Last class

CS6848 - Principles of Programming Languages

Interpreters
Principl f Programming Lan .
s Gl g Lahguages A Environment
B Cells
V. Krishna Nandivada C Closures
D Recursive environments
IIT Madras . .
E Interpreting OO (MicroJava) programs.
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1/23 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/23

Outline Introduction

@ An interpreter executes a program as per the semantics.
@ An interpreter can be viewed as an executable description of the semantics of a
programming language.

@ Program semantics is the field concerned with the rigorous mathematical study
of the meaning of programming languages and models of computation.
0 Program Semantics

@ Introduction
@ Big Step Semantics
@ Small Step Semantics

@ Formal ways of describing the programming semantics.

e Operational semantics - execution of programs in the language is
described directly (in the context of an abstract machine).
@ Big-step semantics (with environments) -is close in spirit to the
interpreters we have seen earlier.
@ Small-step semantics (with syntactic substitution) - formalizes the
inlining of a procedure call as an approach to computation.
e Denotational Semantics - each phrase in the language is translated
to a denotation - a phrase in some other language.
e Axiomatic semantics - gives meaning to phrases by describing the
logical axioms that apply to them.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/23 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/23

Lambda Calculus Extension of the Lambda-calculus

@ The traditional syntax for procedures in the lambda-calculus uses
the Greek letter A (lambda), and the grammar for the

lambda-calculus can be written as: We will give the semantics for the following extension of the
e = x|Axe|ee lambda-calculus:
x € Identifier (infinite set of variables) e = x|Axel|eer|clsucce
@ Brackets are only used for grouping of expressions. Convention x € lIdentifier (infinite set of variables)

for saving brackets: c € Integer
o that the body of a A-abstraction extends “as far as possible.”
e For example, Ax.xy is short for Ax.(xy) and not (Ax.x)y.
e Moreover, ejezes is short for (eje;)e; and not e (eze3).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/23 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/23

Big step semanics

Here is a big-step semantics with environments for the
lambda-calculus.

w,v € Value

% = c|(Ax.e,p)
p € Environment
e Program Semantics p H= XLV, Xy e Yy

o Big Step Semantics The semantics is given by the following five rules:

1) prxov (p()=v)

2) pt Ax.e>(Ax.e,p)

3) pter(Axep’) phkerv pix—vie>w
pFeepw

(4) pkcrc

(5) PP (oo fer)

pFsuccerc
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7123 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/23

Smallstep semanics

@ In small step semantics, one step of computation = either one
primitive operation, or inline one procedure call.

@ We can do steps of computation in different orders:

. > (define foo
@ Program Semantics (lambda (x y) (+ (* x 3) y)))

> (foo (+ 4 1) 7)
22

Let us calculate:

(foo (+ 4 1) 7)
=> ((lambda (x y) (+ (x x 3) y))

@ Small Step Semantics

(+ 4 1) 7)
=> (+ (« (+ 4 1) 3) 7)
=> 22
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/23 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/23

Small siep semantics (conto)

We can also calculate like this:

A variable x occurs free in an expression E iff x is not bound in E.Examples:
(foo

@ no variabl r free in the expression
+ 4 1) 7) o variables occur free in the expressio

(lambda (y) ((lambda (x) x) vy))

=> (foo 5 7) . . .
@ the variable y occurs free in the expression
=> ((lambda (x y) (+ (* x 3) y))

((lambda (x) x) y)
5 7)

An expression is closed if it does not contain free variables.
=> (+ (x 5 3) 7) A program is a closed expression.

=> 22

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/23 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/23

Methods of procedure application

Call by value

((lambda (x) x)
((lambda (y) (+ y 9)) 5))

=> ((lambda (x) x) (+ 5 9))
=> ((lambda (x) x) 14)
=> 14

Always evaluate the arguments first
@ Example: Scheme, ML, C, C++, Java

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/23

@ Q: If we run the same program using these two semantics, can we
get different results?
o A:

o If the run with call-by-value reduction terminates, then the run with
call- by-name reduction terminates. (But the converse is in general
false).

e If both runs terminate, then they give the same result.

Church Rosser theorem

E
7N
E1 E2
N
Vv

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/23

Methods of procedure application

Call by name (or lazy-evaluation)

((lambda (x) x)
((lambda (y) (+ y 9) 5))

=> ((lambda (y) (+ y 9)) 5)
=> (+ 5 9)
=> 14

Avoid the work if you can
@ Example: Miranda and Haskell
Lazy or eager: Is one more efficient? Are both the same?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/23

Call by value - too eager?

Sometimes call-by-value reduction fails to terminate, even though
call-by- name reduction terminates.

(define delta (lambda (x) (x x)))
(delta delta)
=> (delta delta)
=> (delta delta)
=>

Consider the program:

(define const (lambda (y) 7))
(const (delta delta))

@ call by value reduction fails to terminate; cannot finish evaluating
the operand.

@ call by name reduction terminates.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16/23

Summary - calling convention

@ call by value is more efficient but may not terminate

@ call by name may evaluate the same expression multiple times.
@ Lazy languages uses - call-by-need.

@ Languages like Scala allow both call by value and name!

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17/23

Notes on reduction

@ Applicative order reduction - A B reduction can be applied only if
both the operator and the operand are already values. Else?

@ Applicative order reduction (call by value), example: Scheme, C,
Java.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/23

Beta reduction

@ A procedure call which is ready to be “inlined” is called a
beta-redex. Example ((lambda (var) body) rand)

@ In lambda-calculus call-by-value and call-by-name reduction allow
the choosing of arbitrary beta-redex.

@ The process of inlining a beta-redex for some reducible
expression is called beta-reduction.

((lambda (var) body) rand) body [var:=rand]
@ n conversion: A simple optimization:

(Ax(Ex)) = E

@ A conversion when applied in the left-to-right direction is called a
reduction.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/23

Notes on reduction

@ Is there a reduction strategy which is guaranteed to find the
answer if it exists? — leftmost reduction (lazy evaluation).

@ leftmost-reduction — reduce the -redex whose left parenthesis
comes first

@ A lambda expression is in normal form if it contains no -redexes.

@ An expression in normal form — cannot be further reduced. e.g.
constant or (lambda (x) x)

@ Church-Rosser theorem — expression can have at most one
normal form.

@ leftmost reduction will find the normal form of an expression if one
exists.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/23

Name clashes

@ Care must be taken to avoid name clashes. Example:

((lambda (x)
(lambda (y) (y x)))
(y 5))

should not be transformed into
(lambda (y) (y (y 5)))

@ The reference to y in (y 5) should remain free!

@ The solution is to change the name of the inner variable name vy to
some name, say z, that does not occur free in the argument y 5.

((lambda (x)
(lambda (z) (z x)))
(y 5))
=> (lambda (z) (z (y x))) ;; y 1is free.
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21/23

Small step semantics

Here is a small-step semantics with syntactic substitution for the

lambda-calculus.
NS Value

v = clAxe

The semantics is given by the reflexive, transitive closure of the relation —y

—vC Expression x Expression
(6) Ax.ev—yelx:=v]
e| —vy e'l
e|1ep —y e’l ()
e —vy 6/2
vey —y veh

(9) succer =y ea([e2] = [er] +1)
€1 —y e
succ ey —y succep

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/23

Substitution

@ The notation e[x := M] denotes e with M substituted for every free
occurrence of x in such that a way that name clashes are avoided.

@ We will define e[x := M] inductively on e.

x[x = M] = M

ylx :=M] = y@x#y)

(Ax.e))x:=M] = (Ax.e))

(Ay.e)x:=M] = Az((eily = 2)x = M)
(where x # y and z does not
occur free in e; or M).

(e1€2)[x := M| = (e1[x:=M])(ea]x :=M])

clx:=M] = ¢

(succ ey)[x == M] succ (eq[x := M])
@ The renaming of a bound variable by a fresh variable is called
alpha-conversion.

@ Q: Can we avoid creating a new variable in the fourth rule ?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22/23

	Program Semantics
	Introduction
	Big Step Semantics
	Small Step Semantics

