
*

CS6848 - Principles of Programming Languages
Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1 / 1

*

Last class

A Big step semantic
B Calling convention
C Small step semantics

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2 / 1

*

Outline

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3 / 1

*

Operational semantics talks about how an expression is
evaluated.
Denotational semantics

Describes what a program text means in mathematical terms -
constructs mathematical objects.
is compositional - denotation of a command is based on the
denotation of its immediate sub-commands.
Also called: fixed-point semantics, mathematical semantics,
Scott-Strachey semantics.

Operational semantics: good as specification for a compiler /
interpreter.
Denotational semantics: proving equivalence of programs: equivalent
programs have equal denotational models.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4 / 1

*

Denotational semantics: idea

Assigns meanings to programs.
⊥ is used to mean non-termination.
Instance of mathematical objects:

A number ∈ Z
A boolean ∈ {true, false}.
A state transformer: Σ→ (Σ∪{⊥})

Think ahead: Semantics of a loop.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5 / 1

*

Notation

Je1K - “means” or “denotes”.
Σ set of states. σ ∈ Σ denotes a state.
The meaning of an arithmetic expression e in state σ is a number.
AJ.K : Aexp→ (Σ→ Z)

The meaning of an boolean expression e in state σ is a truth
value. AJ.K : Aexp→ (Σ→{true, false})
Denotational functions are total - defined for all (well typed)
syntactic elements.
Finds mathematical objects (called domains) that represent what
programs do.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6 / 1

*

Denotational semantics of arithmetic expressions

Inductively define AJ.K : Aexp→ (Σ→ Z)

AJnKσ = dne
AJxKσ = σ(n)
AJe1 + e2Kσ = AJe1Kσ + AJe2Kσ

AJe1− e2Kσ = AJe1Kσ −AJe2Kσ

Assignment: Write denotational semantics for boolean expressions.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7 / 1

*

Denotational semantics for commands I

Running a command c starting from a state σ yields a state σ ′

Define CJcK:
CJ.K : Com→ (Σ→ Σ)

Q: What about non termination?

Recall ⊥ denotes the state of non-termination.

Notation: X⊥ = X∪{⊥}.
Convention: whenever f ∈ X→ X⊥, we extend f with f (⊥) =⊥ so
that f ∈ X⊥→ X⊥. – called strictness

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8 / 1

*

Denotational semantics for commands II

CJ.K : Com→ (Σ→ Σ⊥)
CJskipKσ = σ

CJx := eKσ = σ [x := AJeKσ]
CJc1;c2Kσ = CJc2K(CJc1Kσ)
CJif b then c1 else c2Kσ =

if BJbK then CJc1Kσ else CJc2Kσ

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9 / 1

*

Associativity of Addition

Theorem: For all E1, E2 and E3: JE1 + (E2 + E3)K = J(E1 + E2) + E3K
Proof
JE1 + (E2 + E3)K = JE1K+ J(E2 + E3)K

= JE1K+ (JE2K+ JE3K)
= (JE1K+ JE2K) + JE3K
= J(E1 + E2)K+ JE3K
= J(E1 + E2) + E3K

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10 / 1

*

Handle a loop

Similar to operational semantics?
CJwhile b do cKσ = ?
Notation: W = CJwhile b do cK
while b do c = if b then c; while b do c else skip
W(σ) = if BJbK)σ then W(CJcKσ) else σ

Recursive definition - or no definition?
Not compositional

Say CJwhile true do skipK
W(σ) = W(σ) – does not help.
Say CJwhile x 6= 0 do x = x−2K

W(σ) =

{
σ [x := 0] if σ(x) even and σ(x)≥ 0
σ ′ otherwise.

for any σ ′.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11 / 1

*

while k-steps semantics

Define Wk : Σ→ Σ⊥ (for k ∈ N) such that:

Wk(σ) =


σ ′ if ”while b do c” in state σ

terminates in fewer than k
iterations in state σ ′

⊥ otherwise.
W0(σ) =⊥

Wk(σ) =

{
Wk−1(CJcKσ) if BJbKσ for k ≥ 1
σ otherwise.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12 / 1

*

while semantics defined

How do we get W from Wk?

W(σ) =

{
σ ′ smallest k such that Wk(σ) = σ ′ 6=⊥
⊥ otherwise (that is, ∀k,Wk(σ) =⊥).

It is compositional.
Has a bit of operational flavour :-(
How to generalize it to higher order functions?

Old loops revisited:
while true do skip; — Wk(σ) =⊥, for all k. Thus W(σ) =⊥.
while x 6= 0 do x = x - 2; —

W(σ) =

{
σ [x := 0] if σ(x) = 2∗m AND σ(x)≥ 0
⊥ otherwise.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13 / 1

*

Properties of while-loop

Prove that “if CJwhile b do cKσ = σ ′ then BJBKσ ′ = false.
For any natural number n and any state σ if Wn(σ) = σ ′ 6=⊥, then
BJbK = false.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14 / 1

*

Axiomatic semantics

Operational semantics talks about how an expression is
evaluated.
Denotational semantics - describes what a program text means in
mathematical terms - constructs mathematical objects.
Axiomatic semantics - describes the meaning of programs in
terms of properties (axioms) about them.
Usually consists of

A language for making assertions about programs.
Rules for establishing when assertions hold for different
programming constructs.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15 / 1

*

Language for Assertions

A specification language
Must be easy to use and expressive
Must have syntax and semantics.

Requirements:
Assertions that characterize the state of execution.
Refer to variables, memory

Examples of non state based assertions:
Variable x is live,
Lock L will be released.
No dependence between the values of x and y.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 / 1

*

Assertion Language

Specification language in first-order predicate logic
Terms (variables, constants, arithmetic operations)
Formulas:

true and false
If t1 and t2 are terms then, t1 = t2, t1 < t2 are formulas.
If φ is a formula, so is ¬φ .
IF φ1 and φ2 are two formulas then so are φ1∧φ2, φ1∨φ2 and φ1⇒ φ2.
If φ(x) is a formula (with a free variable x) then, ∀x.φ(x) and ∃x.φ(x)
are formulas.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17 / 1

*

Hoare Triples

Meaning of a statement S can be described in terms of triples:
{P}S{Q}

where
P and Q are formulas or assertions.

P is a pre-condition on S
Q is a post-condition on S.

The triple is valid if
execution of S begins in a state satisfying P.
S terminates.
resulting state satisfies Q.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18 / 1

*

Satisfiability

A formula in first-order logic can be used to characterize states.
The formula x = 3 characterizes all program states in which the
value of the location associated with x is 3.
Formulas can be thought as assertions about states.

Define {σ ∈ Σ|σ |= φ}, where |= is a satisfiability relation.
Let the value of a term t in state σ be tσ

If t is a variable x then tσ = σ(x).
If t is an integer n then tσ = n.
σ |= t1 = t2 if tσ1 = tσ2
σ |= t1∧ t2 if σ |= t1 and σ |= t2
σ |= ∀x.φ(x) if σ [x 7→ n] |= φ(n) for all integer constants n.
σ |= ∃x.φ(x) if σ [x 7→ n] |= φ(n) for some integer constant n.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19 / 1

*

Examples

{2 = 2}x := 2{x = 2}
An assignment operation of x to 2 results in a state in which x is 2,
assuming equality of integers!
{true} if B then x := 2 else x := 1 {x = 1∨ x = 2}
A conditional expression that either assigns x to 1 or 2, if executed
will lead to a state in which x is either 1 or 2.
{2 = 2}x := 2{y = 1}
{true} if B then x := 2 else x := 1 {x = 1∧ x = 2}
Why are these invalid?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20 / 1

*

Partial Correctness

The validity of a Hoare triple depends upon the termination of the
statement S
{0≤ a∧0≤ b} S {z = a×b}

If executed in a state in which 0≤ a and 0≤ b, and
S terminates,
then z = a×b.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21 / 1

*

Soundness

Hoare rules can be seen as a proof system.
Derivations are proofs.
conclusions are theorems.
We write ` {P} c {Q}, if {P} c {Q} is a theorem.

If ` {P} c {Q}, then |= {P} c {Q}.
Any derivable assertion is sound with respect to the underlying
semantics.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22 / 1

*

Proof rules

Skip:
{P}skip{P}

Assignment:
{P[t/x]}x := t{P}

Example: Suppose t = x + 1
then, {x + 1 = 2}x := x + 1{x = 2}

[Sequencing]{P1}c0{P2} {P2}c1{P3}{P1}c0;c1{P3}

[Conditionals]{P1∧b}c0{P2} {P1∧¬b}c1{P2}{P1}if b then c0 else c1{P2}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23 / 1

*

while n ¿ 0 do z := z + x; n := n - 1;
P = {z = x*(y-n) ∧ n ≥ 0}
(apply the consequence rule)
{z = x * (y-n) ∧ n ≥ 0}
while n > 0 do z := z+x; n := n-1
{z = x * (y-n) ∧ n ≥ 0 ∧ ¬ (n > 0) }

(any iteration)
{(z+x) = x * (y-(n-1)) ∧ (n-1) ≥ 0}
z := z+x;
{z=x*(y-(n-1)) ∧ (n-1) ≥ 0}
n := n-1
{z=x*(y-n) ∧ n ≥ 0}

z = x*(y-n) ∧ n ≥ 0 ∧ n > 0 ⇒
{(z+x) = x * (y-(n-1)) ∧ (n-1) ≥ 0}

(consequence)
{z = x*(y-n) ∧ n ≥ 0 ∧ n > 0}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23 / 1

*

z := z+x; n := n-1
{z=x*(y-n) ∧ n ≥ 0}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 / 1

*

Step II - constructing the proof in reverse order

(pre-loop code)
{z = x*(y-y) ∧ y ≥ 0}
n := y
{z = x*(y-n) ∧ n ≥ 0}

{0 = x*(y-y) ∧ y ≥ 0}
z := 0
{z = x*(y-y) ∧ y ≥ 0}

{y ≥ 0}
z := 0; n := y
{z = x*(y-n) ∧ n ≥ 0}
{y ≥ 0} above-program {z = x * y}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 / 1

*

Useless assignment

while (x != y) do
if (x <= y)
then
y := y-x
else
x := x-y

Derive that
` {x = m ∧ y = n} above-program {x = gcd(m, n)}

Hint: Start with the loop invariant to be {gcd(x, y) = gcd(m, n)}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25 / 1

*

Last Class

Axiomatic Semantics

Proof rules

Proving the semantics of the multiplication routine.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 26 / 1

*

Equivalence of Denotational and Operational
semantics

Statement:
σ B e ` n iff AJeKσ = n
σ B e ` t iff BJeKσ = t
σ B c ` σ ′ iff CJcKσ = σ ′ 6=⊥

Arithmetic and boolean expressions - straight forward.

We will study commands.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 27 / 1

*

Equivalence proof - if (I)

IF: If we have a derivation σ B c ` 〈v,σ ′〉 then CJcKσ = σ ′.

proof
(By induction on the structure of the derivation (let us call it D).)
Say, the last rule in the derivation D is a while-loop.
(other cases are easier and left for self study).

We will reuse the old notation

CJwhile b do cK = W.

To prove that W(σ) = σ ′.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 28 / 1

*

Equivalence proof -if (II)

Case: Given- we have a derivation σ B c ` σ ′ and the last rule is a
while-false.

[D ::]D1 :: σ Bb ` 〈false,σ〉σ Bwhile b do c ` σ

σ ′ must be σ

From D1 and using the equivalence for booleans we have that
BJbK = false.

W1(σ) = σ

Therefor W(σ) = σ .

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 29 / 1

*

[D ::]

[D ::]∀P,Q

body end the program either does not terminate or it terminates in a
state that satisfies Q.

∀σ ,P,Q,c |= {P}c{Q}
if
∀σ ′:

σ BP ` 〈true,σ〉 ∧
σ B c ` σ ′

then
σ ′BQ ` 〈true,σ ′〉

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 30 / 1

*

Validity

Validity via total correctness

[P]c[Q]: Whenever we start the execution of command c in a state that
satisfies P, the program terminates in a state that satisfies Q.

∀σ ,P,Q,c |= [P]c[Q]
if σ BP ` 〈true,σ〉
then
∃σ ′:

σ B c ` σ ′ ∧
σ ′BQ ` 〈true,σ ′〉

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 30 / 1

*

Soundness

All derived triples are valid.

If ` {P} c {Q}, then |= {P} c {Q}.

Any derivable assertion is sound with respect to the underlying operational
semantics.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 31 / 1

*

Completeness

All derived triples are derivable from empty set of assumptions.

If |= {P} c {Q}, then
∃σ ′

init-state B{P}c{Q} ` 〈true,σ ′〉.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 32 / 1

*

Acknowledgements

Suresh Jagannathan

George Necula

Internet.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 33 / 1

	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics
	Equivalence

