
*

CS6848 - Principles of Programming Languages
Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1 / 1

*

Last class

Interpreters
A Environment
B Cells
C Closures
D Recursive environments
E Interpreting OO (MicroJava) programs.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2 / 1

*

Outline

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3 / 1

*

Introduction

An interpreter executes a program as per the semantics.

An interpreter can be viewed as an executable description of the semantics of a
programming language.

Program semantics is the field concerned with the rigorous mathematical study
of the meaning of programming languages and models of computation.

Formal ways of describing the programming semantics.

Operational semantics - execution of programs in the language is
described directly (in the context of an abstract machine).

Big-step semantics (with environments) -is close in spirit to the
interpreters we have seen earlier.
Small-step semantics (with syntactic substitution) - formalizes the
inlining of a procedure call as an approach to computation.

Denotational Semantics - each phrase in the language is
translatedto a denotation - a phrase in some other language.
Axiomatic semantics - gives meaning to phrases by describing the
logical axioms that apply to them.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4 / 1

*

Lambda Calculus

The traditional syntax for procedures in the lambda-calculus uses
the Greek letter λ (lambda), and the grammar for the
lambda-calculus can be written as:

e ::= x | λx.e | e1e2
x ∈ Identifier (infinite set of variables)

Brackets are only used for grouping of expressions. Convention
for saving brackets:

that the body of a λ -abstraction extends “as far as possible.”
For example, λx.xy is short for λx.(xy) and not (λx.x)y.
Moreover, e1e2e3 is short for (e1e2)e3 and not e1(e2e3).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5 / 1

*

Extension of the Lambda-calculus

We will give the semantics for the following extension of the
lambda-calculus:

e ::= x | λx.e | e1e2 | c | succ e
x ∈ Identifier (infinite set of variables)
c ∈ Integer

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6 / 1

*

Outline

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7 / 1

*

Big step semantics

Here is a big-step semantics with environments for the
lambda-calculus.

w,v ∈ Value
v ::= c|(λx.e,ρ)
ρ ∈ Environment
ρ ::= x1 7→ v1, · · ·xn 7→ vn

The semantics is given by the following five rules:

ρ ` x. v (ρ(x) = v)(1)
ρ ` λx.e. (λx.e,ρ)(2)

ρ ` e1 . (λx.e,ρ ′) ρ ` e2 . v ρ ′,x 7→ v ` e.w
ρ ` e1e2 .w

(3)

ρ ` c. c(4)
ρ ` e. c1

ρ ` succ e. c2
dc2e = dc1e + 1(5)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8 / 1

*

Outline

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9 / 1

*

Small step semantics

In small step semantics, one step of computation = either one
primitive operation, or inline one procedure call.
We can do steps of computation in different orders:
> (define foo

(lambda (x y) (+ (* x 3) y)))
> (foo (+ 4 1) 7)
22

Let us calculate:
(foo (+ 4 1) 7)
=> ((lambda (x y) (+ (* x 3) y))

(+ 4 1) 7)
=> (+ (* (+ 4 1) 3) 7)
=> 22

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10 / 1

*

Small step semantics (contd.)

We can also calculate like this:

(foo
(+ 4 1) 7)

=> (foo 5 7)

=> ((lambda (x y) (+ (* x 3) y))
5 7)

=> (+ (* 5 3) 7)

=> 22

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11 / 1

*

Free variables

A variable x occurs free in an expression E iff x is not bound in E.Examples:

no variables occur free in the expression

(lambda (y) ((lambda (x) x) y))

the variable y occurs free in the expression

((lambda (x) x) y)

An expression is closed if it does not contain free variables.
A program is a closed expression.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12 / 1

*

Methods of procedure application

Call by value

((lambda (x) x)
((lambda (y) (+ y 9)) 5))

=> ((lambda (x) x) (+ 5 9))

=> ((lambda (x) x) 14)

=> 14

Always evaluate the arguments first
Example: Scheme, ML, C, C++, Java

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13 / 1

*

Methods of procedure application

Call by name (or lazy-evaluation)

((lambda (x) x)
((lambda (y) (+ y 9) 5))

=> ((lambda (y) (+ y 9)) 5)

=> (+ 5 9)

=> 14

Avoid the work if you can
Example: Miranda and Haskell

Lazy or eager: Is one more efficient? Are both the same?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14 / 1

*

Difference

Q: If we run the same program using these two semantics, can we
get different results?
A:

If the run with call-by-value reduction terminates, then the run with
call- by-name reduction terminates. (But the converse is in general
false).
If both runs terminate, then they give the same result.

Church Rosser theorem

E

E1 E2

V
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15 / 1

*

Call by value - too eager?

Sometimes call-by-value reduction fails to terminate, even though
call-by- name reduction terminates.

(define delta (lambda (x) (x x)))
(delta delta)

=> (delta delta)
=> (delta delta)
=> ...

Consider the program:

(define const (lambda (y) 7))
(const (delta delta))

call by value reduction fails to terminate; cannot finish evaluating
the operand.
call by name reduction terminates.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 / 1

*

Summary - calling convention

call by value is more efficient but may not terminate
call by name may evaluate the same expression multiple times.
Lazy languages uses - call-by-need.
Languages like Scala allow both call by value and name!

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17 / 1

*

Beta reduction

A procedure call which is ready to be “inlined” is called a
beta-redex. Example ((lambda (var) body) rand)

In lambda-calculus call-by-value and call-by-name reduction allow
the choosing of arbitrary beta-redex.
The process of inlining a beta-redex for some reducible
expression is called beta-reduction.

((lambda (var) body) rand) body[var:=rand]

η conversion: A simple optimization:

(λ x (E x)) = E

A conversion when applied in the left-to-right direction is called a
reduction.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18 / 1

*

Notes on reduction

Applicative order reduction - A β reduction can be applied only if
both the operator and the operand are already values. Else?
Applicative order reduction (call by value), example: Scheme, C,
Java.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19 / 1

*

Notes on reduction

Is there a reduction strategy which is guaranteed to find the
answer if it exists? – leftmost reduction (lazy evaluation).
leftmost-reduction – reduce the β -redex whose left parenthesis
comes first
A lambda expression is in normal form if it contains no β -redexes.
An expression in normal form – cannot be further reduced. e.g.
constant or (lambda (x) x)
Church-Rosser theorem→ expression can have at most one
normal form.
leftmost reduction will find the normal form of an expression if one
exists.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20 / 1

*

Name clashes

Care must be taken to avoid name clashes. Example:
((lambda (x)

(lambda (y) (y x)))
(y 5))

should not be transformed into
(lambda (y) (y (y 5)))
The reference to y in (y 5) should remain free!
The solution is to change the name of the inner variable name y to
some name, say z, that does not occur free in the argument y 5.

((lambda (x)
(lambda (z) (z x)))

(y 5))

=> (lambda (z) (z (y x))) ;; the y present.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21 / 1

*

Substitution

The notation e[x := M] denotes e with M substituted for every free
occurrence of x in such that a way that name clashes are avoided.
We will define e[x := M] inductively on e.

x[x := M] ≡ M
y[x := M] ≡ y (x 6= y)
(λx.e1)[x := M] ≡ (λx.e1)
(λy.e1)[x := M] ≡ λ z.((e1[y := z])[x := M])

(where x 6= y and z does not
occur free in e1 or M).

(e1e2)[x := M] ≡ (e1[x := M])(e2[x := M])
c[x := M] ≡ c
(succ e1)[x := M] ≡ succ (e1[x := M])

The renaming of a bound variable by a fresh variable is called
alpha-conversion.
Q: Can we avoid creating a new variable in application?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22 / 1

*

Small step semantics

Here is a small-step semantics with syntactic substitution for the
lambda-calculus.

v ∈ Value
v ::= c|λx.e

The semantics is given by the reflexive, transitive closure of the relation→V

→V⊆ Expression×Expression

(λx.e)v→V e[x := v](6)
e1→V e′1

e1e2→V e′1e2
(7)

e2→V e′2
ve2→V ve′2

(8)

succc1→V c2(dc2e= dc1e+1)(9)
e1→V e2

succ e1→V succe2
(10)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23 / 1

	Program Semantics
	Introduction
	Big Step Semantics
	Small Step Semantics

