
Final Exam

CS3300
Maximum marks = 50, Time: 2.5hrs

26-Nov-2013

Read all the instructions and questions carefully. You can make any reasonably
assumptions that you think are necessary; but state them clearly. There are total five
questions totaling 50 marks. Each 10 marks will approximately take 30 minutes. For
questions with sub-parts, the division for the sub-parts are given in square brackets.

Leave the first page empty. Start each question on a new page. Think about the
question before you start writing and write briefly. The answer for any question
(including all the sub-parts) should NOT cross more than two pages. If
the answer is spanning more than two pages, we will ignore the spill-over text. If you
scratch/cross some part of the answer, you can use space from the next page.

1. [10] Control flow: For the following code, draw the control flow graph and mark
the basic blocks. For the first statement in each of the basic blocks, compute the
dominator and post-dominator information.

x = 1; y = 2;

do {

x = x + 1;

if (cond) y = y + 1;

while (cond1) {

x = x + 1;

cond1 = foo(x);

}

x = x - y;

} while (x < y);

print (x, y);

2. [10] Register Allocation: Compute the liveness information, draw the interference
graph, and do register allocation using Kempe’s heuristic, assuming four registers.

entry (c)

a = 2
b = 3
d = c
e = a
g = c + 1

a < d?

b = b + 1
d = 2 * d

b < 10?

d = d + 1
f = a + b
g = e + g

print (b, d, e, g);
c = c / 2;
(c == 0)?

exit

Y N

N

Y

N

Y

1



3. [10] Code Generation: Write the tree patterns for the following instructions with
their usual meanings [2]:

instruction form

add ri = ri + rj
mul ri = ri ∗ rj
addi ri = ri + c
load ri = M [rj + c]
store M [rj + c] = ri
MemMove M [ri] = M [rj ]

Draw the intermediate-code tree for the assignment statement a[i+1] = x * y [4].
Assume that, register allocation has been done and all of the above variables are lo-
cated on stack. Generate machine code using the maximal munch method [2]. Argue
if your generated code is optimal or optimum [2].

4. [10] Optimizations: Optimize the following code in a step by step manner, using
machine independent optimizations. At each step, indicate the optimization applied
and the resulting code.

void foo(int z){

q = 2;

c = q;

goto L1;

c = c + z;

b = z + 1;

L1: b = c + 3;

for (i=2 * m; i > 0; i = i / 2) {

for (j=4 * m; j > 0; j = j / 4) {

y = T[i] * b;

S[i, j] = S[i, j] + V[i, j] * y + c;

if (c > z) goto L2;

V[i, j] = q + T[i] * c;

L2: U[i, j] = T[i] - V[i, j] * y;

V[i, j] = y - T[i] / c;

}

}

}

5. [10] Garbage collection
Give a scheme to do garbage collection via reference counting [8]. Consider the subset
of MiniJava language. Our goal is to translate MiniJava to C, such that we can use
malloc and free at runtime to allocate and free memory, respectively. Focus on the
translation of the following statements: new, assignment (of the form, x = e, x.f =

e, y = x.f) and discuss how the reference counts will be updated and when we can
free some allocated memory. If you are using any data structures, explain the same
clearly. Briefly give a scheme to handle cycles in your object graph. [2] A sample Java
code and sketch for the corresponding C code can be seen below.

{

A a = new A();

a.f = 2;

... // uses a.f

a = x;

}

{

A *a = // code to do malloc

a->f = 2;

... // uses a.f

// code to invoke free (a);

a = x;

}

2


