
CS3300 - Compiler Design
Basic block optimizations

V. Krishna Nandivada

IIT Madras

*

Optimization of Basic blocks

It is a linear piece of code.
Analyzing and optimizing is easier.
Has local scope - and hence effect is limited.
Substantial enough, not to ignore it.
Can be seen as part of a larger (global) optimization problem.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 2 / 24

*

DAG representation of basic blocks

Recall: DAG representation of expressions
leaves corresponding to atomic operands, and interior nodes
corresponding to operators.
A node N has multiple parents - N is a common subexpression.
Example: (a + a * (b - c)) + ((b - c) * d)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 3 / 24

*

DAG construction for a basic block

There is a node in the DAG for each of the initial values of the
variables appearing in the basic block.

There is a node N associated with each statement s within the
block. The children of N are those nodes corresponding to
statements that are the last definitions, prior to s, of the operands
used by s.

Node N is labeled by the operator applied at s, and also attached
to N is the list of variables for which it is the last definition within
the block.

Certain nodes are designated output nodes. These are the nodes
whose variables are live on exit from the block;

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 4 / 24

*

Optimizations on the DAG

Common subexpression elimination.
Eliminate dead code.
Code reordering.
Algebraic optimizations.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 5 / 24

*

Construct the DAG. Example

a = b + c
b = a - d
c = b + c
d = a - d

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 6 / 24

*

Example (contd)

a = b + c
d = a - d
c = d + c

// if b is live
b = d

Q: How to know if b is live after the
basic block?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 7 / 24

*

Limitations of the DAG based CSE

a = b + c
b = b - d
c = c + d
e = b + c

The two occurrences of the sub-expressions b + c computes the
same value.
Value computed by a and e are the same.
How to handle the algebraic identities?
Q: Do the sub-expressions always compute the same value?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 8 / 24

*

Dead code elimination

Delete any root from DAG that has no ancestors and is not live out
(has no live out variable associated).
Repeat previous step till no change.

Assume a and b are live out.
Remove first e and then c.
a and b remain.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 9 / 24

*

CSE via Algebraic identities

Recall: In common sub-expression elimination, we want to reuse
nodes that compute the same value.
Recall: We mainly focussed on syntactic similarities.
Q: Can we go beyond that?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 10 / 24

*

Similarities in the semantics - identity, inverse, zero

x + 0 = 0 + x = x

x * 1 = 1 * x = x identity, examples?

a && true = true && a = a

a || false = false || a = a

x * 0 = 0 * x = 0

0 / x = 0

Goal: apply arithmetic identities to eliminate computation.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 11 / 24

*

Similarities in the semantics - strength reduction

xˆ2 = x * x

2 * x = x + x = x << 1 (?)

x/2 = x * 0.5 = x >> 1 (?)

Constant folding

2 * 0.123456789101112131415 = 0.246913578202224262830

Chapernowne’s constant

Goal: identify equivalence module strength reduction operations.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 12 / 24

*

Algebraic properties

Commutative: Say the operator * is commutative. x * y = y * x
Associative: a + (b - c) = (a + b) - c
a = b + c
e = c + d + b
->
a = b + c
t = c + d
a = t + b
-> (assuming t is not used anywhere else)
a = b + c
e = a + d

a = b - 1; c = a + 1 → c = b

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 13 / 24

*

How to?

In general the problem is that of checking equivalence of two
expressions – Undecidable!

A rough idea:
When creating the DAG, create the node for expression that has
the most reduced strength.
For each expression e,

Take all “sub-expressions” that “build” the operands of e.
Build a new large expression using these sub-expressions.
Simplify the large expression.
Check if the simplified expression (or part thereof) or any variations
thereof can be found in the tree.
Build sub-tree for the rest.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 14 / 24

*

Restrictions

The language manual may restrict.
Fortran: you can evaluate any equivalent expression, but cannot
violate the integrity of paranthesis.
Thus x * y - x * z → x * (y - z)
But a + (b - c) 6= (a + b) - c

Keep a language manual handy if you are writing a compiler!

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 15 / 24

*

Representing Array accesses in the DAG

x = a[i]
a[j] = y
z = a[i]

Q: Is a[i] a common
sub-expression?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 16 / 24

*

Array representation (2)

b = a + 12
x = b[i]
a[j] = y

Q: Say, elements of ’a’ are 4bytes
size

Home reading: How to handle pointers.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 17 / 24

*

Peephole optimization

A local optimization technique.
Simplistic in nature, but effective in practise.
Idea:

Keep a sliding window (called peephole)
Replace instruction sequences within the peephole by a by an
efficient (shorter / faster / . . .) sequence.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 18 / 24

*

Peephole optimization

The “peephole” is typically small. Why?
The code in the peephole need not be contiguous.
Each improvement may lead to additional improvements.
In general, we may have to make multiple passes.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 19 / 24

*

Eliminating redundant loads and stores

Load a, R0
Store R0, a

Delete the pair of instructions. Always?

What if there is a label on the store instruction?

We need to be sure that the Store instruction and Load are
executed as a pair.

Why would we have such stupid code?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 20 / 24

*

Eliminating unreachable code

An unlabelled statement after an unconditional jump – can be
removed.
goto L2
INCR R0
L2:

Eliminating jumps over jumps:
if class == 2010 goto L1
goto L2

L1: print 22
L2:

→
if class != 2010 goto L2
print 22
L2:

What can constant propagation do?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 21 / 24

*

Flow-of-control optimizations

Naive code generation creates many jumps.
Jumps to jumps can be short circuited!
goto L1
...
L1: goto L2

Can be replaced with
goto L2
...
L1: goto L2

Further optimizations on L1 are possible.
Similar situation with conditional jumps
if (cond) goto L1
...
L1: goto L2

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 22 / 24

*

Algebraic simplification and strength reduction

Eliminate identity operations.
Replace x2 by x∗ x, and so on.
Replace fixed-point mult by a power of two (by left-shift) and
divison by a power of two (by right shift).
Replace floating-point divison by multiplication!

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 23 / 24

*

Machine specific peephole optimization

Use auto-incremenet / auto-decrement if available.
add r1, (r2)+→ r1 = r1 + M[r2]; r2 = r2+d
A cool PA-RISC instruction called sh2add
r2 = r1 * 5→ sh2add r1, r1, r2
PA-RISC instruction ADDBT, <= r2, r1, L1

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 24 / 24

*

Peephole procedure

First make a list of patterns that you want to replace with a list of
target patterns.
Identify the pattern in the code and do the replacement.
Iterate till you are done.
Can be efficiently done on an DAG.
No guarantees about optimality.
Most of the peephole optimizations guarantee improvement.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 25 / 24

