```
Acknowledgement
```


CS3300 - Compiler Design
 Parsing

V. Krishna Nandivada

IIT Madras

A parser

- performs context-free syntax analysis
- guides context-sensitive analysis
- constructs an intermediate representation
- produces meaningful error messages
- attempts error correction

For the next several classes, we will look at parser construction

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (V_{t}, V_{n}, S, P), where:
V_{t} is the set of terminal symbols in the grammar. For our purposes, V_{t} is the set of tokens returned by the scanner.
V_{n}, the nonterminals, is a set of syntactic variables that denote sets of (sub)strings occurring in the language. These are used to impose a structure on the grammar.
S is a distinguished nonterminal $\left(S \in V_{n}\right)$ denoting the entire set of strings in $L(G)$.
This is sometimes called a goal symbol.
P is a finite set of productions specifying how terminals and non-terminals can be combined to form strings in the language.
Each production must have a single non-terminal on its left hand side.
The set $V=V_{t} \cup V_{n}$ is called the vocabulary of G v.Krishna Nandivada (IIT Madras)
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.
These slides borrow liberal portions of text verbatim from Antony L. Hosking @ Purdue, Jens Palsberg @ UCLA and the Dragon book.

Copyright ©2014 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or

Notation and terminology

Syntax analysis

- $a, b, c, \ldots \in V_{t}$
- $A, B, C, \ldots \in V_{n}$
- $U, V, W, \ldots \in V$
- $\alpha, \beta, \gamma, \ldots \in V^{*}$
- $u, v, w, \ldots \in V_{t}{ }^{*}$

If $A \rightarrow \gamma$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a single-step derivation using $A \rightarrow \gamma$
Similarly, \rightarrow^{*} and \Rightarrow^{+}denote derivations of ≥ 0 and ≥ 1 steps
If $S \rightarrow^{*} \beta$ then β is said to be a sentential form of G
$L(G)=\left\{w \in V_{t^{*}} \mid S \Rightarrow^{+} w\right\}, w \in L(G)$ is called a sentence of G
Note, $L(G)=\left\{\beta \in V * \mid S \rightarrow^{*} \beta\right\} \cap V_{t}{ }^{*}$

Derivations

We can view the productions of a CFG as rewriting rules. Using our example CFG:

$$
\begin{aligned}
& \langle\text { goal }\rangle \Rightarrow\langle\text { expr }\rangle \\
& \Rightarrow \quad\langle\text { expr }\rangle\langle\text { op }\rangle\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{num}, 2\rangle\langle\mathrm{op}\rangle\langle\mathrm{expr}\rangle \\
& \Rightarrow \quad\langle\mathrm{id}, \mathrm{x}\rangle+\langle\text { num, } 2\rangle *\langle\operatorname{expr}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\text { num, } 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle
\end{aligned}
$$

We have derived the sentence $\mathrm{x}+2 * \mathrm{y}$.

We denote this \langle goal $\rangle \rightarrow^{*}$ id + num $*$ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.

Grammars are often written in Backus-Naur form (BNF). Example:

$$
\begin{array}{|ccl}
\langle\text { goal }\rangle & ::= & \langle\text { expr }\rangle \\
\langle\operatorname{expr}\rangle & ::= & \langle\operatorname{expr}\rangle\langle\text { op }\rangle\langle\text { expr }\rangle \\
& \mid & \text { num } \\
& \mid & \text { id } \\
\langle\text { op }\rangle & ::= & + \\
& \mid & - \\
& \mid & * \\
& \mid & /
\end{array}
$$

This describes simple expressions over numbers and identifiers.
In a BNF for a grammar, we represent
(1) non-terminals with angle brackets or capital letters
(2) terminals with typewriter font or underline
(3) productions as in the example

Derivations

At each step, we chose a non-terminal to replace.
This choice can lead to different derivations.
Two are of particular interest:
leftmost derivation
the leftmost non-terminal is replaced at each step
rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

Rightmost derivation

Precedence

For the string $\mathrm{x}+2 * \mathrm{y}$:

$$
\begin{aligned}
\langle\text { goal }\rangle & \Rightarrow\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\mathrm{id}, \mathrm{y}\rangle \\
& \Rightarrow\langle\text { expr }\rangle *\langle\mathrm{id}, \mathrm{y}\rangle \\
& \Rightarrow\langle\text { expr }\rangle\langle\mathrm{op}\rangle\langle\text { expr }\rangle *\langle\mathrm{id}, \mathrm{y}\rangle \\
& \Rightarrow\langle\operatorname{expr}\rangle\langle\mathrm{op}\rangle\langle\mathrm{num}, 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { num }, 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle \\
& \Rightarrow\langle\mathrm{id}, \mathrm{x}\rangle+\langle\mathrm{num}, 2\rangle *\langle\mathrm{id}, \mathrm{y}\rangle
\end{aligned}
$$

Again, \langle goal $\rangle \Rightarrow^{*}$ id + num $*$ id.
Treewalk evaluation computes $(\mathrm{x}+2) * \mathrm{y}$ - the "wrong" answer!

Should be $\mathrm{x}+(2 * \mathrm{y})$

Precedence

Now, for the string $\mathrm{x}+2 * \mathrm{y}$:

$$
\begin{aligned}
\langle\text { goal }\rangle & \Rightarrow\langle\text { expr }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle *\langle\text { factor }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { term }\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { factor }\rangle *\langle\text { id, }, \mathrm{y}\rangle \\
& \Rightarrow\langle\text { expr }\rangle+\langle\text { num, } 2\rangle *\langle\text { id,y }\rangle \\
& \Rightarrow\langle\text { term }\rangle+\langle\text { num, } 2\rangle *\langle\text { id, }, \mathrm{y}\rangle \\
& \Rightarrow\langle\text { factor }\rangle+\langle\text { num }, 2\rangle *\langle\text { id, }\rangle \\
& \Rightarrow\langle\text { id, }\rangle\rangle+\langle\text { num }, 2\rangle *\langle\text { id }, \mathrm{y}\rangle
\end{aligned}
$$

Again, \langle goal $\rangle \Rightarrow^{*}$ id + num * id, but this time, we build the desired tree.

Ambiguity

Treewalk evaluation computes $\mathrm{x}+(2 * \mathrm{y})$

Ambiguity

May be able to eliminate ambiguities by rearranging the grammar:

\langle stmt \rangle	$::=$	\langle matched \rangle
	\mid	\langle unmatched \rangle
\langle matched \rangle	$:=$	if \langle expr \rangle then \langle matched \rangle else \langle matched \rangle
	\mid	other stmts
\langle unmatched \rangle	$::=$	if \langle expr \rangle then \langle stmt \rangle
	\mid	if \langle expr \rangle then \langle matched \rangle else \langle unmatched \rangle

This generates the same language as the ambiguous grammar, but applies the common sense rule:
match each el se with the closest unmatched then

This is most likely the language designer's intent.

Scanning vs. parsing

Parsing: the big picture

Where do we draw the line?

$$
\begin{array}{ll}
\text { term } & ::=[a-z A-z]([a-z A-z] \mid[0-9])^{*} \\
& \mid \\
\text { op } \quad & 0 \mid[1-9][0-9]^{*} \\
\text { expr } & ::=(\text { term op })^{*} \text { term }
\end{array}
$$

Regular expressions are used to classify:

- identifiers, numbers, keywords
- REs are more concise and simpler for tokens than a grammar
- more efficient scanners can be built from REs (DFAs) than grammars
Context-free grammars are used to count:
- brackets: (), begin...end, if...then...else
- imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200 productions. Factoring out lexical analysis as a separate phase makes compiler more manageable.

Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- may require backtracking
- some grammars are backtrack-free (predictive)

Bottom-up parsers

- start at the leaves and fill in
- start in a state valid for legal first tokens
- as input is consumed, change state to encode possibilities (recognize valid prefixes)
- use a stack to store both state and sentential forms

Our goal is a flexible parser generator system

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the start or goal symbol of the grammar.
To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string
(1) At a node labelled A, select a production $A \rightarrow \alpha$ and construct the appropriate child for each symbol of α
(2) When a terminal is added to the fringe that doesn't match the input string, backtrack
(3) Find next node to be expanded (must have a label in V_{n})

The key is selecting the right production in step 1.
If the parser makes a wrong step, the "derivation" process does not terminate.
Why is it bad?

Eliminating left-recursion

Top-down parsers cannot handle left-recursion in a grammar Formally, a grammar is left-recursive if
$\exists A \in V_{n}$ such that $A \Rightarrow^{+} A \alpha$ for some string α

Our simple expression grammar is left-recursive

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they select the wrong production
Do we need arbitrary lookahead to parse CFGs?

- in general, yes
- use the Earley or Cocke-Younger, Kasami algorithms

Fortunately

- large subclasses of CFGs can be parsed with limited lookahead
- most programming language constructs can be expressed in a grammar that falls in these subclasses
Among the interesting subclasses are:
LL(1): left to right scan, left-most derivation, 1-token lookahead; and
$\mathrm{LR}(1)$: left to right scan, reversed right-most derivation, 1-token lookahead

To remove left-recursion, we can transform the grammar Consider the grammar fragment:

$$
\begin{array}{cc}
\langle\text { foo }\rangle & ::= \\
& \langle\text { foo }\rangle \alpha \\
& \beta
\end{array}
$$

where α and β do not start with \langle foo \rangle We can rewrite this as:

$$
\begin{array}{cc}
\langle\text { foo }\rangle & ::=\beta\langle\text { bar }\rangle \\
\langle\text { bar }\rangle & ::=\alpha\langle\text { bar }\rangle \\
& \mid \varepsilon
\end{array}
$$

where $\langle\mathrm{bar}\rangle$ is a new non-terminal
This fragment contains no left-recursion

Predictive parsing

Basic idea:

- For any two productions $A \rightarrow \alpha \mid \beta$, we would like a distinct way of choosing the correct production to expand.
- For some RHS $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear first in some string derived from α.
- That is, for some $w \in V_{t}^{*}, w \in \operatorname{FIRST}(\alpha)$ iff. $\alpha \Rightarrow^{*} w \gamma$.
- Key property:

Whenever two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

- $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRSt}(\beta)=\phi$
- This would allow the parser to make a correct choice with a lookahead of only one symbol!

What if a grammar does not have this property？
Sometimes，we can transform a grammar to have this property．
For each non－terminal A find the longest prefix α common to two or more of its alternatives．
if $\alpha \neq \varepsilon$ then replace all of the A productions
$A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \cdots \mid \alpha \beta_{n}$
with
$A \rightarrow \alpha A^{\prime}$
$A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \cdots \mid \beta_{n}$
where A^{\prime} is a new non－terminal．
Repeat until no two alternatives for a single non－terminal have a common prefix．

Indirect Left－recursion elimination

Given a left－factored CFG，to eliminate left－recursion：
Input：Grammar G with no cycles and no ε productions．
Output：Equivalent grammat with no left－recursion．begin Arrange the non terminals in some order $A_{1}, A_{2}, \cdots A_{n}$ ； foreach $i=1 \cdots n$ do
foreach $j=1 \cdots i-1$ do
Say the $i^{\text {th }}$ production is：$A_{i} \rightarrow A_{j} \gamma$ ；
and $A_{j} \rightarrow \delta_{1}\left|\delta_{2}\right| \cdots \mid \delta_{k} ;$
Replace，the $i^{\text {th }}$ production by：
$A_{i} \rightarrow \delta_{1} \gamma\left|\delta_{2} \gamma\right| \cdots \delta_{n} \gamma ;$
Eliminate immediate left recursion in A_{i} ；

There are two non－terminals to left factor：

〈expr〉 ：$=$	$\begin{aligned} & \langle\text { term }\rangle+\langle\text { expr }\rangle \\ & \langle\text { term }\rangle-\langle\text { expr }\rangle \\ & \langle\text { term }\rangle \end{aligned}$	〈expr〉 $\left\langle\right.$ expr $\left.^{\prime}\right\rangle$	$\begin{aligned} & ::= \\ & ::= \end{aligned}$	$\begin{aligned} & \langle\text { term }\rangle\left\langle\text { expr }^{\prime}\right\rangle \\ & +\langle\text { expr }\rangle \\ & -\langle\text { expr }\rangle \end{aligned}$
〈term＞	\langle factor $\rangle *\langle$ term \rangle		｜	ε
	\langle factor \rangle /\langle term \rangle	＜term＞	$::=$	\langle factor $\rangle\left\langle\right.$ term $\left.{ }^{\prime}\right\rangle$
	＜factor＞	＜term＇＞	：：＝	＊\langle term＞
				／\langle term \rangle
				ε

Generality

Question：
By left factoring and eliminating left－recursion，can we transform an arbitrary context－free grammar to a form where it can be predictively parsed with a single token lookahead？
Answer：
Given a context－free grammar that doesn＇t meet our conditions，it is undecidable whether an equivalent grammar exists that does meet our conditions．
Many context－free languages do not have such a grammar：

$$
\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\}
$$

Must look past an arbitrary number of a＇s to discover the 0 or the 1 and so determine the derivation．

1 int $A()$

2 begin
foreach production of the form $A \rightarrow X_{1} X_{2} X_{3} \cdots X_{k}$ do
for $i=1$ to k do
if X_{i} is a non-terminal then
if $\left(X_{i}() \neq 0\right)$ then
backtrack; break; // Try the next production
else if X_{i} matches the current input symbol a then
advance the input to the next symbol;
else
backtrack; break; // Try the next production
if $i E Q k+1$ then return 0 ; // Success
return 1; // Failure

Non-recursive predictive parsing

Now, a predictive parser looks like:

Rather than writing recursive code, we build tables. Why?Building tables can be automated!

- Backtracks in general - in practise may not do much.
- How to backtrack?
- A left recursive grammar will lead to infinite loop.

Table-driven parsers

A parser generator system often looks like:

- This is true for both top-down (LL) and bottom-up (LR) parsers
- This also uses a stack - but mainly to remember part of the inptt string; no recursion.

FIRST

FOLLOW

For a string of grammar symbols α, define $\operatorname{FIRST}(\alpha)$ as:

- the set of terminals that begin strings derived from α :
$\left\{a \in V_{t} \mid \alpha \Rightarrow^{*} a \beta\right\}$
- If $\alpha \Rightarrow^{*} \varepsilon$ then $\varepsilon \in \operatorname{FIRST}(\alpha)$

FIRST (α) contains the tokens valid in the initial position in α To build $\operatorname{FIRST}(X)$:
(1) If $X \in V_{t}$ then $\operatorname{FIRst}(X)$ is $\{X\}$
(2) If $X \rightarrow \varepsilon$ then add ε to $\operatorname{FIRST}(X)$
(3) If $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$:

- Put $\operatorname{FIRST}\left(Y_{1}\right)-\{\varepsilon\}$ in $\operatorname{FIRST}(X)$
(2) $\forall i: 1<i \leq k$, if $\varepsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{i-1}\right)$
(i.e., $Y_{1} \cdots Y_{i-1} \Rightarrow^{*} \varepsilon$)
then put $\operatorname{FIRST}\left(Y_{i}\right)-\{\varepsilon\}$ in $\operatorname{FIRST}(X)$
(0) If $\varepsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{k}\right)$ then put ε in $\operatorname{FIRST}(X)$

Repeat until no more additions can be made.

LL(1) grammars

Previous definition

A grammar G is $L L(1)$ iff. for all non-terminals A, each distinct pair of productions $A \rightarrow \beta$ and $A \rightarrow \gamma$ satisfy the condition $\operatorname{FIRST}(\beta) \cap \operatorname{FIRST}(\gamma)=\phi$.

What if $A \Rightarrow^{*} \varepsilon$?
Revised definition
A grammar G is $L L(1)$ iff. for each set of productions
$A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{n}$:
(1) $\operatorname{FIRST}\left(\alpha_{1}\right), \operatorname{FIRST}\left(\alpha_{2}\right), \ldots, \operatorname{FIRST}\left(\alpha_{n}\right)$ are all pairwise disjoint
(2) If $\alpha_{i} \Rightarrow^{*} \varepsilon$ then
$\operatorname{FIRST}\left(\alpha_{j}\right) \cap \operatorname{FOLLOW}(A)=\phi, \forall 1 \leq j \leq n, i \neq j$.

For a non-terminal A, define $\operatorname{FOLLOW}(A)$ as
the set of terminals that can appear immediately to the right of A in some sentential form
Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it.
A terminal symbol has no FOLLOW set.
To build follow (A) :
(1) Put \$ in FOLLOW (\langle goal \rangle)
(2) If $A \rightarrow \alpha B \beta$:

- Put FIRST $(\beta)-\{\varepsilon\}$ in $\operatorname{FOLLOW}(B)$
(2) If $\beta=\varepsilon$ (i.e., $A \rightarrow \alpha B$) or $\varepsilon \in \operatorname{FIRST}(\beta)$ (i.e., $\beta \Rightarrow^{*} \varepsilon$) then put FOLLOW (A) in $\operatorname{FOLLOW}(B)$
Repeat until no more additions can be made

LL(1) grammars

Provable facts about LL(1) grammars:
(1) No left-recursive grammar is LL(1)
(2) No ambiguous grammar is LL(1)
(3) Some languages have no $\mathrm{LL}(1)$ grammar
(9) A ε-free grammar where each alternative expansion for A begins with a distinct terminal is a simple $\mathrm{LL}(1)$ grammar.
Example

- $S \rightarrow a S \mid a$ is not $\mathrm{LL}(1)$ because $\operatorname{FIRST}(a S)=\operatorname{FIRST}(a)=\{a\}$
- $S \rightarrow a S^{\prime}$
$S^{\prime} \rightarrow a S^{\prime} \mid \varepsilon$
accepts the same language and is $\operatorname{LL}(1)$

If G is ε-free, condition 1 is sufficient.

LL(1) parse table construction

Input: Grammar G

Output: Parsing table M

Method:

(1) \forall productions $A \rightarrow \alpha$:

- $\forall a \in \operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, a]$
(3) If $\varepsilon \in \operatorname{FIRST}(\alpha)$:
- $\forall b \in \operatorname{FOLLOW}(A)$, add $A \rightarrow \alpha$ to $M[A, b]$
(3) If $\$ \in \operatorname{FoLLOW}(A)$ then $\operatorname{add} A \rightarrow \alpha$ to $M[A, \$]$
(2) Set each undefined entry of M to error

If $\exists M[A, a]$ with multiple entries then grammar is not $\mathrm{LL}(1)$.

Note: recall $a, b \in V_{t}$, so $a, b \neq \varepsilon$

Table driven Predictive parsing

Input: A string w and a parsing table M for a grammar G
Output: If w is in $L(G)$, a leftmost derivation of w; otherwise, indicate an error
push $\$$ onto the stack; push S onto the stack;
inp points to the input tape;
$X=$ stack.top();
while $X \neq \$$ do
if X is inp then stack.pop(); inp++;
else if X is a terminal then error();
else if $M[X, a]$ is an error entry then Lerror();
else if $M[X, a]=X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ then
output the production $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$; stack.pop();
push $Y_{k}, Y_{k-1}, \cdots Y_{1}$ in that order;
$\mathrm{X}=$ stack.top();

Example

Our long-suffering expression grammar:

1.	S	$\rightarrow E$	6.	T	$\rightarrow F T^{\prime}$
2.	E	$\rightarrow T E^{\prime}$	7.	T^{\prime}	$\rightarrow * T$
3.	E^{\prime}	$\rightarrow+E$	8.		$/ T$
4.		$-E$	9.		ε
5.		ε	10.	F	\rightarrow num
			11.		id

	FIRST	FOLLOW	id	num	+	-	*	1	\$
S	num, id	\$	1	1	-	-	-	-	-
E	num, id	\$	2	2	-	-	-	-	-
E^{\prime}	$\varepsilon,+,-$	\$	-	-	3	4	-	-	5
T	num, id	$+,-, \$$	6	6	-	-	-	-	-
T^{\prime}	$\varepsilon, *, /$	+, -, \$	-	-	9	9	7	8	9
F	num, id	$+,-, *, /, \$$	11	10	-	-	-	-	-
id	id	-							
num	num	-							
*	*	-							
1	1	-							
+	+	-							
-	-	-							

A grammar that is not $\operatorname{LL}(1)$

```
<stmt\rangle ::= 年 < <expr\rangle then \langlestmt\rangle
```

Left-factored: \langle stmt $\rangle::=$ if \langle expr \rangle then \langle stmt $\rangle\left\langle\right.$ stmt $\left.^{\prime}\right\rangle \mid \ldots$ Now,
$\left\langle\operatorname{stmt}^{\prime}\right\rangle::=$ else $\langle\operatorname{stmt}\rangle \mid \varepsilon$
$\operatorname{FIRST}\left(\left\langle\operatorname{stmt}^{\prime}\right\rangle\right)=\{\varepsilon, \mathrm{el} \mathrm{se}\}$
Also, $\operatorname{FOLLOW}\left(\left\langle\right.\right.$ stmt $\left.\left.^{\prime}\right\rangle\right)=\{$ else, $\$\}$
But, $\operatorname{FIRST}\left(\left\langle\operatorname{stmt}^{\prime}\right\rangle\right) \bigcap \operatorname{FOLLOW}\left(\left\langle\operatorname{stmt}^{\prime}\right\rangle\right)=\{$ else $\} \neq \phi$
On seeing else, there is a conflict between choosing

$$
\left\langle s t m t^{\prime}\right\rangle::=e l s e\langle s t m t\rangle \text { and }\left\langle s t m t^{\prime}\right\rangle::=\varepsilon
$$

\Rightarrow grammar is not $\operatorname{LL}(1)$!
The fix:
Put priority on $\left\langle\right.$ stmt $\left.{ }^{\prime}\right\rangle::=$ else \langle stmt \rangle to associate else with closest previous then.

Another example of painful left-factoring

Error recovery in Predictive Parsing

- Here is a typical example where a programming language fails to be LL(1):
stmt \rightarrow asginment | call | other
assignment \rightarrow id := exp
call \rightarrow id (exp-list)
- This grammar is not in a form that can be left factored. We must first replace assignment and call by the right-hand sides of their defining productions:
statement \rightarrow id $:=\exp$ | id(exp-list) | other a
- We left factor: statement \rightarrow id stmt' | other stmt' \rightarrow := exp (exp-list)
- See how the grammar obscures the language semantics.

Some definitions

Recall

- For a grammar G, with start symbol S, any string α such that $S \Rightarrow^{*} \alpha$ is called a sentential form
- If $\alpha \in V_{t}^{*}$, then α is called a sentence in $L(G)$
- Otherwise it is just a sentential form (not a sentence in $L(G)$)

A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.
A right-sentential form is a sentential form that occurs in the rightmost derivation of some sentence.

An unambiguous grammar will have a unique leftmost/rightmost derivation.

Reductions Vs Derivations

Example

Reduction:

- At each reduction step, a specific substring matching the body of a production is replaced by the non-terminal at the head of the production.

Key decisions

- When to reduce?
- What production rule to apply?

Reduction Vs Derivations

- Recall: In derivation: a non-terminal in a sentential form is replaced by the body of one of its productions.
- A reduction is reverse of a step in derivation.
- Bottom-up parsing is the process of "reducing" a string w to the start symbol.
- Goal of bottum-up parsing: build derivation tree in reverse.

Informally, a "handle" is

- a substring that matches the body of a production (not necessarily the first one),
- and reducing this handle, represents one step of reduction (or reverse rightmost derivation).

Consider the grammar

1	S	\rightarrow	aABe
2	A	\rightarrow	$A b \mathrm{c}$
3		b	b
4	B	\rightarrow	d

and the input string abbcde

Prod'n.	Sentential Form
3	$\mathrm{a} \square \mathrm{b} \mathrm{bcde}$
2	$\mathrm{a} A \mathrm{Ac} \mathrm{de}$
4	aADd
1	$\mathrm{a} A B \mathrm{e}$
-	S

The trick appears to be scanning the input and finding valid sentential forms.

Handles

Theorem:

If G is unambiguous then every right-sentential form has a unique handle.

Proof: (by definition)
(1) G is unambiguous \Rightarrow rightmost derivation is unique
(2) \Rightarrow a unique production $A \rightarrow \beta$ applied to take γ_{i-1} to γ_{i}
(3) $\Rightarrow \mathrm{a}$ unique position k at which $A \rightarrow \beta$ is applied
(4) \Rightarrow a unique handle $A \rightarrow \beta$

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Handle－pruning

The left－recursive expression grammar（original form）

$1 \mid\langle$ goal $\rangle::=\langle$ expr \rangle	Prod＇n	Sentential Form
$2\langle$ expr $\rangle::=\langle$ expr $\rangle+\langle$ term \rangle	－	＜goal＞
$3 \left\lvert\, \begin{aligned} & \text { expr }\rangle-\langle\text { term }\rangle\end{aligned}\right.$	1	＜expr \rangle
4 －｜〈term〉	3	$\overline{\langle\text { expr }\rangle}-\langle$ term \rangle
$5\langle$ term $\rangle::=\langle$ term $\rangle *\langle$ factor \rangle	5	$\overline{\langle\text { expr }\rangle-\langle\text { term }\rangle *\langle\text { factor }\rangle}$
6 ｜\langle term \rangle /\langle factor \rangle	9	\langle expr $\rangle-\overline{\langle\text { term }\rangle * \text { id }}$
$7 \quad \mid$ 〈factor〉	7	$\langle\mathrm{expr}\rangle-\langle$ factor $\rangle *$ id
$8\langle\langle$ factor $\rangle::=$ num	8	$\langle\mathrm{expr}\rangle-\underline{\text { num } * \text { id }}$
$9 \quad \mid$ id	4	〈term＞－num＊id
	7	$\overline{\langle\text { factor }\rangle}$－num＊id
	9	id－num＊id

The process to construct a bottom－up parse is called handle－pruning． To construct a rightmost derivation

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_{n}=w
$$

we set i to n and apply the following simple algorithm
for $i=n$ downto 1
（1）find the handle $A_{i} \rightarrow \beta_{i}$ in γ_{i}
（2）replace β_{i} with A_{i} to generate γ_{i-1}
This takes $2 n$ steps，where n is the length of the derivation

Stack implementation

One scheme to implement a handle－pruning，bottom－up parser is called a shift－reduce parser．
Shift－reduce parsers use a stack and an input buffer
－initialize stack with \＄
（8）Repeat until the top of the stack is the goal symbol and the input token is $\$$
a）find the handle
if we don＇t have a handle on top of the stack，shift an input symbol onto the stack
b）prune the handle
if we have a handle $A \rightarrow \beta$ on the stack，reduce
i） $\operatorname{pop}|\beta|$ symbols off the stack
ii）push A onto the stack

Example：back to $\mathrm{x}-2 * \mathrm{y}$

$1 S \rightarrow E$	
	$E \rightarrow E+$
3	$E-T$
4	｜T
$5 T \rightarrow T * F$	
6	T／F
7	F
	$F \rightarrow \mathrm{nu}$

Stack	Input	Action
\＄	id－num＊id	S
\＄id	－num＊id	R9
\＄ ／factor＞	－num＊id	R7
\＄ term＞	－num＊id	R4
\＄$\left\langle\right.$ expr ${ }^{\text {c }}$	－num＊id	S
\＄\langle expr \rangle－	num＊id	S
\＄ expr＞－num	＊id	R8
\＄ expr＞－＜factor＞	＊id	R7
\＄\langle expr $\rangle-\langle$ term \rangle	＊id	S
\＄ expr $\rangle-\langle$ term $\rangle *$	id	S
\＄$\langle\operatorname{expr}\rangle-\langle$ term $\rangle * \frac{\text { id }}{}$		R9
$\$\langle$ expr $\rangle-\langle$ term $\rangle * \frac{\text { factor }}{}$		R5
\＄\langle expr $\rangle-\overline{\text {＜term }\rangle}$		R3
\＄＜expr＞		R1
\＄\goal＞		A

Shift-reduce parsing

LR parsing

Shift-reduce parsers are simple to understand
A shift-reduce parser has just four canonical actions:
(1) shift - next input symbol is shifted onto the top of the stack
(2) reduce - right end of handle is on top of stack; locate left end of handle within the stack; pop handle off stack and push appropriate non-terminal LHS
(3) accept - terminate parsing and signal success
(3) error - call an error recovery routine

Key insight: recognize handles with a DFA:

- DFA transitions shift states instead of symbols
- accepting states trigger reductions

May have Shift-Reduce Conflicts.

Example tables

state	ACTION	GO
	id + * \$	ET F
0	s4 - - -	12
1	- - ac	
2	- s5-r3	
3	- r5 s6 r5	
4	- r6 r6 r6	
5	s4 - -	723
6	s4 - -	-8
7	- - - r2	
8	- r4-r4	

Note: This is a simple little right-recursive grammar. It is not the same grammar as in previous lectures.

$$
\begin{aligned}
& \text { The Grammar } \\
& \hline \hline 1 \mid S \rightarrow E \\
& 2
\end{aligned}
$$

$\mathrm{LR}(k)$ grammars

$\mathrm{LR}(k)$ grammars

Informally, we say that a grammar G is $\mathrm{LR}(k)$ if, given a rightmost derivation

$$
S=\gamma_{0} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \cdots \Rightarrow \gamma_{n}=w,
$$

we can, for each right-sentential form in the derivation:

- isolate the handle of each right-sentential form, and
(2) determine the production by which to reduce
by scanning γ_{i} from left to right, going at most k symbols beyond the right end of the handle of γ_{i}.

Why study LR grammars?

$\mathrm{LR}(1)$ grammars are often used to construct parsers.
We call these parsers LR(1) parsers.

- virtually all context-free programming language constructs can be expressed in an LR(1) form
- LR grammars are the most general grammars parsable by a deterministic, bottom-up parser
- efficient parsers can be implemented for LR(1) grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers
$\mathrm{LL}(k)$: recognize use of a production $A \rightarrow \beta$ seeing first k symbols derived from β
$\operatorname{LR}(k)$: recognize the handle β after seeing everything derived from β plus k lookahead symbols

LR parsing

(1) $\operatorname{SLR}(1)$

- simple, fast construction
(2) $\operatorname{LR}(1)$
- slow, large construction
- $\operatorname{LALR}(1)$

Formally, a grammar G is $\operatorname{LR}(k)$ iff.:
(1) $S \Rightarrow_{\mathrm{rm}}^{*} \alpha A w \Rightarrow{ }_{\mathrm{rm}} \alpha \beta w$, and
(2) $S \Rightarrow_{\mathrm{rm}}^{*} \gamma B x \Rightarrow{ }_{\mathrm{rm}} \alpha \beta y$, and
(3) $\operatorname{FIRST}_{k}(w)=\operatorname{FIRST}_{k}(y)$
$\Rightarrow \alpha A y=\gamma B x$
i.e., Assume sentential forms $\alpha \beta w$ and $\alpha \beta y$, with common prefix $\alpha \beta$ and common k -symbol lookahead $\mathrm{FIRST}_{k}(y)=$ FIRST $_{k}(w)$, such that $\alpha \beta w$ reduces to $\alpha A w$ and $\alpha \beta y$ reduces to $\gamma B x$.
But, the common prefix means $\alpha \beta y$ also reduces to $\alpha A y$, for the same result.
Thus $\alpha A y=\gamma B x$.

Three common algorithms to build tables for an "LR" parser:

- smallest class of grammars
- smallest tables (number of states)
- full set of $\mathrm{LR}(1)$ grammars
- largest tables (number of states)
- intermediate sized set of grammars
- same number of states as $\operatorname{SLR}(1)$
- canonical construction is slow and large
- better construction techniques exist

An LR(1) parser for either Algol or Pascal has several thousand states, while an $\operatorname{SLR}(1)$ or $\operatorname{LALR}(1)$ parser for the same language may have several hundred states.

Example

The characteristic finite state machine (CFSM)

The • indicates how much of an item we have seen at a given state in the parse:

```
[A->\bulletXYZ] indicates that the parser is looking for a string that can be derived from \(X Y Z\)
\([A \rightarrow X Y \bullet Z]\) indicates that the parser has seen a string derived from \(X Y\) and is looking for one derivable from \(Z\)
\(\mathrm{LR}(0)\) items: (no lookahead)
\(A \rightarrow X Y Z\) generates \(4 \mathrm{LR}(0)\) items:
(1) \([A \rightarrow \bullet X Y Z]\)
(2) \([A \rightarrow X \bullet Y Z]\)
(3) \([A \rightarrow X Y \bullet Z]\)
(4) \([A \rightarrow X Y Z \bullet]\)
```

The table construction algorithms use sets of $\operatorname{LR}(k)$ items or configurations to represent the possible states in a parse.
$\operatorname{An} \operatorname{LR}(k)$ item is a pair $[\alpha, \beta]$, where
α is a production from G with a \bullet at some position in the RHS, marking how much of the RHS of a production has already been seen
β is a lookahead string containing k symbols (terminals or \$)
Two cases of interest are $k=0$ and $k=1$:
$\operatorname{LR}(0)$ items play a key role in the $\operatorname{SLR}(1)$ table construction algorithm.
$\operatorname{LR}(1)$ items play a key role in the $\operatorname{LR}(1)$ and $\operatorname{LALR}(1)$ table construction algorithms.

The CFSM for a grammar is a DFA which recognizes viable prefixes of right-sentential forms:

A viable prefix is any prefix that does not extend beyond the handle.

It accepts when a handle has been discovered and needs to be reduced.
To construct the CFSM we need two functions:

- Closure (I) to build its states
- GOTO (I, X) to determine its transitions

CLOSURE

GOTO

Given an item $[A \rightarrow \alpha \bullet B \beta]$, its closure contains the item and any other items that can generate legal substrings to follow α.
Thus, if the parser has viable prefix α on its stack, the input should reduce to $B \beta$ (or γ for some other item $[B \rightarrow \bullet \gamma]$ in the closure).

```
function CLOSURE(I)
repeat
    if }[A->\alpha\bulletB\beta]\in
        add [B->\bullet\gamma] to I
until no more items can be added to I
return I
```


Building the $\operatorname{LR}(0)$ item sets

We start the construction with the item $\left[S^{\prime} \rightarrow \bullet S \$\right]$, where S^{\prime} is the start symbol of the augmented grammar G^{\prime} S is the start symbol of G
\$ represents EOF
To compute the collection of sets of $\operatorname{LR}(0)$ items

```
function items(G')
    sos}\leftarrow\operatorname{CLOSURE}({[\mp@subsup{S}{}{\prime}->\bulletS$]}
    C}\leftarrow{\mp@subsup{s}{0}{}
    repeat
        for each set of items s\inC
            for each grammar symbol }
            if GOTO}(s,X)\not=\phi\mathrm{ and GOTO }(s,X)\not\in
                add GOTO (s,X) to }
    until no more item sets can be added to C
    return C
```


Constructing the $\mathrm{LR}(0)$ parsing table

LR(0) example

(1) construct the collection of sets of $\operatorname{LR}(0)$ items for G^{\prime}
(2) state i of the CFSM is constructed from I_{i}

- $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$
\Rightarrow ACTION $[i, a] \leftarrow$ "shift j"
(3) $[A \rightarrow \alpha \bullet] \in I_{i}, A \neq S^{\prime}$
$\Rightarrow \operatorname{ACTION}[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ ", $\forall a$
(- $\left[S^{\prime} \rightarrow S \$ \bullet\right] \in I_{i}$
$\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "accept", $\forall a$
(3) $\operatorname{GOTO}\left(I_{i}, A\right)=I_{j}$
$\Rightarrow \mathrm{GOTO}[i, A] \leftarrow j$
© 9
set undefined entries in ACTION and GOTO to "error"
initial state of parser s_{0} is CLOSURE $\left(\left[S^{\prime} \rightarrow \bullet S \$\right]\right)$

Conflicts in the ACTION table

If the $\operatorname{LR}(0)$ parsing table contains any multiply-defined ACTION entries then G is not $\operatorname{LR}(0)$
Two conflicts arise:
shift-reduce: both shift and reduce possible in same item
set
reduce-reduce: more than one distinct reduce action possible in same item set
Conflicts can be resolved through lookahead in ACTION. Consider:

- $A \rightarrow \varepsilon \mid a \alpha$
\Rightarrow shift-reduce conflict
requires lookahead to avoid shift-reduce conflict after shifting c (need to see * to give precedence over +)

| state | ACTION | | | | | GOTO | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| | id | $($ | $)$ | + | $\$$ | $S E$ | T |
| 0 | s5 | s6 | - | - | - | -1 | 9 |
| 1 | - | - | - | s3 | s2 | -- | - |
| 2 | acc | acc | acc | acc | acc | -- | - |
| 3 | s5 | s6 | - | - | - | -- | 4 |
| 4 | r2 | r2 | r2 | r2 | r2 | -- | - |
| 5 | r4 | r4 | r4 | r4 | r4 | -- | - |
| 6 | s5 | s6 | - | - | - | -7 | 9 |
| 7 | - | - | s8 | s3 | - | -- | - |
| 8 | r5 | r5 | r5 | r5 | r5 | -- | - |
| 9 | r3 | r3 | r3 | r3 | r3 | -- | - |

SLR(1): simple lookahead LR

Add lookaheads after building LR(0) item sets
Constructing the $\operatorname{SLR}(1)$ parsing table:
(1) construct the collection of sets of $\operatorname{LR}(0)$ items for G^{\prime}
(2) state i of the CFSM is constructed from I_{i}

- $[A \rightarrow \alpha \bullet a \beta] \in I_{i}$ and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$ $\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "shift j ", $\forall a \neq \$$
(2) $[A \rightarrow \alpha \bullet] \in I_{i}, A \neq S^{\prime}$ $\Rightarrow \operatorname{ACTION}[i, a] \leftarrow$ "reduce $A \rightarrow \alpha ", \forall a \in \operatorname{FOLLOW}(A)$
- $\left[S^{\prime} \rightarrow S \bullet \$\right] \in I_{i}$ \Rightarrow ACTION $[i, \$] \leftarrow$ "accept"
(3) $\operatorname{GOTO}\left(I_{i}, A\right)=I_{j}$
$\Rightarrow \mathrm{GOTO}[i, A] \leftarrow j$
9
set undefined entries in ACTION and GOTO to "error"
initial state of parser s_{0} is CLOSURE $\left(\left[S^{\prime} \rightarrow \bullet S \$\right]\right)$

1	$S \rightarrow E \$$	$\operatorname{FOLLOW}(E)=\operatorname{FOLLOW}(T)=\{\$,+)$,		
2	$E \rightarrow E+T$	state	ACTION	GOTO
3	T		id () + \$	$S E T$
4	$T \rightarrow$ id	0	s5 s6 - - -	-19
5	(E)	1	- - - s3 acc	--
		2	- - - -	- -
	9	3	s5 s6 - - -	--4
	$1{ }^{T}$	4	- - r2 r2 r2	-- -
	id 6	5	- - r4 r4 r4	-- -
	1.	6	s5 s6 - - -	-79
	1	7	- - s8 s3 -	- -
	$-(3) \div(7)$	8	- - r5 r5 r5	-- -
	T ${ }^{\text {T }}$	9	- - r3 r3 r3	- -
	(4) 8			

1	$S \rightarrow E \$$
2	$E \rightarrow E+T$
3	T
4	$T \quad \rightarrow \quad T * F$
5	F
6	$F \rightarrow$ id
7	(E)
	FOLLOW
E	$\{+),, \$\}$
T	$\{+, *),, \$\}$
F	$\{+, *),, \$\}$

$I_{6}: \begin{aligned} & F \rightarrow(\bullet E) \\ & \\ & E \rightarrow \bullet\end{aligned}$ $E \rightarrow \bullet E+T$
$E \rightarrow \bullet T$ $E \rightarrow \bullet T$
$T \rightarrow \bullet T$
$T \rightarrow$$*$ $T \rightarrow \bullet F$
$F \rightarrow \bullet \mathrm{id}$
$I_{7} \cdot F \rightarrow \bullet(E)$
$I_{7}: E \rightarrow T \bullet$
$I_{8}: T \rightarrow T * \bullet F$
$T \rightarrow T * \bullet F$
$F \rightarrow \bullet i d$
$F \rightarrow \bullet(E)$
$I_{9}: T \rightarrow T * F \bullet$
$I_{10}: F \rightarrow(E) \bullet$
$I_{11}: \underset{T}{E} \rightarrow \underset{T \bullet * F}{E}+T_{\bullet}$
$\begin{aligned} I_{12}: F & \rightarrow(E \bullet) \\ E & \rightarrow E \bullet+T\end{aligned}$

Example: But it is SLR(1)

Example: A grammar that is not $\operatorname{SLR}(1)$

Consider:

$S \rightarrow$	$L=R$	
	\mid	R
L	\rightarrow	$* R$
	\mid	id
R	\rightarrow	L

Its $\mathrm{LR}(0)$ item sets:	
$I_{0}: S^{\prime} \rightarrow \bullet$ S\$	$I_{5}: L \rightarrow * \bullet R$
$S \rightarrow \bullet L=R$	$R \rightarrow \bullet L$
$S \rightarrow \bullet$ R	$L \rightarrow \bullet * R$
$L \rightarrow \bullet * R$	$L \rightarrow$ id
$L \rightarrow$-id	$I_{6}: S \rightarrow L=\bullet R$
$R \rightarrow \bullet L$	$R \rightarrow \bullet L$
$I_{1}: S^{\prime} \rightarrow S \bullet \$$	$L \rightarrow \bullet * R$
$I_{2}: S \rightarrow L \bullet=R$	$L \rightarrow$ id
$R \rightarrow L \bullet$	$I_{7}: L \rightarrow * R \bullet$
$I_{3}: S \rightarrow R \bullet$	$I_{8}: R \rightarrow L \bullet$
$I_{4}: L \rightarrow$ id	$I_{9}: S \rightarrow L=R \bullet$

Now consider $I_{2}:=\in \operatorname{FOLLOW}(R)(S \Rightarrow L=R \Rightarrow * R=R)$

Recall: $\mathrm{An} \operatorname{LR}(k)$ item is a pair $[\alpha, \beta]$, where
α is a production from G with a \bullet at some position in the RHS, marking how much of the RHS of a production has been seen
β is a lookahead string containing k symbols (terminals or \$)
What about LR(1) items?

- All the lookahead strings are constrained to have length 1
- Look something like $[A \rightarrow X \bullet Y Z, a]$

closure1(I)

Given an item $[A \rightarrow \alpha \bullet B \beta, a]$, its closure contains the item and any other items that can generate legal substrings to follow α. Thus, if the parser has viable prefix α on its stack, the input should reduce to $B \beta$ (or γ for some other item $[B \rightarrow \bullet \gamma, b]$ in the closure).

```
function closure1(I)
repeat
    if [A->\alpha\bulletB\beta,a]\inI
        add [B->\bullet\gamma,b] to I, where b\infirst( }\betaa
until no more items can be added to I
return I
```

What's the point of the lookahead symbols?

- carry along to choose correct reduction when there is a choice
- lookaheads are bookkeeping, unless item has • at right end:
- in $[A \rightarrow X \bullet Y Z, a], a$ has no direct use
- in $[A \rightarrow X Y Z \bullet a], a$ is useful
- allows use of grammars that are not uniquely invertible ${ }^{\dagger}$

The point: For $[A \rightarrow \alpha \bullet, a]$ and $[B \rightarrow \alpha \bullet, b]$, we can decide between reducing to A or B by looking at limited right context
\dagger No two productions have the same RHS

goto1(I)

Let I be a set of $\mathrm{LR}(1)$ items and X be a grammar symbol.
Then, $\operatorname{GOTO}(I, X)$ is the closure of the set of all items

$$
[A \rightarrow \alpha X \bullet \beta, a] \text { such that }[A \rightarrow \alpha \bullet X \beta, a] \in I
$$

If I is the set of valid items for some viable prefix γ, then $\operatorname{GOTO}(I, X)$ is the set of valid items for the viable prefix γX. goto (I, X) represents state after recognizing X in state I.

```
function gotol(I,X)
    let J be the set of items [A->\alphaX\bullet\beta,a]
        such that [A->\alpha\bulletX\beta,a]\inI
    return closure1(J)
```


Building the LR(1) item sets for grammar G

Constructing the LR(1) parsing table

We start the construction with the item $\left[S^{\prime} \rightarrow \bullet S, \$\right]$, where S^{\prime} is the start symbol of the augmented grammar G^{\prime} S is the start symbol of G
\$ represents EOF
To compute the collection of sets of $\mathrm{LR}(1)$ items

```
```

function items(G}

```
```

function items(G}
\mp@subsup{s}{0}{}}\leftarrow\mathrm{ closure1 ({[S'' }->\mathrm{ ©S,$]})
 \mp@subsup{s}{0}{}}\leftarrow\mathrm{ closure1 ({[S'' }->\mathrm{ ©S,$]})
C\leftarrow{sov
C\leftarrow{sov
repeat
repeat
for each set of items s\inC
for each set of items s\inC
for each grammar symbol X
for each grammar symbol X
if gotol (}s,X)\not=\phi\mathrm{ and gotol (s,X)\&C
if gotol (}s,X)\not=\phi\mathrm{ and gotol (s,X)\&C
add gotol(s,X) to C
add gotol(s,X) to C
until no more item sets can be added to }
until no more item sets can be added to }
return C

```
    return C
```

```
                gad gotol(s,X) to C
```

```
                gad gotol(s,X) to C
```


Back to previous example ($\notin \operatorname{SLR}(1))$

I_{2} no longer has shift-reduce conflict: reduce on $\$$, shift on $=$

Another example

LALR(1) parsing

Consider:					
	$0 \mid S^{\prime} \rightarrow$				
	$1 \mathrm{~S} \rightarrow \mathrm{CC}$				
$2 \mathrm{C} \rightarrow \mathrm{c}$ C					
3					
state		ACTION		GOTO	
		$c \quad d$	\$	S	C
0		s3 s	-	1	2
1		- -	acc	-	-
2		s6 s7	-	-	5
3		s3 s	-	-	8
4		r3 r3		-	-
5		- -	r1	-	-
6		s6 s7	-	-	9
7		- -	r3	-	-
8		r2 r2	-	-	-
9		- -	r2	-	-

$\mathrm{LR}(1)$ item sets:

$$
\begin{array}{rlr}
I_{0}: & S^{\prime} \rightarrow \bullet S, \$ & I_{4}: C \rightarrow d \bullet, c d \\
& S \rightarrow \bullet C C, \$ & I_{5}: S \rightarrow C C \bullet, \$ \\
& C \rightarrow \bullet C, c d & I_{6}: C \rightarrow c \bullet C, \$ \\
C & C \bullet d, c d & C \rightarrow c C, \$ \\
I_{1}: S^{\prime} \rightarrow S \bullet, \$ & & C \bullet d, \$ \\
I_{2}: S \rightarrow C \bullet C, \$ & I_{7}: C \rightarrow d \bullet, \$ \\
& C \rightarrow \bullet C, \$ & I_{8}: C \rightarrow c C \bullet, c d \\
C & \rightarrow \bullet d, \$ & I_{9}: C \rightarrow c C \bullet, \$ \\
I_{3}: & C \rightarrow c \bullet C, c d & \\
& C \rightarrow \bullet C, c d & \\
& C \rightarrow \bullet d, c d &
\end{array}
$$

LALR(1) table construction

To construct LALR(1) parsing tables, we can insert a single step into the $\operatorname{LR}(1)$ algorithm
(1.5) For each core present among the set of LR(1) items, find all sets having that core and replace these sets by their union.
The goto function must be updated to reflect the replacement sets.

The resulting algorithm has large space requirements, as we still are required to build the full set of $\mathrm{LR}(1)$ items.

LALR(1) table construction

(2) $[A \rightarrow \alpha \bullet, a] \in I_{i}, A \neq S^{\prime}$

Define the core of a set of $\operatorname{LR}(1)$ items to be the set of $\mathrm{LR}(0)$ items derived by ignoring the lookahead symbols.
Thus, the two sets
$\begin{aligned} & \text { - }\{[A \rightarrow \alpha \bullet \beta, \mathrm{a}],[A \rightarrow \alpha \bullet \beta, \mathrm{~b}]\} \text {, and } \\ & \text { - }\{[A \rightarrow \alpha \bullet \beta, \mathrm{c}],[A \rightarrow \alpha \bullet \beta, \mathrm{~d}]\}\end{aligned}$
have the same core.
Key idea:
If two sets of $L R(1)$ items, I_{i} and I_{j}, have the same core, we can merge the states that represent them in the ACTION and GOTO tables.

The revised (and renumbered) algorithm
(1) construct the collection of sets of $\operatorname{LR}(1)$ items for G^{\prime}
(2) for each core present among the set of LR(1) items, find all sets having that core and replace these sets by their union (update the gotol function incrementally)
(3) state i of the $\operatorname{LALR}(1)$ machine is constructed from I_{i}.
(1) $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and goto1 $\left(I_{i}, a\right)=I_{j}$ $\Rightarrow \mathrm{ACTION}[i, a] \leftarrow$ "shift j" \Rightarrow ACTION $[i, a] \leftarrow$ "reduce $A \rightarrow \alpha$ "
(3) $\left[S^{\prime} \rightarrow S \bullet, \$\right] \in I_{i} \Rightarrow \operatorname{ACTION}[i, \$] \leftarrow$ "accept"
(4) $\operatorname{got} \circ 1\left(I_{i}, A\right)=I_{j} \Rightarrow \operatorname{GOTO}[i, A] \leftarrow j$
(5) set undefined entries in ACTION and GOTO to "error"
initial state of parser s_{0} is closure1 $\left(\left[S^{\prime} \rightarrow \bullet S, \$\right]\right)$

Example

More efficient LALR(1) construction

Observe that we can:

- represent I_{i} by its basis or kernel:
items that are either $\left[S^{\prime} \rightarrow \bullet S, \$\right]$ or do not have • at the left of the RHS
- compute shift, reduce and goto actions for state derived from I_{i} directly from its kernel

This leads to a method that avoids building the complete canonical collection of sets of $L R(1)$ items

Self reading: Section 4.7.5 Dragon book

The role of precedence

With precedence and associativity, we can use

$E \rightarrow$	$E * E$
\|	E / E
\|	$E+E$
\|	$E-E$
\|	(E)
	-E
	id
	num

This eliminates useless reductions (single productions)

The problem

- encounter an invalid token
- bad pieces of tree hanging from stack
- incorrect entries in symbol table

We want to parse the rest of the file
Restarting the parser

- find a restartable state on the stack
- move to a consistent place in the input
- print an informative message to stderr

The error mechanism

- designated token error
- valid in any production
- error shows synchronization points

When an error is discovered

- pops the stack until error is legal
- skips input tokens until it successfully shifts 3 (some default value)
- error productions can have actions

This mechanism is fairly general

Example

Left versus right recursion

```
Using error
    stmt_list : stmt
        stmt_list ; stmt
can be augmented with error
    stmt_list : stmt
        error
        stmt_list ; stmt
This should
    0 throw out the erroneous statement
    - synchronize at ";" or "end"
    - invoke yyerror("syntax error")
Other "natural" places for errors
    0 all the "lists": FieldList, CaseList
    - missing parentheses or brackets

Right Recursion:
- needed for termination in predictive parsers
- requires more stack space
- right associative operators

Left Recursion:
- works fine in bottom-up parsers
- limits required stack space
- left associative operators

Rule of thumb:
- right recursion for top-down parsers
- left recursion for bottom-up parsers

Left recursive grammar:
\[
\begin{aligned}
& E \rightarrow E+T \mid E \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E)+I n t
\end{aligned}
\]

After left recursion removal
\[
\begin{array}{ll}
E \rightarrow & T E^{\prime} \\
E^{\prime} \rightarrow & +T E^{\prime} \mid \varepsilon \\
T \rightarrow & F T^{\prime} \\
T^{\prime} \rightarrow & * F T^{\prime} \mid \varepsilon \\
F \rightarrow & (E)+\text { Int }
\end{array}
\]

Parse the string \(3+4+5\)

\section*{Parsing review}

\section*{Grammar hierarchy}
- Recursive descent

A hand coded recursive descent parser directly encodes a grammar (typically an LL(1) grammar) into a series of mutually recursive procedures. It has most of the linguistic limitations of LL(1).
- LL(k)

An \(L L(k)\) parser must be able to recognize the use of a production after seeing only the first \(k\) symbols of its right hand side.
- LR(k)

An \(\operatorname{LR}(k)\) parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with \(k\) symbols of lookahead.
- \(\operatorname{LR}(\mathrm{k})>\operatorname{LR}(1)>\operatorname{LALR}(1)>\operatorname{SLR}(1)>\operatorname{LR}(0)\)
- \(\operatorname{LL}(k)>L L(1)>L L(0)\)
- \(\operatorname{LR}(0)>\operatorname{LL}(0)\)
- \(\operatorname{LR}(1)>\operatorname{LL}(1)\)
- \(\operatorname{LR}(k)>\operatorname{LL}(k)\)```

