Last class

CS6848 - Principles of Programming Languages

Principles of Programming Languages

A Big step semantic
B Calling convention
V. Krishna Nandivada :

C Small step semantics

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 1/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/1

@ Operational semantics talks about how an expression is
evaluated.
@ Denotational semantics

o Describes what a program text means in mathematical terms -
constructs mathematical objects.

@ is compositional - denotation of a command is based on the
denotation of its immediate sub-commands.

o Also called: fixed-point semantics, mathematical semantics,
Scott-Strachey semantics.

Operational semantics: good as specification for a compiler /
interpreter.

Denotational semantics: proving equivalence of programs: equivalent
programs have equal denotational models.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/1

Denotational semantios: dea

@ [e;] - “means” or “denotes”.

@ Assigns meanings to programs. @ X set of states. o € X denotes a state.
@ L is used to mean non-termination. @ The meaning of an arithmetic expression e in state o is a number.
@ Instance of mathematical objects: AL Aexp = (X = Z)
e Anumbere Z @ The meaning of an boolean expression ¢ in state o is a truth
e Aboolean € {true, false}. value. A[.] : Aexp — (X — {true,false})
o A state transformer: & — (X U{L}) @ Denotational functions are total - defined for all (well typed)
@ Think ahead: Semantics of a loop. syntactic elements.

@ Finds mathematical objects (called domains) that represent what
programs do.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/1

Denotational semantics of arithmetic expressions Denotational semantics for commands |

@ Running a command c starting from a state o yields a state ¢’

@ Inductively define A[.] : Aexp — (X — Z) @ Define C[c]:
Aln]o = [n] C[.]: Com— (X = %)
Alx]o = o(n) @ Q: What about non termination?
Aler+e]o = Ale]o+Afe]o @ Recall L denotes the state of non-termination.

Ale; —ez]o Alei]o —Alex]o

@ Notation: X; =XU{L}.

@ Convention: whenever f € X — X |, we extend f with f(L) = L so
that f € X, — X, . — called strictness

Assignment: Write denotational semantics for boolean expressions.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/1

Denotational semantics for commands |l Associativity of Addition

@ C[]:Com— (X —X)) @ Theorem: For all E|, E; and E3: [E| + (Ex + E3)]| = [(E1 + E2) + E3]

Clskip] o = 0 @ Proof
Clx = elo = ofr:=A[e]o] [E1+ (B2 + E3)] = [Ei] + (B2 +E5)]
Cler;co]o = C[e2](Cler]o) = [Ei] + ([E2] + [E5])
C[if b then ¢; else ¢;]o = = ([E1] + [E2]) + [E5]

if B[b] then C[ci]o else Clc:]o = [(E1 + E2)] + [E5]

= [(E\ +E2) + E;5]
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/1

Handle a loop while k-steps semantics

@ Similar to operational semantics?

@ C[whilebdo cJo =7

@ Notation: W = C[[while b do c] @ Define Wy : ¥ — ¥, (for k € N) such that:
o’ if "while b do ¢” in state o

terminates in fewer than k

iterations in state o’

otherwise.

@ while b do c = if b then ¢; while b do ¢ else skip
@ W(o) = if B[b])o then W(C[c]o) else o Wi(o) =
@ Recursive definition - or no definition? 1
o Not compositional
@ Say C[while true do skip]
W(o) = W(o) — does not help. ® Wi(o)= {
@ Say C[while x#0 do x =x—2]
o[x:=0] ifo(x)evenand o(x)>0

W(e) = { o' otherwise.

(] W()(G) =1
Wi—1(C[c]o) if B[b]o fork>1
c otherwise.

for any o’.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/1

while semantics defined Properties of while-loop

@ How do we get W from W, ?
W(c) = o’ smallest k such that Wy(c)=0"# L
| L otherwise (that is, Vk, Wi(c) = L).
@ It is compositional.

. _ @ Prove that “if C[while b do c]o = ¢’ then B[B]o’ = false.
@ Has a bit of operational flavour :-(

e _ _ @ For any natural number n and any state o if W,(c) = ¢’ # L, then
@ How to generalize it to higher order functions? B[b] = false.

Old loops revisited:
@ while true do skip; — Wi(o) =L, for all k. Thus W(o) = L.
@ whilex#0dox=x-2;,—

ofx:=0] ifo(x)=2xmAND o(x)>0
W(o) = .
€ otherwise.
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/1

Language for Assertions

@ Operational semantics talks about how an expression is @ A specification language
evaluated. e Must be easy to use and expressive
@ Denotational semantics - describes what a program text means in ® Must have syntax and semantics.
mathematical terms - constructs mathematical objects. @ Requirements:
@ Axiomatic semantics - describes the meaning of programs in o Assertions that characterize the state of execution.

o Refer to variables, memory
@ Examples of non state based assertions:
e Variable x is live,

o Lock L will be released.
o No dependence between the values of x and y.

terms of properties (axioms) about them.
@ Usually consists of

e A language for making assertions about programs.
e Rules for establishing when assertions hold for different
programming constructs.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 /1

Assertion Language Hoare Triples

@ Meaning of a statement S can be described in terms of triples:

@ Specification language in first-order predicate logic {P}sS{Q}
e Terms (variables, constants, arithmetic operations) where
e Formulas:

@ P and Q are formulas or assertions.

@ trueand false ; .
@ P is a pre-condition on S

If 1; and 1, are terms then, t; =1, 1; < t, are formulas.

o . g

@ If ¢ is a formula, so is —¢. e (is a post-condition on S.
@ IF ¢; and ¢, are two formulas then so are ¢; A ¢z, ¢; V ¢ and ¢; = ¢,. @ The triple is valid if

o If ¢(x) is a formula (with a free variable x) then, Vx.¢(x) and 3x.¢(x)

e execution of S begins in a state satisfying P.
e Sterminates.
e resulting state satisfies Q.

are formulas.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/1

@ A formula in first-order logic can be used to characterize states.

e The formula x = 3 characterizes all program states in which the
value of the location associated with x is 3.

o {2=2}x:=2{x=2}
An assignment operation of x to 2 results in a state in which x is 2,

e Formulas can be thought as assertions about states. assuming equality of integers!
@ Define {c € Z|o |= ¢}, where = is a satisfiability relation. @ {true} if Bthenx:=2elsex:=1{x=1Vvx=2}

o Let the value of a term ¢ in state o be A conditional expression that either assigns x to 1 or 2, if executed
e Ifris a variable x then 1° = o(x). will lead to a state in which x is either 1 or 2.
@ Iftis an integer n then 1° = n. o L -
e okEn=niff=1 ° {2=2}x:=2{y=1}
@ c=nAnifcl=randcl=n @ {true} if Bthenx:=2elsex:=1{x=1Ax=2}
@ o |=Vx.¢(x) if o[x — n] = ¢(n) for all integer constants n. Why are these invalid?
@ o = Ix.¢(x) if o[x — n] = ¢(n) for some integer constant n.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/1

Partial Correctness Soundness

@ The validity of a Hoare triple depends upon the termination of the @ Hoare rules can be seen as a proof system.
statement S e Derivations are proofs.

@ conclusions are theorems.
© {0<an0<b}S{z=axb} o We write - {P} ¢ {Q}, if {P} ¢ {Q} is a theorem.

e If executed in a state in which 0 <« and 0 < b, and o If- {P} c {Q} then): {P} c {Q}
e Sterminates, 0 o o .
o then z— a x b. ° ,SA:BT/‘ :r?trig/:ble assertion is sound with respect to the underlying

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21 /1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22 /1

whileng 0doz:=z+x;n:=n-1;
Proof rules P = {z = xx(y-n) A n > 0}

(apply the consequence rule)
{z=x*(y-n) An>0}

@ Skip: while n > 0 do z = z+x; n := n-1
{P}skip{P} {z=x*(yN)An>0A-(n>0)}
@ Assignment:
{P[t/x]}x:=t{P} (any iteration)
Example: Suppose t =x+ 1 {(z+x) = x » (y-(n-1)) A (n-1) > 0}
then, {x+1=2}x:=x+1{x=2} z 1= Z+x;
° {z=x*(y-(n-1)) A (n-1) > 0}
[Sequencing]{P1 }co{P2} {P2}c1{P3}{P1}co;c1{P3} n := n-1
{z=x*(y-n) A n > 0}
o —

z = x+x(y-n) An>0An>0 =
{(z+x) = x * (y-(n-1)) A (n-1) > 0}
[Conditionals|{Py Ab}co{P2} {P1 AN—b}ci{P2}{P1}1f b then ¢¢ else ci{P2}
f : (consequence)
{z = xx(y-n) A'n >0 A n > 0}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/1

z := z+x; n := n-1
{z=x*(y-n) A n > 0}

Step Il - constructing the proof in reverse order

(pre—loop code)

{z = xx(y-y) Ay > 0}
n :=y

{z = xx(y-n) A n > 0}

{0 = xx(y-y) Ay > 0}

z := 0
{z = xx(y-y) Ay > 0}
{yv > o}
z = 0; n =y
{z = xx(y-n) A n > 0}
{y > 0} above-program {z = x » y}
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 /1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 /1

Useless assignment Last Class

while (x != y) do
if (x <= vy)
then @ Axiomatic Semantics
Yy 1= y—X
else @ Proof rules
X 1= X—Yy . . TR .
@ Proving the semantics of the multiplication routine.
Derive that

F {x = m Ay = n} above-program {x = gcd(m, n)}

Hint: Start with the loop invariant to be {gcd (x, y) = gcd(m, n)}

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25/1 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 26/1

Equivalence of Denotational and Operational

semantics

oc>etn iff AfeJo=n
o Statement: or>etr iff BleJo=t¢
o>cko iff ClcJo=0"#1

@ Arithmetic and boolean expressions - straight forward.

@ We will study commands.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 27 /1

Equivalence proof -if (lI)

Case: Given- we have a derivation o> cF ¢’ and the last rule is a
while-false.

[D::]Dy :: 0> bt (false,c)c >while bdo ck o

@ o' mustbe ¢

@ From D, and using the equivalence for booleans we have that
B[b] = false.

Wi(o)=o

Therefor W(o) =o.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 29/1

Equivalence proof - if (1)

IF: If we have a derivation o> ¢t (v,6’) then C[c]o = o’.

proof
(By induction on the structure of the derivation (let us call it D).)

Say, the last rule in the derivation D is a while-loop.
(other cases are easier and left for self study).

We will reuse the old notation

@ (C[while bdo c]=W.

To prove that W(c) =0o’.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 28 /1

[D :]

[D::]vP,Q

body end the program either does not terminate or it terminates in a
state that satisfies Q.

w00 - {Ple(0)
[
Vo'
o> Pl (true,c) A
o>ch o’
then
o' > QF (true,o0’)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 30/1

Validity

Validity via total correctness

@ [P]c[Q]: Whenever we start the execution of command c in a state that
satisfies P, the program terminates in a state that satisfies Q.

@ Vo,P,Q,c |=[Pc[Q]
if o> PF (true, o)
then
Jdo’:

o>cko A
o' > QF (true, o)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 30/1

Completeness

@ All derived triples are derivable from empty set of assumptions.

e If = {P} c{Q}, then
Jdo’
init-state > {P}c{Q} F (true,c’).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 32/1

Soundness

@ All derived triples are valid.

e If+ {P} c {Q}, then = {P} c {Q}.

e Any derivable assertion is sound with respect to the underlying operational
semantics.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 31/1

Acknowledgements

@ Suresh Jagannathan
@ George Necula

@ Internet.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 33/1

	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics
	Equivalence

