CS6013 Assignment 1

1. Regular Expressions and DFA

Write DFAs for the following languages $[5+5+5]$:
(a) $\mathrm{L}=\left\{w \in\{x, y, z\}^{*} \mid\right.$ at most one letter in w is repeated more than once $\}$
(b) $\mathrm{L}=\left\{w \in\{\text { lock, unlock, sharedAccess }\}^{*} \mid w\right.$ denotes a sequence of valid accesses to shared data\}
(c) $\mathrm{L}=\left\{w \in\{1,2,3\}^{*} \mid\right.$ Number of 2 s modulo 2 doesn't match the number of 3 s modulo 3$\}$
[Bonus] Write the equivalent REs. [10]

2. CFG

Which of the following grammars is ambiguous. Justify. $[5+5+5]$
(a) $S \rightarrow S S+|S S *| a$
(b) $S \rightarrow+S S|* S S| a$
(c) $S \rightarrow S+S|S * S| a$

Write the CFGs for the following languages. [5 + 5]
(a) $\mathrm{L}=\left\{w \in\{\text { push, pop, top }\}^{*} \mid w\right.$ denotes a sequence of valid stack operations $\}$.
(b) The set of all strings of 0 and 1 that are palindromes.

3. Parsing

LL(1) Grammar [15], Parser Implementation [20].
Consider the grammar
$S \rightarrow S+S|S S|(S)|S *| a$
a is a terminal symbol. Rewrite the grammar into a grammar which is $\mathrm{LL}(1)$, and use the rewritten grammar as the basis for implementing a recursive descent parser; write the LL(1) grammar, the FIRST and FOLLOW sets for each nonterminal symbol, and the predictive parsing table, together with an argument that the new grammar is LL(1).

