Last class

CS6848 - Principles of Programming Languages Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

divada (IIT Madras)	CS6848 (IIT Madras)	1/*

Outline

V.Krishna Nano

- A Big step semantic
- B Calling convention
- C Small step semantics

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

- Operational semantics talks about how an expression is
- evaluated.
- Denotational semantics
 - Describes what a program text means in mathematical terms constructs mathematical objects.
 - is compositional denotation of a command is based on the denotation of its immediate sub-commands.
 - Also called: fixed-point semantics, mathematical semantics, Scott-Strachey semantics.

Operational semantics: good as specification for a compiler / interpreter.

Denotational semantics: proving equivalence of programs: equivalent programs have equal denotational models.

- Assigns meanings to programs.
- $\bullet \perp$ is used to mean non-termination.
- Instance of mathematical objects:
 - A number $\in Z$

V.Krishna Nandivada (IIT Madras)

 $A[n]\sigma$

 $A[x]\sigma$

• A boolean $\in \{ true, false \}$.

• Inductively define $A[\![.]\!] : Aexp \to (\Sigma \to Z)$

= [n]

 $A[e_1 + e_2]\sigma = A[e_1]\sigma + A[e_2]\sigma$

 $A[e_1 - e_2]\sigma = A[e_1]\sigma - A[e_2]\sigma$

 $= \sigma(n)$

- A state transformer: $\Sigma \to (\Sigma \cup \{\bot\})$
- Think ahead: Semantics of a loop.

Notation

- $\llbracket e_1 \rrbracket$ "means" or "denotes".
- Σ set of states. $\sigma\in\Sigma$ denotes a state.
- The meaning of an arithmetic expression *e* in state σ is a number.
 A[[.]] : *Aexp* → (Σ → Z)
- The meaning of an boolean expression *e* in state σ is a truth value. A[[.]] : Aexp → (Σ → {true, false})
- Denotational functions are *total* defined for all (well typed) syntactic elements.
- Finds mathematical objects (called domains) that represent what programs do.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

0.14

Denotational semantics for commands I

- Running a command *c* starting from a state σ yields a state σ'
- Define *C*[[*c*]]:
 - $C[\![.]\!]:Com
 ightarrow (\Sigma
 ightarrow \Sigma)$
- Q: What about non termination?
- Recall \perp denotes the state of non-termination.
- Notation: $X_{\perp} = X \cup \{\perp\}$.
- Convention: whenever $f \in X \to X_{\perp}$, we extend f with $f(\perp) = \perp$ so that $f \in X_{\perp} \to X_{\perp}$. called *strictness*

Assignment: Write denotational semantics for boolean expressions.

CS6848 (IIT Madras)

Denotational semantics of arithmetic expressions

•
$$C[[.]]: Com \rightarrow (\Sigma \rightarrow \Sigma_{\perp})$$

 $C[[skip]]\sigma = \sigma$
 $C[[x:=e]]\sigma = \sigma[x:=A[[e]]\sigma]$
 $C[[c_1;c_2]]\sigma = C[[c_2]](C[[c_1]]\sigma)$
 $C[[if b then c_1 else c_2]]\sigma =$
 $if B[[b]] then C[[c_1]]\sigma else C[[c_2]]\sigma$

• Theorem: For all E_1 , E_2 and E_3 : $[\![E_1 + (E_2 + E_3)]\!] = [\![(E_1 + E_2) + E_3]\!]$ • Proof $[\![E_1 + (E_2 + E_3)]\!] = [\![E_1]\!] + [\![(E_2 + E_3)]\!]$ $= [\![E_1]\!] + ([\![E_2]\!] + [\![E_3]]\!]$ $= ([\![E_1]\!] + [\![E_2]\!]) + [\![E_3]]$ $= [\![(E_1 + E_2)]\!] + [\![E_3]]$ $= [\![(E_1 + E_2) + E_3]\!]$

- How do we get W from W_k ?
 - $W(\sigma) = \begin{cases} \sigma' & \text{smallest } k \text{ such that } W_k(\sigma) = \sigma' \neq \bot \\ \bot & \text{otherwise (that is, } \forall k, W_k(\sigma) = \bot). \end{cases}$
- It is compositional.
- Has a bit of operational flavour :-(
- How to generalize it to higher order functions?

Old loops revisited:

• while true do skip; — $W_k(\sigma) = \bot$, for all k. Thus $W(\sigma) = \bot$.

• while
$$x \neq 0$$
 do $x = x - 2$; —
 $W(\sigma) = \begin{cases} \sigma[x := 0] & \text{if } \sigma(x) = 2 * m \text{ AND } \sigma(x) \ge 0 \\ \bot & \text{otherwise.} \end{cases}$

CS6848 (IIT Madras)

Axiomatic semantics

- Operational semantics talks about how an expression is evaluated.
- Denotational semantics describes what a program text means in mathematical terms constructs mathematical objects.
- Axiomatic semantics describes the meaning of programs in terms of properties (axioms) about them.
- Usually consists of
 - A language for making assertions about programs.
 - Rules for establishing when assertions hold for different programming constructs.

- Prove that "if C[[while b do c]] $\sigma = \sigma'$ then $B[B]\sigma' =$ false.
- For any natural number *n* and any state σ if $W_n(\sigma) = \sigma' \neq \bot$, then $B[\![b]\!] = \texttt{false}$.

CS6848 (IIT Madras)

Language for Assertions

- A specification language
 - Must be easy to use and expressive
 - Must have syntax and semantics.
- Requirements:
 - Assertions that characterize the state of execution.
 - Refer to variables, memory
- Examples of non state based assertions:
 - Variable x is live,
 - Lock L will be released.
 - No dependence between the values of *x* and *y*.

- Specification language in first-order predicate logic
 - Terms (variables, constants, arithmetic operations)
 - Formulas:
 - true **and** false
 - If t_1 and t_2 are terms then, $t_1 = t_2$, $t_1 < t_2$ are formulas.
 - If ϕ is a formula, so is $\neg \phi$.
 - IF ϕ_1 and ϕ_2 are two formulas then so are $\phi_1 \land \phi_2$, $\phi_1 \lor \phi_2$ and $\phi_1 \Rightarrow \phi_2$.
 - If φ(x) is a formula (with a free variable x) then, ∀x.φ(x) and ∃x.φ(x) are formulas.

• Meaning of a statement *S* can be described in terms of triples: {*P*}*S*{*Q*}

where

- P and Q are formulas or assertions.
 - P is a pre-condition on S
 - *Q* is **a** post-condition on *S*.
- The triple is valid if
 - execution of *S* begins in a state satisfying *P*.
 - S terminates.
 - resulting state satisfies Q.

Satisfiability

- A formula in first-order logic can be used to characterize states.
 - The formula *x* = 3 characterizes all program states in which the value of the location associated with *x* is 3.
 - Formulas can be thought as assertions about states.
- Define $\{\sigma \in \Sigma | \sigma \models \phi\}$, where \models is a satisfiability relation.

• Let the value of a term *t* in state σ be t^{σ}

- If *t* is a variable *x* then $t^{\sigma} = \sigma(x)$.
- If *t* is an integer *n* then $t^{\sigma} = n$.
- $\sigma \models t_1 = t_2 \text{ if } t_1^\sigma = t_2^\sigma$
- $\sigma \models t_1 \land t_2$ if $\sigma \models t_1$ and $\sigma \models t_2$
- $\sigma \models \forall x. \phi(x)$ if $\sigma[x \mapsto n] \models \phi(n)$ for all integer constants *n*.
- $\sigma \models \exists x.\phi(x) \text{ if } \sigma[x \mapsto n] \models \phi(n) \text{ for some integer constant } n.$

Examples

V.Krishna Nandivada (IIT Madras)

{2 = 2}x := 2{x = 2}
 An assignment operation of *x* to 2 results in a state in which *x* is 2, assuming equality of integers!

CS6848 (IIT Madras)

- {true} if B then x := 2 else x := 1 {x = 1 ∨ x = 2}
 A conditional expression that either assigns x to 1 or 2, if executed will lead to a state in which x is either 1 or 2.
- $\{2=2\}x := 2\{y=1\}$
- {true} if B then x := 2 else x := 1 { $x = 1 \land x = 2$ } Why are these invalid?

Partial Correctness

- The validity of a Hoare triple depends upon the termination of the statement *S*
- $\{0 \le a \land 0 \le b\} S \{z = a \times b\}$
 - If executed in a state in which $0 \le a$ and $0 \le b$, and
 - S terminates,
 - then $z = a \times b$.

Soundness

- Hoare rules can be seen as a proof system.
 - Derivations are proofs.
 - conclusions are theorems.
 - We write \vdash {P} c {Q}, if {P} c {Q} is a theorem.
- If \vdash {P} c {Q}, then \models {P} c {Q}.
 - Any derivable assertion is *sound* with respect to the underlying semantics.

V.Krishna Nandivada (IIT Madras)	CS6848 (IIT Madras)		21 / 1	
Proof rules				
 Skip: {P}skip{P} Assignment: {P[t/x]}x := Example: Suppose t then, {x+1 = 2}x := [Sequencing] 	$= t\{P\}$ = x + 1 x + 1{x = 2} {P_1}c_0{P_2} {P_2}c_1{P_3}	$\{P_1\}c_0;c_1\{P_3\}$		
• $[Conditionals]{P_1 \land b}$	$c_0\{P_2\}\ \{P_1\wedge \neg b\}c_1\{P_2\}$	$\{P_1\}$ if b the	en c_0 else $c_1\{P_2$	2}


```
n := n-1 
 \{z=x*(y-n) \land n \ge 0\}
```

```
\begin{array}{rcl} z &=& x \star (y-n) \ \land \ n \ \geq \ 0 \ \land \ n \ > \ 0 \ \Rightarrow \\ & & \left\{ (z\!+\!x) &=& x \ \star \ (y\!-\!(n\!-\!1)) \ \land \ (n\!-\!1) \ \geq \ 0 \right\} \end{array}
```


24/1

24 / 1

Useless assignment

V.Krishna Nandivada (IIT Madras)

while (x != y) do if (x <= y) then y := y-x else x := x-y</pre>

Derive that

 $\vdash \{x = m \land y = n\} above-program \{x = gcd(m, n)\}$

Hint: Start with the loop invariant to be $\{gcd(x, y) = gcd(m, n)\}$

CS6848 (IIT Madras)

Last Class

- Axiomatic Semantics
- Proof rules
- Proving the semantics of the multiplication routine.

• Statement:
$$\sigma \triangleright e \vdash n$$
 iff $A[\![e]\!]\sigma = n$
• $\sigma \triangleright e \vdash t$ iff $B[\![e]\!]\sigma = t$
 $\sigma \triangleright c \vdash \sigma'$ iff $C[\![c]\!]\sigma = \sigma' \neq \bot$

- Arithmetic and boolean expressions straight forward.
- We will study commands.

V.Krishna Nandivada (IIT Madras)

Equivalence proof -if (II)

Equivalence proof - if (I)

IF: If we have a derivation $\sigma \triangleright c \vdash \langle v, \sigma' \rangle$ then $C[[c]]\sigma = \sigma'$.

proof

(By induction on the structure of the derivation (let us call it *D*).) Say, the last rule in the derivation *D* is a while-loop. (other cases are easier and left for self study).

We will reuse the old notation

• C[while b do c] = W.

To prove that $W(\sigma) = \sigma'$.

 $\sigma \triangleright P \vdash \langle true, \sigma \rangle \land$

 $\sigma \triangleright c \vdash \sigma'$

 $\sigma' \triangleright Q \vdash \langle true, \sigma' \rangle$ V.Krishna Nandivada (IIT Madras)

then

 $W_1(\sigma) = \sigma$

 $B[\![b]\!] = false.$

• σ' must be σ

while-false.

Therefor $W(\sigma) = \sigma$.

CS6848 (IIT Madras)

30 / 1

CS6848 (IIT Madras)

Validity via total correctness

• [*P*]*c*[*Q*]: Whenever we start the execution of command *c* in a state that satisfies *P*, the program terminates in a state that satisfies *Q*.

```
• \forall \sigma, P, Q, c \models [P]c[Q]

if \sigma \triangleright P \vdash \langle true, \sigma \rangle

then

\exists \sigma':

\sigma \triangleright c \vdash \sigma' \land

\sigma' \triangleright Q \vdash \langle true, \sigma' \rangle
```


Completeness

• All derived triples are derivable from empty set of assumptions.

```
• If \models {P} c {Q}, then
\exists \sigma'
init-state \triangleright {P}c{Q} \vdash \langle true, \sigma' \rangle.
```

Soundness

- All derived triples are valid.
- If \vdash {P} c {Q}, then \models {P} c {Q}.
- Any derivable assertion is *sound* with respect to the underlying operational semantics.

- Suresh Jagannathan
 - George Necula
 - Internet.

