executed.

VPrettyPrinter is a visitor that pretty prints Java programs.

JTB is bootstrapped.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 27 / 28

*

Closing remarks

What have we do today?
JavaCC
Visitor pattern
JTB

Reading/Todo:
Visitor pattern (from the Design patterns book)
Download and play with JTB, JavaCC

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 28 / 28

	Introduction to Tools
	JavaCC
	Visitor Pattern
	Java Tree Builder

