```
Last class
```


## CS6848 - Principles of Programming Languages Principles of Programming Languages

## V. Krishna Nandivada

## IIT Madras

A Big step semantic
B Calling convention
C Small step semantics

- Operational semantics talks about how an expression is evaluated.
- Denotational semantics
- Describes what a program text means in mathematical terms constructs mathematical objects.
- is compositional - denotation of a command is based on the denotation of its immediate sub-commands.
- Also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics.

Operational semantics: good as specification for a compiler / interpreter.
Denotational semantics: proving equivalence of programs: equivalent programs have equal denotational models.

- Assigns meanings to programs.
- $\perp$ is used to mean non-termination.
- Instance of mathematical objects:
- A number $\in Z$
- A boolean $\in\{$ true, false $\}$.
- A state transformer: $\Sigma \rightarrow(\Sigma \cup\{\perp\})$
- Think ahead: Semantics of a loop.
- Running a command $c$ starting from a state $\sigma$ yields a state $\sigma^{\prime}$
- Define $C \llbracket c \rrbracket$ :
$C \llbracket . \rrbracket: \operatorname{Com} \rightarrow(\Sigma \rightarrow \Sigma)$
- Q: What about non termination?
- Recall $\perp$ denotes the state of non-termination.
- Notation: $X_{\perp}=X \cup\{\perp\}$.
- Convention: whenever $f \in X \rightarrow X_{\perp}$, we extend $f$ with $f(\perp)=\perp$ so that $f \in X_{\perp} \rightarrow X_{\perp}$. - called strictness
- $C \llbracket . \rrbracket: \operatorname{Com} \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)$
$C \llbracket s k i p \rrbracket \sigma$
$=\sigma$
$C \llbracket x:=e \rrbracket \sigma \quad=\sigma[x:=A \llbracket e \rrbracket \sigma]$
$C \llbracket c_{1} ; c_{2} \rrbracket \sigma=C \llbracket c_{2} \rrbracket\left(C \llbracket c_{1} \rrbracket \sigma\right)$
$C \llbracket \mathrm{if} \mathrm{b}$ then $c_{1}$ else $c_{2} \rrbracket \sigma=$
if $B \llbracket b \rrbracket$ then $C \llbracket c_{1} \rrbracket \sigma$ else $C \llbracket c_{2} \rrbracket \sigma$
- Theorem: For all $E_{1}, E_{2}$ and $E_{3}: \llbracket E_{1}+\left(E_{2}+E_{3}\right) \rrbracket=\llbracket\left(E_{1}+E_{2}\right)+E_{3} \rrbracket$
- Proof
$\llbracket E_{1}+\left(E_{2}+E_{3}\right) \rrbracket=\llbracket E_{1} \rrbracket+\llbracket\left(E_{2}+E_{3}\right) \rrbracket$
$=\llbracket E_{1} \rrbracket+\left(\llbracket E_{2} \rrbracket+\llbracket E_{3} \rrbracket\right)$
$=\left(\llbracket E_{1} \rrbracket+\llbracket E_{2} \rrbracket\right)+\llbracket E_{3} \rrbracket$
$=\llbracket\left(E_{1}+E_{2}\right) \rrbracket+\llbracket E_{3} \rrbracket$
$=\llbracket\left(E_{1}+E_{2}\right)+E_{3} \rrbracket$


## Handle a loop

## while k-steps semantics

- Similar to operational semantics?
- $C \llbracket$ while b do $c \rrbracket \sigma=$ ?
- Notation: $W=C \llbracket$ while b do c $\rrbracket$
- while b do $\mathrm{c}=$ if b then c ; while b do c else skip
- $W(\sigma)=$ if $B \llbracket b \rrbracket) \sigma$ then $W(C \llbracket c \rrbracket \sigma)$ else $\sigma$
- Recursive definition - or no definition?
- Not compositional
- Say $C \llbracket$ while true do skip】 $W(\sigma)=W(\sigma)-$ does not help.
- Say $C \llbracket$ while $x \neq 0$ do $x=x-2 \rrbracket$
$W(\sigma)= \begin{cases}\sigma[x:=0] & \text { if } \sigma(x) \text { even and } \sigma(x) \geq 0 \\ \sigma^{\prime} & \text { otherwise. }\end{cases}$
for any $\sigma^{\prime}$.
- How do we get $W$ from $W_{k}$ ?

$$
W(\sigma)= \begin{cases}\sigma^{\prime} & \text { smallest } k \text { such that } W_{k}(\sigma)=\sigma^{\prime} \neq \perp \\ \perp & \text { otherwise (that is, } \left.\forall k, W_{k}(\sigma)=\perp\right) .\end{cases}
$$

- It is compositional.
- Has a bit of operational flavour :-(
- How to generalize it to higher order functions?

Old loops revisited:

- while true do skip; $-W_{k}(\sigma)=\perp$, for all $k$. Thus $W(\sigma)=\perp$.
- while $x \neq 0$ do $\mathrm{x}=\mathrm{x}-2$; -
$W(\sigma)= \begin{cases}\sigma[x:=0] & \text { if } \sigma(x)=2 * m \text { AND } \sigma(x) \geq 0 \\ \perp & \text { otherwise. }\end{cases}$


## Axiomatic semantics

## Language for Assertions

- Operational semantics talks about how an expression is evaluated.
- Denotational semantics - describes what a program text means in mathematical terms - constructs mathematical objects.
- Axiomatic semantics - describes the meaning of programs in terms of properties (axioms) about them.
- Usually consists of
- A language for making assertions about programs.
- Rules for establishing when assertions hold for different programming constructs.
- Prove that "if $C \llbracket$ while b do $c \rrbracket \sigma=\sigma^{\prime}$ then $B \llbracket B \rrbracket \sigma^{\prime}=$ false.
- For any natural number $n$ and any state $\sigma$ if $W_{n}(\sigma)=\sigma^{\prime} \neq \perp$, then $B \llbracket b \rrbracket=$ false.
- Specification language in first-order predicate logic
- Terms (variables, constants, arithmetic operations)
- Formulas:
- true and false
- If $t_{1}$ and $t_{2}$ are terms then, $t_{1}=t_{2}, t_{1}<t_{2}$ are formulas.
- If $\phi$ is a formula, so is $\neg \phi$.
- IF $\phi_{1}$ and $\phi_{2}$ are two formulas then so are $\phi_{1} \wedge \phi_{2}, \phi_{1} \vee \phi_{2}$ and $\phi_{1} \Rightarrow \phi_{2}$.
- If $\phi(x)$ is a formula (with a free variable $x$ ) then, $\forall x \cdot \phi(x)$ and $\exists x . \phi(x)$ are formulas.


## Satisfiability

- A formula in first-order logic can be used to characterize states.
- The formula $x=3$ characterizes all program states in which the value of the location associated with $x$ is 3 .
- Formulas can be thought as assertions about states.
- Define $\{\sigma \in \Sigma|\sigma|=\phi\}$, where $\models$ is a satisfiability relation.
- Let the value of a term $t$ in state $\sigma$ be $t^{\sigma}$
- If $t$ is a variable $x$ then $t^{\sigma}=\sigma(x)$.
- If $t$ is an integer $n$ then $t^{\sigma}=n$.
- $\sigma \models t_{1}=t_{2}$ if $t_{1}^{\sigma}=t_{2}^{\sigma}$
- $\sigma=t_{1} \wedge t_{2}$ if $\sigma \models t_{1}$ and $\sigma=t_{2}$
- $\sigma \models \forall x \cdot \phi(x)$ if $\sigma[x \mapsto n] \models \phi(n)$ for all integer constants $n$.
- $\sigma \models \exists x$. $\phi(x)$ if $\sigma[x \mapsto n] \models \phi(n)$ for some integer constant $n$.
- Meaning of a statement $S$ can be described in terms of triples:
$\{P\} S\{Q\}$
where
- $P$ and $Q$ are formulas or assertions.
- $P$ is a pre-condition on $S$
- $Q$ is a post-condition on $S$.
- The triple is valid if
- execution of $S$ begins in a state satisfying $P$.
- $S$ terminates.
- resulting state satisfies $Q$.


## Examples

- $\{2=2\} x:=2\{x=2\}$

An assignment operation of $x$ to 2 results in a state in which $x$ is 2 , assuming equality of integers!

- \{true $\}$ if $B$ then $x:=2$ else $x:=1\{x=1 \vee x=2\}$

A conditional expression that either assigns $x$ to 1 or 2 , if executed will lead to a state in which $x$ is either 1 or 2 .

- $\{2=2\} x:=2\{y=1\}$
- \{true $\}$ if $B$ then $x:=2$ else $x:=1\{x=1 \wedge x=2\}$ Why are these invalid?
- The validity of a Hoare triple depends upon the termination of the statement $S$
- $\{0 \leq a \wedge 0 \leq b\} S\{z=a \times b\}$
- If executed in a state in which $0 \leq a$ and $0 \leq b$, and
- $S$ terminates,
- then $z=a \times b$.


## Proof rules

- Skip:

$$
\{P\} s k i p\{P\}
$$

- Assignment:

$$
\{P[t / x]\} x:=t\{P\}
$$

Example: Suppose $t=x+1$
then, $\{x+1=2\} x:=x+1\{x=2\}$
-

$$
\text { [Sequencing] }\left\{P_{1}\right\} c_{0}\left\{P_{2}\right\}\left\{P_{2}\right\} c_{1}\left\{P_{3}\right\}\left\{P_{1}\right\} c_{0} ; c_{1}\left\{P_{3}\right\}
$$

- 

$[$ Conditionals $]\left\{P_{1} \wedge b\right\} c_{0}\left\{P_{2}\right\}\left\{P_{1} \wedge \neg b\right\} c_{1}\left\{P_{2}\right\}\left\{P_{1}\right\}$ if $b$ then $c_{0}$ else $c_{1}\left\{P_{2}\right\}$



Equivalence of Denotational and Operational semantics

## Equivalence proof - if (I)

## IF: If we have a derivation $\sigma \triangleright c \vdash\left\langle v, \sigma^{\prime}\right\rangle$ then $C \llbracket c \rrbracket \sigma=\sigma^{\prime}$.

## proof

(By induction on the structure of the derivation (let us call it $D$ ).)
Say, the last rule in the derivation $D$ is a while-loop.
(other cases are easier and left for self study).
We will reuse the old notation

- $C \llbracket$ while $b$ do $c \rrbracket=W$.

To prove that $W(\sigma)=\sigma^{\prime}$.

## Equivalence proof -if (II)

Case: Given- we have a derivation $\sigma \triangleright c \vdash \sigma^{\prime}$ and the last rule is a while-false.

$$
[D::] D_{1}:: \sigma \triangleright b \vdash\langle\text { false }, \sigma\rangle \sigma \triangleright \text { while } b \text { do } c \vdash \sigma
$$

- $\sigma^{\prime}$ must be $\sigma$
- From $D_{1}$ and using the equivalence for booleans we have that $B \llbracket b \rrbracket=$ false.
$W_{1}(\sigma)=\sigma$
Therefor $W(\sigma)=\sigma$.
if
$\forall \sigma^{\prime}$ :
$\sigma \triangleright P \vdash\langle$ true,$\sigma\rangle \wedge$
$\sigma \triangleright c \vdash \sigma^{\prime}$
then
$\sigma^{\prime} \triangleright Q \vdash\left\langle\right.$ true,$\left.\sigma^{\prime}\right\rangle$


## Soundness

## Validity via total correctness

- $[P] c[Q]$ : Whenever we start the execution of command $c$ in a state that satisfies $P$, the program terminates in a state that satisfies $Q$.
- $\forall \sigma, P, Q, c \vDash[P] c[Q]$
if $\sigma \triangleright P \vdash\langle$ true,$\sigma\rangle$
then
$\exists \sigma^{\prime}$ :
$\sigma \triangleright c \vdash \sigma^{\prime} \wedge$
$\sigma^{\prime} \triangleright Q \vdash\left\langle\right.$ true,$\left.\sigma^{\prime}\right\rangle$


## Completeness

- All derived triples are derivable from empty set of assumptions.
- If $=\{P\} \subset\{Q\}$, then
$\exists \sigma^{\prime}$
init-state $\triangleright\{P\} c\{Q\} \vdash\left\langle\right.$ true,$\left.\sigma^{\prime}\right\rangle$.
- All derived triples are valid.
- If $\vdash\{P\} c\{Q\}$, then $\vDash\{P\} c\{Q\}$.
- Any derivable assertion is sound with respect to the underlying operational semantics.


## Acknowledgements

- George Necula
- Internet.

