
CS6013 - Modern Compilers: Theory and Practise
Semantic Analysis

V. Krishna Nandivada

IIT Madras

*

Semantic Processing

The compilation process is driven by the syntactic structure of the
program as discovered by the parser
Semantic routines:

interpret meaning of the program based on its syntactic structure
two purposes:

finish analysis by deriving context-sensitive information
begin synthesis by generating the IR or target code

associated with individual productions of a context free grammar
or subtrees of a syntax tree

Copyright c©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 2 / 64

*

Context-sensitive analysis

What context-sensitive questions might the compiler ask?
1 Is x scalar, an array, or a function?
2 Is x declared before it is used?
3 Are any names declared but not used?
4 Which declaration of x does this reference?
5 Is an expression type-consistent?
6 Does the dimension of a reference match the declaration?
7 Where can x be stored? (heap, stack, . . .)
8 Does *p reference the result of a malloc()?
9 Is x defined before it is used?

10 Is an array reference in bounds?
11 Does function foo produce a constant value?
12 Can p be implemented as a memo-function?

These cannot be answered with a context-free grammar
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 3 / 64

*

Context-sensitive analysis

Why is context-sensitive analysis hard?
answers depend on values, not syntax
questions and answers involve non-local information
answers may involve computation

Several alternatives:
abstract syntax tree specify non-local computations

(attribute grammars) automatic evaluators

symbol tables central store for facts
express checking code

language design simplify language
avoid problems

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 4 / 64

*

Alternatives for semantic processing

code
object

code
source

IRIR

tokens

syntactic structure

Scanner

Routines
Semantic

Parser

Optimizer Code
Generator

Table

Symbol

one-pass analysis and synthesis
one-pass compiler plus peephole
one-pass analysis & IR synthesis + code generation pass
multipass analysis (e.g. gcc)
multipass synthesis (e.g. gcc)
language-independent and retargetable (e.g. gcc) compilers

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 5 / 64

*

One-pass compilers

interleave scanning, parsing, checking, and translation
no explicit IR
generates target machine code directly
emit short sequences of instructions at a time on each parser
action (symbol match for predictive parsing/LR reduction)
⇒ little or no optimization possible (minimal context)

Can add a peephole optimization pass
extra pass over generated code through window (peephole) of a
few instructions
smoothes “rough edges” between segments of code emitted by
one call to the code generator

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 6 / 64

*

One-pass analysis/synthesis + code generation

Generate explicit IR as interface to code generator
linear – e.g., tuples
code generator alternatives:

one tuple at a time
many tuples at a time for more context and better code

Advantages
back-end independent from front-end
⇒ easier retargetting
IR must be expressive enough for different machines
add optimization pass later (multipass synthesis)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 7 / 64

*

Multipass analysis

Historical motivation: constrained address spaces
Several passes, each writing output to a file

1 scan source file, generate tokens (place identifiers and constants
directly into symbol table)

2 parse token file
generate semantic actions or linearized parse tree

3 parser output drives:
declaration processing to symbol table file
semantic checking with synthesis of code/linear IR

Other reasons for multipass analysis (besides file I/O)
language may require it – e.g., declarations after use:

1 scan, parse and build symbol table
2 semantic checks and code/IR synthesis

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 8 / 64

*

Multipass synthesis

Passes operate on linear or tree-structured IR
Options

code generation and peephole optimization
multipass transformation of IR: machine-independent and
machine-dependent optimizations
high-level machine-independent IR to lower-level IR prior to code
generation
language-independent front ends
(first translate to high-level IR)
retargettable back ends (first transform into low-level IR)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 9 / 64

*

Multipass synthesis: e.g., GNU C compiler (gcc)

language-dependent parser builds language-independent trees
trees drive generation of machine-independent low-level Register
Transfer Language for machine-independent optimization
From RTL to target machine code and peephole optimization

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 10 / 64

*

Syntax directed translation

Parser must do more than accept/reject input; must also initiate
translation.
Semantic actions are routines executed by parser for each
syntactic symbol recognized.
Each symbol has associated semantic value (e.g., parse tree
node).
Semantic actions need to be specified for each production
Challenges: How to execute the actions, how to specify the
actions?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 11 / 64

*

LL parsers and actions

How does an LL parser handle (aka - execute) actions?
Expand productions before scanning RHS symbols, so:

push actions onto parse stack like other grammar symbols
pop and perform action when it comes to top of parse stack

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 12 / 64

*

LL parsers and actions

push EOF
push Start Symbol
token← next token()
repeat

pop X
if X is a terminal or EOF then

if X = token then
token← next token()

else error()
else if X is an action

perform X
else /* X is a non-terminal */

if M[X,token] = X→ Y1Y2 · · ·Yk then
push Yk,Yk−1, · · · ,Y1

else error()
until X = EOF

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 13 / 64

*

LR parsers and action symbols

What about LR parsers?
Scan entire RHS before applying production, so:

cannot perform actions until entire RHS scanned
can only place actions at very end of RHS of production
introduce new marker non-terminals and corresponding
productions to get around this restriction†

A→ w action β

becomes
A→Mβ

M→ w action

†yacc, bison, CUP do this automatically

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 14 / 64

*

Action-controlled semantic stacks

Approach:
stack is managed explicitly by action routines
actions take arguments from top of stack
actions place results back on stack

Advantages:
actions can directly access entries in stack without
popping (efficient)

Disadvantages:
implementation is exposed
action routines must include explicit code to manage
stack (or use stack abstract data type).

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 15 / 64

*

LR parser-controlled semantic stacks

Idea: let parser manage the semantic stack
LR parser-controlled semantic stacks:

parse stack contains already parsed symbols
maintain semantic values in parallel with their symbols
add space in parse stack or parallel stack for semantic values
every matched grammar symbol has semantic value
pop semantic values along with symbols

⇒ LR parsers have a very nice fit with semantic processing

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 16 / 64

*

LL parser-controlled semantic stacks

Problems:
parse stack contains predicted symbols, not yet matched
often need semantic value after its corresponding symbol is
popped

Solution:
use separate semantic stack
push entries on semantic stack along with their symbols
on completion of production, pop its RHS’s semantic values

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 17 / 64

*

Specifying the actions: Attribute grammars

Idea: attribute the syntax tree

can add attributes (fields) to each node
specify equations to define values (unique)
can use attributes from parent and children

Example: to ensure that constants are immutable:
add type and class attributes to expression nodes
rules for production on := that

1 check that LHS.class is variable
2 check that LHS.type and RHS.type are consistent or conform

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 18 / 64

*

Attribute grammars

To formalize such systems Knuth introduced attribute grammars:
grammar-based specification of tree attributes
value assignments associated with productions
each attribute uniquely, locally defined
label identical terms uniquely

Can specify context-sensitive actions with attribute grammars

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 19 / 64

*

Example

PRODUCTION SEMANTIC RULES

D → T L L.in := T.type
T → int T.type := integer
T → real T.type := real
L → L1 , id L1.in := L.in

addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 20 / 64

*

Example: Evaluate signed binary numbers

PRODUCTION SEMANTIC RULES

NUM → SIGN LIST LIST.pos := 0
if SIGN.neg

NUM.val := -LIST.val
else

NUM.val := LIST.val
SIGN→ + SIGN.neg := false
SIGN→ - SIGN.neg := true
LIST → BIT BIT.pos := LIST.pos

LIST.val := BIT.val
LIST → LIST1 BIT LIST1.pos := LIST.pos + 1

BIT.pos := LIST.pos
LIST.val := LIST1.val + BIT.val

BIT → 0 BIT.val := 0
BIT → 1 BIT.val := 2BIT.pos

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 21 / 64

*

Example (continued)

The attributed parse tree for -101:

val: -5NUM
neg: TSIGN

-

pos: 0val: 5LIST
pos: 1val: 4LIST

pos: 2val: 4LIST
pos: 2val: 4BIT

1

pos: 1val: 0BIT
0

pos: 0val: 1BIT

1

val and neg are
synthetic attributes
pos is an inherited
attribute

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 22 / 64

*

Dependences between attributes

values are computed from constants & other attributes
synthetic attribute – value computed from children
inherited attribute – value computed from siblings & parent
key notion: induced dependency graph

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 23 / 64

*

The attribute dependency graph

nodes represent attributes
edges represent flow of values
graph is specific to parse tree
size is related to parse tree’s size
can be built alongside parse tree

The dependency graph must be acyclic
Evaluation order:

topological sort the dependency graph to order attributes
using this order, evaluate the rules

The order depends on both the grammar and the input string

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 24 / 64

*

Example (continued)

The attribute dependency graph:val: -5NUM
neg: TSIGN

-

pos: 0val: 5LIST0pos: 1val: 4LIST1pos: 2val: 4LIST2 pos: 2val: 4BIT0

1

pos: 1val: 0BIT1

0

pos: 0val: 1BIT2

1

0

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 25 / 64

*

Example: A topological order

1 SIGN.neg
2 LIST0.pos
3 LIST1.pos
4 LIST2.pos
5 BIT0.pos
6 BIT1.pos
7 BIT2.pos
8 BIT0.val
9 LIST2.val

10 BIT1.val
11 LIST1.val
12 BIT2.val
13 LIST0.val
14 NUM.val

Evaluating in this order yields NUM.val: -5

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 26 / 64

*

Attribute Grammars

Advantages
clean formalism
automatic generation of evaluator
high-level specification

Disadvantages
evaluation strategy determines efficiency
increased space requirements
parse tree evaluators need dependency graph
results distributed over tree
circularity testing

Intel’s 80286 Pascal compiler used an attribute grammar evaluator to
perform context-sensitive analysis.
Historically, attribute grammar evaluators have been deemed too large
and expensive for commercial-quality compilers.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 27 / 64

*

Other uses

the Cornell Program Synthesizer
generate Ph.D. theses and papers
odd forms of compiling — VHDL compiler
structure editors for code, theorems, . . .

Attribute grammars are a powerful formalism
relatively abstract
automatic evaluation

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 28 / 64

*

Evaluation - for Type checking (MiniJava)

We need generate type information.
For fields, variables, expressions, functions.

Need to enforce types:
Assignments, function calls, expressions.

We need to remember the type information and recall them
as/where required.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 29 / 64

*

Symbol tables

For compile-time efficiency, compilers use a symbol table:
associates lexical names (symbols) with their attributes

What items should be entered?
variable names
defined constants
procedure and function names
literal constants and strings
source text labels
compiler-generated temporaries (we’ll get there)

A symbol table is a compile-time structure
Separate table for structure layouts (types)

(field offsets and lengths)

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 30 / 64

*

Symbol table information

What kind of information might the compiler need?
textual name
data type
dimension information (for aggregates)
declaring procedure
lexical level of declaration
storage class (base address)
offset in storage
if record, pointer to structure table
if parameter, by-reference or by-value?
can it be aliased? to what other names?
number and type of arguments to functions

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 31 / 64

*

Symbol table organization

How should the table be organized?
Linear List

O(n) probes per lookup
easy to expand — no fixed size
one allocation per insertion

Ordered Linear List
O(log2 n) probes per lookup using binary search
insertion is expensive (to reorganize list)

Binary Tree
O(n) probes per lookup — unbalanced
O(log2 n) probes per lookup — balanced
easy to expand — no fixed size
one allocation per insertion

Hash Table
O(1) probes per lookup — on average
expansion costs vary with specific scheme

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 32 / 64

*

Nested scopes: block-structured symbol tables

What information is needed?
when asking about a name, want most recent declaration
declaration may be from current scope or outer scope
innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

void put (Symbol key, Object value)
bind key to value
Object get(Symbol key)
return value bound to key
void beginScope()
remember current state of table
void endScope()
close current scope and restore table to state at most recent open
beginScope

May need to preserve list of locals for the debugger
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 33 / 64

*

Nested scopes: complications

Fields and records:
give each record type its own symbol table

or assign record numbers to qualify field names in table
with R do 〈stmt〉:

all IDs in 〈stmt〉 are treated first as R.id
separate record tables:
chain R’s scope ahead of outer scopes
record numbers:

open new scope, copy entries with R’s record number
or chain record numbers: search using these first

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 34 / 64

*

Nested scopes: complications (cont.)

Implicit declarations:
labels:
declare and define name (in Pascal accessible only within
enclosing scope)
Ada/Modula-3/Tiger FOR loop:
loop index has type of range specifier

Overloading:
link alternatives (check no clashes), choose based on context

Forward references:
bind symbol only after all possible definitions⇒ multiple passes

Other complications:
packages, modules, interfaces — IMPORT, EXPORT

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 35 / 64

*

Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

variables: type, procedure level, frame offset
types: type descriptor, data size/alignment
constants: type, value
procedures: formals (names/types), result type, block information
(local decls.), frame size

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 36 / 64

*

Type expressions

Type expressions are a textual representation for types:
1 basic types: boolean, char, integer, real, etc.
2 type names
3 constructed types (constructors applied to type expressions):

1 array(I,T) denotes an array of T indexed over I
e.g., array(1 . . .10, integer)

2 products: T1×T2 denotes Cartesian product of type expressions T1
and T2

3 records: fields have names
e.g., record((a× integer),(b× real))

4 pointers: pointer(T) denotes the type “pointer to an object of type T”
5 functions: D→ R denotes the type of a function mapping domain

type D to range type R
e.g., integer× integer→ integer

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 37 / 64

*

Type descriptors

Type descriptors are compile-time structures representing type
expressions
e.g., char× char→ pointer(integer)!�
char char

pointer

integer

or

!�
char

pointer

integer

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 38 / 64

*

Type compatibility

Type checking needs to determine type equivalence
Two approaches:

Name equivalence: each type name is a distinct type
Structural equivalence: two types are equivalent iff. they
have the same structure (after substituting type
expressions for type names)

s≡ t iff. s and t are the same basic types
array(s1,s2)≡ array(t1, t2) iff. s1 ≡ t1 and s2 ≡ t2
s1× s2 ≡ t1× t2 iff. s1 ≡ t1 and s2 ≡ t2
pointer(s)≡ pointer(t) iff. s≡ t
s1→ s2 ≡ t1→ t2 iff. s1 ≡ t1 and s2 ≡ t2

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 39 / 64

*

Type compatibility: example

Consider:
type link = ↑cell;
var next : link;

last : link;
p : ↑cell;
q, r : ↑cell;

Under name equivalence:
next and last have the same type
p, q and r have the same type
p and next have different type

Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct
type definitions as distinct types, so p has different type from q and r

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 40 / 64

*

Type compatibility: Pascal name equivalence

Build compile-time structure called a type graph:
each constructor or basic type creates a node
each name creates a leaf (associated with the type’s descriptor)next lastlink = pointer cellpointer

p
pointer

q r
Type expressions are equivalent if they are represented by the same
node in the graph

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 41 / 64

*

Type compatibility: recursive types

Consider:
type link = ↑cell;

cell = record
info : integer;
next : link;
end;

We may want to eliminate the names from the type graph
Eliminating name link from type graph for record:

record=cell ��info integer

�next pointercell
V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 42 / 64

*

Type compatibility: recursive types

Allowing cycles in the type graph eliminates cell:

record=cell ��info integer

�next pointer

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 43 / 64

*

Type checking minijava

Populate symbol table
/**
* f7 -> (VarDeclaration())*
* f8 -> (Statement())*
* f9 -> "return"

* f10 -> Expression()

*/
public R visit(MethodDeclaration n, A argu) {

currMethod = new currMethod(n, currClass);
// build a symbol table for
// the current method

n.f7.accept();
n.f8.accept();
n.f10.accept();

}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 44 / 64

*

Type checking minijava

Populate symbol table(cont)
/**
* f0 -> Type()

* f1 -> Identifier()

*/
public R visit(VarDeclaration n, A argu) {

R ret=null;
Type t = n.f0.accept();
String id = n.f1.toString();
if (currMethod == null) {
if (!currClass.put(id, t))
// error already defined in the class.

} else if (!currMethod.put(id, t))
// error already defined in the method.

return ret;
}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 45 / 64

*

Type checking minijava

Check for type correctness
/**
* f0 -> PrimaryExpression()

* f1 -> "+"

* f2 -> PrimaryExpression()

*/
public R visit(PlusExpression n, A argu) {

Type t1 = n.f0.accept(this, argu);
if (! t1 instanceof IntegerType) ...

// error -- lhs of plus expr
// should be integer

Type t2 = n.f2.accept(this, argu);
if (! t2 instanceof IntegerType) ...

// error -- rhs of plus expr
// should be integer

return new IntegerType();
}

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 46 / 64

*

Food for though

Overloaded addition operation.
Assignment op.
Function calls.
Inheritance.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 47 / 64

*

Storage classes of variables

During code generation, each variable is assigned an address
(addressing method), approrpriate to its storage class.

A local variable is not assigned a fixed machine address (or
relative to the base of a module) – rather a stack location that is
accessed by an offest from a register whose value does not point
to the same location, each time the procedure is invoked. Why is it
interesting?
Four major storage classes: global, stack, stack static, registers

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 48 / 64

*

Intermediate representations

Why use an intermediate representation?
1 break the compiler into manageable pieces

– good software engineering technique
2 simplifies retargeting to new host

– isolates back end from front end
3 simplifies handling of “poly-architecture” problem

– m lang’s, n targets⇒ m+n components (myth)
4 enables machine-independent optimization

– general techniques, multiple passes
An intermediate representation is a compile-time data structure

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 49 / 64

*

Intermediate representations

front back
end end

source
code code

machineoptimizer
IR IR

Generally speaking:
front end produces IR
optimizer transforms that representation into an equivalent
program that may run more efficiently
back end transforms IR into native code for the target machine

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 50 / 64

*

Intermediate representations

Representations talked about in the literature include:
abstract syntax trees (AST)
linear (operator) form of tree
directed acyclic graphs (DAG)
control flow graphs
program dependence graphs
static single assignment form
3-address code
hybrid combinations

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 51 / 64

*

Intermediate representations

Important IR Properties
ease of generation
ease of manipulation
cost of manipulation
level of abstraction
freedom of expression
size of typical procedure
original or derivative

Subtle design decisions in the IR have far reaching effects on the
speed and effectiveness of the compiler.
Level of exposed detail is a crucial consideration.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 52 / 64

*

IR design issues

Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?
What is the IR level: close to language/machine.
Multiple IRs in a compiler: for example, High, Medium and Low

In reality, the variables etc are also only pointers to other data
structures.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 53 / 64

*

Intermediate representations

Broadly speaking, IRs fall into three categories:
Structural

structural IRs are graphically oriented
examples include trees, DAGs
heavily used in source to source translators
nodes, edges tend to be large

Linear
pseudo-code for some abstract machine
large variation in level of abstraction
simple, compact data structures
easier to rearrange

Hybrids
combination of graphs and linear code
attempt to take best of each
e.g., control-flow graphs
Example: GCC Tree IR.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 54 / 64

*

Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.�hid:xi �hnum:2i hid:yi
This represents “x − 2 ∗ y”.
For ease of manipulation, can use a linearized (operator) form of the
tree.
e.g., in postfix form: x 2 y ∗ −

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 55 / 64

*

Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each
value.

x := 2 ∗ y + sin(2∗x)
z := x / 2

:=
hid:xi +

� sin

hid:yi
hnum:2i

�
hid:xi

:=
hid: zi =

Q: What to do for matching names present across different functions?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 56 / 64

*

Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

nodes in the graph are basic blocks
straight-line blocks of code
edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
s1

else
s2

s3

x=y?

s2s1

s3

falsetrue

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 57 / 64

*

3-address code

At most one operator on the right side of an instruction.
3-address code can mean a variety of representations.
In general, it allow statements of the form:
x ← y op z

with a single operator and, at most, three names.
Simpler form of expression:
x - 2 * y

becomes
t1 ← 2 * y
t2 ← x - t1

Advantages
compact form (direct naming)
names for intermediate values

Can include forms of prefix or postfix code

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 58 / 64

*

3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.

An address can be
A name: source variable program name or pointer to the Symbol
Table same.
A constant: Constants in the program.
Compiler generated temporary:

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 59 / 64

*

3-address code

Typical instructions types include:

1 assignments x ← y op z

2 assignments x ← op y

3 assignments x ← y[i]

4 assignments x ← y

5 branches goto L

6 conditional branches
if x relop y goto L

7 procedure calls
param x1, param x2, . . .param xn

and
call p, n

8 address and pointer assignments

How to translate:

if (x) S1 else S2

?

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 60 / 64

*

3-address code - implementation

Quadruples
Has four fields: op, arg1, arg2 and result.
Some instructions (e.g. unary minus) do not use arg2.
For copy statement : the operator itself is =; for others it is implied.
Instructions like param don’t use neither arg2 nor result.
Jumps put the target label in result.

x - 2 * y

op arg1 arg2 result
(1) load t1 y
(2) loadi t2 2
(3) mult t3 t2 t1
(4) load t4 x
(5) sub t5 t4 t3

simple record structure with four fields
easy to reorder
explicit names

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 61 / 64

*

3-address code - implementation

Triples
x - 2 * y

(1) load y
(2) loadi 2
(3) mult (1) (2)
(4) load x
(5) sub (4) (3)

use table index as implicit name
require only three fields in record
harder to reorder

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 62 / 64

*

3-address code - implementation

Indirect Triples
x - 2 * y

exec-order stmt op arg1 arg2
(1) (100) (100) load y
(2) (101) (101) loadi 2
(3) (102) (102) mult (100) (101)
(4) (103) (103) load x
(5) (104) (104) sub (103) (102)

simplifies moving statements (change the execution order)
more space than triples
implicit name space management

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 63 / 64

*

Indirect triples advantage

for i:=1 to 10 do
begin
a=b*c
d=i*3
end

(a)

Optimized version

a=b*c
for i:=1 to 10 do
begin
d=i*3
end

(b)

(1) := 1 i
(2) * b c
(3) := (2) a
(4) * 3 i
(5) := (4) d
(6) + l i
(7) LE I 10
(8) IFT go (2)

Execution Order (a) : 12345678
Execution Order (b) : 23145678

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 64 / 64

*

Other hybrids

An attempt to get the best of both worlds.
graphs where they work
linear codes where it pays off

Unfortunately, there appears to be little agreement about where to use
each kind of IR to best advantage.
For example:

PCC and FORTRAN 77 directly emit assembly code for control flow,
but build and pass around expression trees for expressions.
Many people have tried using a control flow graph with low-level,
three address code for each basic block.

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 65 / 64

*

Intermediate representations

But, this isn’t the whole story
Symbol table:

identifiers, procedures
size, type, location
lexical nesting depth

Constant table:
representation, type
storage class, offset(s)

Storage map:
storage layout
overlap information
(virtual) register assignments

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 66 / 64

*

Advice

Many kinds of IR are used in practice.
There is no widespread agreement on this subject.
A compiler may need several different IRs
Choose IR with right level of detail
Keep manipulation costs in mind

V.Krishna Nandivada (IIT Madras) CS6013 - Aug 2012 67 / 64

