CS6013 Assignment 1

1. Regular Expressions and DFA

Write DFAs for the following languages [5 + 5 + 5]:

- (a) L={ $w \in \{x, y, z\}^*$ | at most one letter in w is repeated more than once}
- (b) L={ $w \in \{lock, unlock, sharedAccess\}^* | w$ denotes a sequence of valid accesses to shared data}
- (c) L={ $w \in \{1, 2, 3\}^*$ | Number of 2s modulo 2 doesn't match the number of 3s modulo 3}

[Bonus] Write the equivalent REs. [10]

2. CFG

Which of the following grammars is ambiguous. Justify, [5 + 5 + 5]

(a) $S \rightarrow S S + | S S * | a$ (b) $S \rightarrow + S S | * S S | a$ (c) $S \rightarrow S + S | S * S | a$

Write the CFGs for the following languages. [5 + 5]

- (a) $L=\{w \in \{push, pop, top\}^* | w \text{ denotes a sequence of valid stack oper$ $ations}\}.$
- (b) The set of all strings of 0 and 1 that are *palindromes*.

3. Parsing

LL(1) Grammar [15], Parser Implementation [20].

Consider the grammar

 $S \to \ S \ + \ S \ | \ S \ S \ | \ (\ S \) \ | \ S \ * \ | a$

a is a terminal symbol. Rewrite the grammar into a grammar which is LL(1), and use the rewritten grammar as the basis for implementing a recursive descent parser; write the LL(1) grammar, the FIRST and FOLLOW sets for each nonterminal symbol, and the predictive parsing table, together with an argument that the new grammar is LL(1).