CS6848 - Principles of Programming Languages Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

Interpreters

A Environment
B Cells
C Closures
D Recursive environments
E Interpreting OO (MicroJava) programs.

Introduction

- An interpreter executes a program as per the semantics. programming language. of the meaning of programming languages and models of computation.
- Formal ways of describing the programming semantics. described directly (in the context of an abstract machine). interpreters we have seen earlier.
- Denotational Semantics - each phrase in the language is logical axioms that apply to them.
- An interpreter can be viewed as an executable description of the semantics of a
- Program semantics is the field concerned with the rigorous mathematical study
- Operational semantics - execution of programs in the language is
- Big-step semantics (with environments) -is close in spirit to the
- Small-step semantics (with syntactic substitution) - formalizes the inlining of a procedure call as an approach to computation. translatedto a denotation - a phrase in some other language.
- Axiomatic semantics - gives meaning to phrases by describing the
- The traditional syntax for procedures in the lambda-calculus uses the Greek letter λ (lambda), and the grammar for the lambda-calculus can be written as:
$e \quad::=x|\lambda x . e| e_{1} e_{2}$
$x \in$ Identifier (infinite set of variables)
- Brackets are only used for grouping of expressions. Convention for saving brackets:
- that the body of a λ-abstraction extends "as far as possible."
- For example, $\lambda x . x y$ is short for λx. $(x y)$ and not $(\lambda x . x) y$.
- Moreover, $e_{1} e_{2} e_{3}$ is short for $\left(e_{1} e_{2}\right) e_{3}$ and not $e_{1}\left(e_{2} e_{3}\right)$.

V.Krishna Nandivada (IIT Madras)

Big step semantics

Here is a big-step semantics with environments for the lambda-calculus.

$$
\begin{array}{lll}
w, v & \in & \text { Value } \\
v & ::= & c \mid(\lambda x . e, \rho) \\
\rho & \in & \text { Environment } \\
\rho & ::= & x_{1} \mapsto v_{1}, \cdots x_{n} \mapsto v_{n}
\end{array}
$$

The semantics is given by the following five rules:

$$
\begin{gather*}
\rho \vdash x \triangleright v(\rho(x)=v) \tag{1}\\
\rho \vdash \lambda x . e \triangleright(\lambda x . e, \rho) \tag{2}\\
\rho \vdash e_{1} \triangleright\left(\lambda x . e, \rho^{\prime}\right) \quad \rho \vdash e_{2} \triangleright v \quad \rho^{\prime}, x \mapsto v \vdash e \triangleright w \tag{3}\\
\rho \vdash e_{1} e_{2} \triangleright w \\
\rho \vdash c \triangleright c
\end{gather*}
$$

(5)

$$
\begin{equation*}
\text { (5) } \frac{\rho \vdash e \triangleright c_{1}}{\rho \vdash \operatorname{succ} e \triangleright c_{2}}\left\lceil c_{2}\right\rceil=\left\lceil c_{1}\right\rceil+1 \tag{4}
\end{equation*}
$$

Outline

V.Krishna Nandivada (IIT Madras)

Small step semantics (contd.)

We can also calculate like this:

```
(foo
(+ 4 1) 7)
=> (foo 5 7)
=> ((lambda (x y) (+ (* x 3) y))
    5 7)
=> (+ (* 5 3) 7)
```

=> 22

Small step semantics

- In small step semantics, one step of computation = either one primitive operation, or inline one procedure call.
- We can do steps of computation in different orders:
> (define foo
(lambda ($\mathrm{x} y$ y) (+ (* x 3) y$)$))
> (foo (+ 4 1) 7)
22
Let us calculate:
(foo (+ 4 1) 7)
$=>\quad((l a m b d a \quad(x y) \quad(+(* x 3) y))$
(+ 4 1) 7)
$\left.\Rightarrow \quad\left(+\left(\begin{array}{llll}* & (+4 & 1\end{array}\right) 3\right) 7\right)$
=> 22

A variable x occurs free in an expression E iff x is not bound in E.Examples:

- no variables occur free in the expression

```
(lambda (y) ((lambda (x) x) y))
```

- the variable y occurs free in the expression

```
((lambda (x) x) y)
```

An expression is closed if it does not contain free variables. A program is a closed expression.

Methods of procedure application

Methods of procedure application

Call by value

Always evaluate the arguments first

- Example: Scheme, ML, C, C++, Java

Difference

- Q: If we run the same program using these two semantics, can we get different results?
- A:
- If the run with call-by-value reduction terminates, then the run with call- by-name reduction terminates. (But the converse is in general false).
- If both runs terminate, then they give the same result.

Call by name (or lazy-evaluation)

```
((lambda (x) x)
    ((lambda (y) (+ y 9) 5))
=> ((lambda (y) (+ y 9)) 5)
=> (+ 5 9)
=> 14
```

Avoid the work if you can

- Example: Miranda and Haskell

Lazy or eager: Is one more efficient? Are both the same?

Call by value - too eager?

Sometimes call-by-value reduction fails to terminate, even though call-by- name reduction terminates.

```
(define delta (lambda (x) (x x)))
    (delta delta)
=> (delta delta)
=> (delta delta)
=> ...
```

Consider the program:

```
(define const (lambda (y) 7))
(const (delta delta))
```

- call by value reduction fails to terminate; cannot finish evaluating the operand.
- call by name reduction terminates.
- call by value is more efficient but may not terminate
- call by name may evaluate the same expression multiple times.
- Lazy languages uses - call-by-need.
- Languages like Scala allow both call by value and name!

Notes on reduction

- Applicative order reduction - A β reduction can be applied only if both the operator and the operand are already values. Else?
- Applicative order reduction (call by value), example: Scheme, C, Java.
- A procedure call which is ready to be "inlined" is called a beta-redex. Example ((lambda (var) body) rand)
- In lambda-calculus call-by-value and call-by-name reduction allow the choosing of arbitrary beta-redex.
- The process of inlining a beta-redex for some reducible expression is called beta-reduction.
((lambda (var) body) rand) body[var:=rand]
- η conversion: A simple optimization:

$$
(\lambda x(E x))=E
$$

- A conversion when applied in the left-to-right direction is called a reduction.

Notes on reduction

- Is there a reduction strategy which is guaranteed to find the answer if it exists? - leftmost reduction (lazy evaluation).
- leftmost-reduction - reduce the β-redex whose left parenthesis comes first
- A lambda expression is in normal form if it contains no β-redexes.
- An expression in normal form - cannot be further reduced. e.g. constant or (lambda (x) x)
- Church-Rosser theorem \rightarrow expression can have at most one normal form.
- leftmost reduction will find the normal form of an expression if one exists.

Name clashes

- Care must be taken to avoid name clashes. Example:

```
((lambda (x)
                    (lambda (y) (y x)))
            (y 5))
```

should not be transformed into
(lambda (y) (y (y 5)))

- The reference to y in (y 5) should remain free!
- The solution is to change the name of the inner variable name y to some name, say z, that does not occur free in the argument y 5 .

```
        ((lambda (x)
            (lambda (z) (z x)))
            (y 5))
=> (lambda (z) (z (y x))) ;; the y present.
```


Substitution

- The notation $e[x:=M]$ denotes e with M substituted for every free occurrence of x in such that a way that name clashes are avoided.
- We will define $e[x:=M]$ inductively on e.

$$
\begin{array}{lll}
x[x:=M] & \equiv M \\
y[x:=M] & \equiv & y(x \neq y) \\
\left(\lambda x \cdot e_{1}\right)[x:=M] & \equiv & \left(\lambda x \cdot e_{1}\right) \\
\left(\lambda y \cdot e_{1}\right)[x:=M] & \equiv & \lambda z \cdot\left(\left(e_{1}[y:=z]\right)[x:=M]\right) \\
& & \text { (where } x \neq y \text { and } z \text { does not } \\
& & \text { occur free in } \left.e_{1} \text { or } M\right) . \\
\left(e_{1} e_{2}\right)[x:=M] & \equiv & \left(e_{1}[x:=M]\right)\left(e_{2}[x:=M]\right) \\
c[x:=M] & \equiv & c \\
\left(\operatorname{succ} e_{1}\right)[x:=M] & \equiv & \operatorname{succ}\left(e_{1}[x:=M]\right)
\end{array}
$$

- The renaming of a bound variable by a fresh variable is called alpha-conversion.
- Q: Can we avoid creating a new variable in application?

Small step semantics

Here is a small-step semantics with syntactic substitution for the lambda-calculus.

$$
\begin{array}{lll}
v & \in & \text { Value } \\
v & ::= & c \mid \lambda x . e
\end{array}
$$

The semantics is given by the reflexive, transitive closure of the relation \rightarrow_{V}

$$
\begin{array}{cc}
& \rightarrow_{V} \subseteq \text { Expression } \times \text { Expression } \\
(6) & (\lambda x . e) v \rightarrow_{V} e[x:=v] \\
(7) & \frac{e_{1} \rightarrow_{V} e_{1}^{\prime}}{e_{1} e_{2} \rightarrow_{V} e_{1}^{\prime} e_{2}} \\
(8) & \frac{e_{2} \rightarrow_{V} e_{2}^{\prime}}{v e_{2} \rightarrow_{V} v e_{2}^{\prime}} \\
(9) & \operatorname{succc}_{1} \rightarrow_{V} \mathrm{c}_{2}\left(\left\lceil\mathrm{c}_{2}\right\rceil=\left\lceil\mathrm{c}_{1}\right\rceil+1\right) \\
(10) & \frac{e_{1} \rightarrow_{V} e_{2}}{{\operatorname{succ} \mathrm{e}_{1} \rightarrow_{\mathrm{V}} \text { succe }}} \tag{10}
\end{array}
$$

