
CS3300 - Language Translators
Introduction

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Written assignments = 20 marks.
Midterm = 40 marks, Final = 40 marks.
Extra marks

During the lecture time - individuals can get additional 5 marks.
How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.

Attendance requirement – as per institute norms. Non compliance
will lead to ‘W’ grade.

Proxy attendance - is not a help; actually a disservice.
Plagiarism - A good word to know. A bad act to own.

Students Welfare and Disciplinary committee.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.
TA: A Raghesh:raghesh@cse, Office: PACE Lab.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 2 / 30

*

What, When and Why of Compilers

What:
A compiler is a program that can read a program in one language
and translates it into an equivalent program in another language.

When
1952, by Grace Hopper for A-0.
1957, Fortran compiler by John Backus and team.

Why? Study?
It is good to know how the food you eat, is cooked.
A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
For a computer to execute programs written in these languages,
these programs need to be translated to a form in which it can be
executed by the computer.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 3 / 30

*

Compilers – A “Sangam”

Compiler construction is a microcosm of computer science
Artificial Intelligence greedy algorithms, learning algorithms, . . .
Algo graph algorithms, union-find, dynamic programming, . . .
theory DFAs for scanning, parser generators, lattice theory, . . .
systems allocation, locality, layout, synchronization, . . .
architecture pipeline management, hierarchy management,
instruction set use, . . .
optimizations Operational research, load balancing, scheduling,
. . .

Inside a compiler, all these and many more come together. Has
probably the healthiest mix of theory and practise.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 4 / 30

*

Mutual expectations

For the class to be a mutually learning experience:
What will be required from the students?

An open mind to learn.
Curiosity to know the basics.
Explore their own thought process.
Help each other to learn and appreciate the concepts.
Honesty and hard work.
Leave the fear of marks/grades.

What are the students expectations?
.
.
.
.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 5 / 30

*

Course outline

A rough outline (we may not strictly stick to this).
Overview of Compilers
Regular Expressions and Context Free Grammars (glance)
Lexical Analysis and Parsing
Type checking
Intermediate Code Generation
Register Allocation
Code Generation
Overview of advanced topics.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 6 / 30

*

Your friends: Languages and Tools

Start exploring
C and Java - familiarity a must - Use eclipse to save you valuable
coding and debugging cycles.
Flex, Bison, JavaCC, JTB – tools you will learn to use.
Make Ant Scripts – recommended toolkit.
Find the course webpage:
http://www.cse.iitm.ac.in/ krishna/cs3300/
Find the lab webpage:
http://www.cse.iitm.ac.in/ krishna/cs3300/cs3310.html

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 7 / 30

*

Get set. Ready steady go!

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 8 / 30

*

Acknowledgement

These slides borrow liberal portions of text verbatim from Antony L.
Hosking @ Purdue, Jens Palsberg @ UCLA, and the Dragon book.

Copyright c©2013 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 9 / 30

*

A common confusion: Compilers and Interpreters

What is a compiler?

a program that translates an executable program in one language
into an executable program in another language
we expect the program produced by the compiler to be better, in
some way, than the original.

What is an interpreter?
a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers
Many of the same issues arise in interpreter
A common (mis?) statement – XYZ is an interpreted (or compiled)
languaged.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 10 / 30

*

Compilers – A closed area?

“Optimization for scalar machines was solved years ago”

Machines have changed drastically in the last 20 years

Changes in architecture⇒ changes in compilers

new features pose new problems
changing costs lead to different concerns
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 11 / 30

*

Expectations

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Support for separate compilation
6 Good diagnostics for syntax errors
7 Works well with the debugger
8 Good diagnostics for flow anomalies
9 Cross language calls

10 Consistent, predictable optimization
Each of these shapes your expectations about this course

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 12 / 30

*

Abstract view

errors

compilercode code
source machine

Implications:
recognize legal (and illegal) programs
generate correct code
manage storage of all variables and code
agreement on format for object (or assembly) code

Big step up from assembler — higher level notations

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 13 / 30

*

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR). Why do we need it?
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes⇒ better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 14 / 30

*

A Clarification:

back
end

front
end

FORTRAN
code

front
end

front
end

front
end

back
end

back
end

code

code

code

C++

CLU

Smalltalk

target1

target2

target3

Can we build n×m compilers with n + m components?
must encode all the knowledge in each front end
must represent all the features in one IR
must handle all the features in each back end

Limited success with low-level IRs

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 15 / 30

*

Phases inside the compiler

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over optimizations –
attend the graduate course, if
interested.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 16 / 30

*

Lexical analysis

Also known as scanning.
Reads a stream of characters and groups them into meaningful
sequences, called lexems.
Eliminates white space
For each lexeme, the scanner produces an output of the form:
〈token-type, attribute-values〉
Example token-types: identifier, number, string, operator and . . .
Example attribute-types: token index, token-value, line and
column number and . . .
Example scanning:

position = initia + rate * 60
For a typical language like C/Java the following lexemes and their
values can be identified:

lexeme token
position 〈id, position〉
= 〈op, =〉
initial 〈id, initial〉

lexeme token
+ 〈op, +〉
rate 〈id, rate〉
* 〈op, *〉
60 〈num, 60〉

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 17 / 30

*

Specifying patterns

Q: How to specify patterns for the scanner?

Examples:

white space

<ws> ::= <ws> ’ ’
| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators
specified as literal patterns: do, end

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 18 / 30

*

Specifying patterns

A scanner must recognize the units of syntax

identifiers
alphabetic followed by k alphanumerics (, $, &, . . .)
numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer |’.’| digits from 0-9
reals: (integer or decimal) |’E’| (+ or -) digits from 0-9
complex: |’(’| real |’,’| real |’)’—

We need a powerful notation to specify these patterns

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 19 / 30

*

Regular Expressions

Patterns are often specified as regular languages
Notations used to describe a regular language (or a regular set)
include both regular expressions and regular grammars
Regular expressions (over an alphabet Σ):

1 ε is a RE denoting the set {ε}
2 if a ∈ Σ, then a is a RE denoting {a}
3 if r and s are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)
(r) | (s) is a RE denoting L(r)

⋃
L(s)

(r)(s) is a RE denoting L(r)L(s)
(r)∗ is a RE denoting L(r)∗

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 20 / 30

*

Examples of Regular Expressions

identifier
letter→ (a | b | c | ... | z | A | B | C | ... | Z)
digit→ (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
id→ letter (letter | digit)∗

numbers
integer→ (+ | − | ε) (0 | (1 | 2 | 3 | ... | 9) digit∗)
decimal→ integer . (digit)∗

real→ (integer | decimal) E (+ | −) digit∗

complex→ ’(’ real , real ’)’

Most tokens can be described with REs
We can use REs to build scanners automatically

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 21 / 30

*

Generic examples of REs

Let Σ = {a,b}
a|b denotes {a,b}
(a|b)(a|b) denotes {aa,ab,ba,bb}
i.e., (a|b)(a|b) = aa|ab|ba|bb

a∗ denotes {ε,a,aa,aaa, . . .}
(a|b)∗ denotes the set of all strings of a’s and b’s (including ε)
i.e., (a|b)∗= (a∗b∗)∗
a|a∗b denotes {a,b,ab,aab,aaab,aaaab, . . .}

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 22 / 30

*

Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier:

0 21

3

digit

other

letter

digit

letter

other

error

accept

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 23 / 30

*

Code for the recognizer

Given an automata, can we write a recognizer for a token?

ch=nextChar();
state=0; // initial state
done=false;
tokenVal=""// empty
while (not done) {
class=charClass[ch];
state=

nextState[class,state];
switch(state) {
case 1:

tokenVal=tokenVal+ch;
char=nextChar();
break;

case 2: // accept state
tokenType=id;
done = true;
break;

case 3: // error
tokenType=error;
done=true;
break;

} // end switch
} // end while
return tokenType;

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 24 / 30

*

Tables for the recognizer

Two tables control the recognizer

charClass:
a− z A−Z 0−9 other

value letter letter digit other

nextState:

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 25 / 30

*

So what is hard?

Language features that can cause problems:
reserved words
PL/I had no reserved words
if then then then = else; else else =
then;

significant blanks
FORTRAN and Algol68 ignore blanks
do 10 i = 1,25
do 10 i = 1.25

string constants
special characters in strings
newline, tab, quote, comment delimiter

finite closures
some languages limit identifier lengths
adds states to count length
FORTRAN 66→ 6 characters

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 26 / 30

*

Considerations when building lexical analyzer

How to combine multiple DFAs?
Try all (in parallel?), take the longest.

Some of the patterns may have common prefixes. e.g. <, <=, <>

Create a transition
diagram.

Reserved words: example then, thenVar
Identify as an identifier and if the value matches a reserved word,
change their “type”.
Let it be identified as both reserved word and identifier. Higher
priority to reserved words.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 27 / 30

*

Error recovery

It is hard to tell (without the aid of other components), if there is a
source code error.
For example:
fi (a = f(x))
If fi a misspelling for “if”, of a function identifier?
Since fi is a valid lexeme for the token id, the lexer must return
the token 〈id, fi〉.
A later phase (parser or semantic analyzer) may be able to catch
the error.

Recovery (if the lexer is unable to proceed, that is):
Panic and stop!
Delete one character!
Many other one character related fixes (examples?)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 28 / 30

*

Automatic construction

Scanner generators automatically construct code from RE-like
descriptions

construct a DFA
use state minimization techniques
emit code for the scanner
(table driven or direct code)

A key issue in automation is an interface to the parser

lex/flex is a scanner generator
Takes a specification of all the patterns as a RE.
emits C code for scanner
provides macro definitions for each token
(used in the parser)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 29 / 30

*

Limits of regular languages

Not all languages are regular
One cannot construct DFAs to recognize these languages:

L = {pkqk}
L = {wcwr | w ∈ Σ∗}

Note: neither of these is a regular expression!
(DFAs cannot count!)
But, this is a little subtle. One can construct DFAs for:

alternating 0’s and 1’s
(ε | 1)(01)∗ (ε | 0)

sets of pairs of 0’s and 1’s
(01 | 10)+

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2013 30 / 30

	Introduction and Motivation

