
CS3300 - Compiler Design
Runtime management

V. Krishna Nandivada

IIT Madras

*

Runtime management

Copyright c©2001 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 2 / 28

*

The procedure abstraction

Separate compilation:
allows us to build large programs
keeps compile times reasonable
requires independent procedures

The linkage convention:
a social contract
machine dependent
division of responsibility

The linkage convention ensures that procedures inherit a valid
run-time environment and that they restore one for their parents.
Linkages execute at run time
Code to make the linkage is generated at compile time

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 3 / 28

*

The procedure abstraction

The essentials:
on entry, establish p’s environment
at a call, preserve p’s environment
on exit, tear down p’s environment
in between, addressability and proper lifetimes

pre−call

call

post−call

procedure Q

prologue

epilogue

prologue

epilogue

procedure P

Each system has a standard linkage
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 4 / 28

*

Procedure linkages

Assume that each procedure activation
has an associated activation record or
frame (at run time)
Assumptions:

RISC architecture
can always expand an allocated
block
locals stored in frame

a
rg

u
m

e
n
ts

in
c
o
m

in
g

a
rg

u
m

e
n
ts

o
u
tg

o
in

g

argument n

argument 2

argument 1

.

.

.

saved registers

temporaries

return address

argument 2

argument 1

.

.

.

argument m

higher addresses

lower addresses

pointer

stack

frame

pointer

local

variables

p
re

v
io

u
s
 fra

m
e

n
e
x
t fra

m
e

c
u
rre

n
t fra

m
e

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 5 / 28

*

Procedure linkages
The linkage divides responsibility between caller and callee

Caller Callee
Call pre-call prologue

1 allocate basic frame
2 evaluate & store

params.
3 store return address
4 jump to child

1 save registers, state
2 store FP (dynamic link)
3 set new FP

4 store static link
5 extend basic frame
6 initialize locals
7 fall through to code

Return post-call epilogue
1 copy return value
2 deallocate basic frame
3 restore parameters

(if copy out)

1 store return value
2 restore state
3 cut back to basic frame
4 restore parent’s FP

5 jump to return address
At compile time, generate the code to do this.
At run time, that code manipulates the frame & data areas.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 6 / 28

*

Run-time storage organization

To maintain the illusion of procedures, the compiler can adopt some
conventions to govern memory use.

Code space
fixed size
statically allocated (link time)

Data space
fixed-sized data may be statically allocated
variable-sized data must be dynamically allocated

Control stack
dynamic slice of activation tree
return addresses
may be implemented in hardware

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 7 / 28

*

Run-time storage organization

Typical memory layout

stack

free memory

heap

code

static data

low address

high address

The classical scheme
allows both stack and heap maximal freedom
code and static data may be separate or intermingled

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 8 / 28

*

Run-time storage organization

Where do local variables go?
When can we allocate them on a stack?
Key issue is lifetime of local names

Downward exposure:

called procedures may reference my variables

dynamic scoping

lexical scoping

Upward exposure:

can I return a reference to my variables?

functions that return functions

continuation-passing style

With only downward exposure, the compiler can allocate the frames on the
run-time call stack

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 9 / 28

*

Storage classes

Each variable must be assigned a storage class (base address)

Static variables:
addresses compiled into code (relocatable)
(usually) allocated at compile-time
limited to fixed size objects
control access with naming scheme

Global variables:
almost identical to static variables
layout may be important (exposed)
naming scheme ensures universal access

Link editor must handle duplicate definitions

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 10 / 28

*

Storage classes (cont.)

Procedure local variables
Put them on the stack

if sizes are fixed
if lifetimes are limited
if values are not preserved

Dynamically allocated variables
Must be treated differently

call-by-reference, pointers, lead to non-local lifetimes
(usually) an explicit allocation
explicit or implicit deallocation

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 11 / 28

*

Access to non-local data

How does the code find non-local data at run-time?

Real globals
visible everywhere
naming convention gives an address
initialization requires cooperation

Lexical nesting
view variables as (level,offset) pairs (compile-time)
chain of non-local access links
more expensive to find (at run-time)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 12 / 28

*

Access to non-local data

Two important problems arise
How do we map a name into a (level,offset) pair?
Use a block-structured symbol table (remember last lecture?)

look up a name, want its most recent declaration
declaration may be at current level or any lower level

Given a (level,offset) pair, what’s the address?
Two classic approaches

access links (or static links)
displays

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 13 / 28

*

Access to non-local data

To find the value specified by (l,o)

need current procedure level, k

k = l⇒ local value
k > l⇒ find l’s activation record
k < l cannot occur

Maintaining access links: (static links)
calling level k+1 procedure

1 pass my FP as access link
2 my backward chain will work for lower levels

calling procedure at level l < k
1 find link to level l−1 and pass it
2 its access link will work for lower levels

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 14 / 28

*

The display

To improve run-time access costs, use a display:
table of access links for lower levels
lookup is index from known offset
takes slight amount of time at call
a single display or one per frame
for level k procedure, need k−1 slots

Access with the display
assume a value described by (l,o)

find slot as display[l]
add offset to pointer from slot (display[l][o])

“Setting up the basic frame” now includes display manipulation

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 15 / 28

*

Display management

Single global display: complex, obsolete method
bogus idea, do not use

Call from level k to level l
if l = k+1
add a new display entry for level k
if l = k
no change to display is required
if l < k
preserve entries for levels l through k−1 in the local frame

On return (back in calling procedure)
if l < k
restore preserved display entries

A single display ties up another register

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 16 / 28

*

Display management

Single global display: simple method

Key insight: overallocate the display by 1 slot

On entry to a procedure at level l
save the level l display value
push FP into level l display slot

On return
restore the level l display value

Quick, simple, and foolproof!

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 17 / 28

*

Display management

Individual frame-based displays:

Call from level k to level l
if l≤ k
copy l−1 display entries into child’s frame
if l > k (l = k+1)
copy k−1 entries into child’s frame
copy own FP into kth slot in child’s frame

No work required on return
display is deallocated with frame

Display accessed by offset from FP

⇒ one less register required

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 18 / 28

*

Display versus access links

How to make the trade-off?

The cost differences are somewhat subtle
frequency of non-local access
average lexical nesting depth
ratio of calls to non-local access

(Sort of) Conventional wisdom
tight on registers ⇒ use access links
lots of registers ⇒ use global display
shallow average nesting ⇒ frame-based display

Your mileage will vary
Making the decision requires understanding reality

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 19 / 28

*

Parameter passing

What about parameters?
Call-by-value

store values, not addresses
never restore on return
arrays, structures, strings are a problem

Call-by-reference
pass address
access to formal is indirect reference to actual

Call-by-value-result
store values, not addresses
always restore on return
arrays, structures, strings are a problem

Call-by-name
build and pass thunk
access to parameter invokes thunk
all parameters are same size in frame!

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 20 / 28

*

Parameter passing

What about variable length argument lists?
1 if caller knows that callee expects a variable number

1 caller can pass number as 0th parameter
2 callee can find the number directly

2 if caller doesn’t know anything about it
1 callee must be able to determine number
2 first parameter must be closest to FP

Consider printf :
number of parameters determined by the format string
it assumes the numbers match

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 21 / 28

*

Calls: Saving and restoring registers
caller’s registers callee’s registers all registers

callee saves 1 3 5
caller saves 2 4 6
1 Call includes bitmap of caller’s registers to save/restore

(best with save/restore instructions to interpret bitmap)
2 Caller saves and restores its own registers

Unstructured returns (e.g., non-local gotos, exceptions) create some
problems, since code to restore must be located and executed

3 Backpatch code to save regs used in callee on entry, restore on exit
e.g., VAX places bitmap in callee’s stack frame for use on
call/return/non-local goto/exception
Non-local gotos and exceptions must unwind dynamic chain restoring
callee-saved registers

4 Bitmap in callee’s stack frame is used by caller to save/restore
(best with save/restore instructions to interpret bitmap directly)
Unwind dynamic chain as for 3

5 Easy: Non-local gotos and exceptions must restore all registers from
“outermost callee”

6 Easy (use utility routine to keep calls compact): Non-local gotos and
exceptions need only restore original registers from caller

Top-left is best: saves fewer registers, compact calling sequences
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 22 / 28

*

Call/return

Assuming callee saves:
1 caller pushes space for return value
2 caller pushes SP
3 caller pushes space for:

return address, static chain, saved registers
4 caller evaluates and pushes actuals onto stack
5 caller sets return address, callee’s static chain, performs call
6 callee saves registers in register-save area
7 callee copies by-value arrays/records using addresses passed as

actuals
8 callee allocates dynamic arrays as needed
9 on return, callee restores saved registers

10 jumps to return address
Caller must allocate much of stack frame, because it computes the
actual parameters
Alternative is to put actuals below callee’s stack frame in caller’s:
common when hardware supports stack management (e.g., VAX)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 23 / 28

*

MIPS procedure call convention

Registers:
Number Name Usage

0 zero Constant 0
1 at Reserved for assembler

2, 3 v0, v1 Expression evaluation, scalar function results
4–7 a0–a3 first 4 scalar arguments
8–15 t0–t7 Temporaries, caller-saved; caller must save to

preserve across calls
16–23 s0–s7 Callee-saved; must be preserved across calls
24, 25 t8, t9 Temporaries, caller-saved; caller must save to

preserve across calls
26, 27 k0, k1 Reserved for OS kernel

28 gp Pointer to global area
29 sp Stack pointer
30 s8 (fp) Callee-saved; must be preserved across calls
31 ra Expression evaluation, pass return address in

calls
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 24 / 28

*

MIPS procedure call convention

Philosophy:

Use full, general calling sequence only when necessary; omit
portions of it where possible (e.g., avoid using fp register
whenever possible)

Classify routines as:
non-leaf routines: routines that call other routines
leaf routines: routines that do not themselves call other routines

leaf routines that require stack storage for locals
leaf routines that do not require stack storage for locals

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 25 / 28

*

MIPS procedure call convention

The stack frame

high memory

low memory

argument n

argument 1

saved $ra

argument build

virtual frame pointer ($fp)

stack pointer ($sp)

temporaries

static link

locals

fra
m

e
s
iz

e

fr
a

m
e

 o
ff

s
e

t

other saved registers

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 26 / 28

*

MIPS procedure call convention

Pre-call:
1 Pass arguments: use registers $a0 . . . $a3; remaining arguments

are pushed on the stack along with save space for $a0 . . . $a3
2 Save caller-saved registers if necessary
3 Execute a jal instruction: jumps to target address (callee’s first

instruction), saves return address in register $ra

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 27 / 28

*

MIPS procedure call convention

Prologue:
1 Leaf procedures that use the stack and non-leaf procedures:

1 Allocate all stack space needed by routine:
local variables
saved registers
sufficient space for arguments to routines called by this routine

subu $sp,framesize
2 Save registers ($ra, etc.):

sw $31,framesize+frameoffset($sp)
sw $17,framesize+frameoffset-4($sp)
sw $16,framesize+frameoffset-8($sp)
where framesize and frameoffset (usually negative) are
compile-time constants

2 Emit code for routine

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 28 / 28

*

MIPS procedure call convention

Epilogue:
1 Copy return values into result registers (if not already there)
2 Restore saved registers
lw reg,framesize+frameoffset-N($sp)

3 Get return address
lw $31,framesize+frameoffset($sp)

4 Clean up stack
addu $sp,framesize

5 Return
j $31

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 29 / 28

