
CS3300 - Compiler Design
Introduction to Optimizations

V. Krishna Nandivada

IIT Madras

*

Introduction to optimizations

Copyright c© 2014 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 2 / 30

*

Phases inside the compiler

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over optimizations –
attend the graduate course, if
interested.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 3 / 30

*

Optimization

Goal: produce fast code
What is optimality?
Problems are often hard
Many are intractable or even undecideable
Many are NP-complete
Which optimizations should be used?
Many optimizations overlap or interact

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 4 / 30

*

Optimization

Definition: An optimization is a transformation that is expected to:
improve the running time of a program

or decrease its space requirements
The point:

“improved” code, not “optimal” code (forget “optimum”)
sometimes produces worse code
range of speedup might be from 1.000001 to xxx

It is undecidable whether in most cases, a particular optimization
improves or (at least does not worsen) performance.
Q: Can we not even say a simple transformation like algebraic
simplification will always improve the code?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 5 / 30

*

Optimization - conflicting goals

Typical goals of optimization for the generated code:
Speed
Space
Power

Qs:
Which one matters? depends on the target machine.
Traditionally (hence the default behavior) compilers have targeted
the speed of the generated code.
Some times improving one goal improves another.
Some times it does not. Example: loop unrolling, strength
reduction (mult 5).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 6 / 30

*

Choosing the optimizations

Some optimizations are more important than others.

Optimizations that apply to
loops
impact register allocation
instruction scheduling

are essential for high performance.

Choice of optimizations may depend on the input program:
OO programs - inlining (why ?) and leaf-routine optimizations.
For recursive programs - tail call optimizations (replace some calls
by jumps)
For self-recursive programs - turn the recursive calls to loops.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 7 / 30

*

Types of optimizations

Classification of optimization (based on their scope)
Local (within basic blocks)
Intra-procedural
Inter-procedural

Classification based on their positioning:
High level optimizations (use the program structure to optimize).
Low level optimizations (work on medium/lower level IR)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 8 / 30

*

Optimization classification (contd)

Classification with respect to their dependence on the target machine.

Machine independent
applicable across broad range
of machines
move evaluation to a less
frequently executed place
specialize some
general-purpose code
remove redundant
(unreachable, useless) code.
create opportunities.

Machine dependent
capitalize on machine-specific
properties
improve mapping from IR onto
machine
strength reduction.
replace sequence of
instructions with more
powerful one
(use “exotic” instructions)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 9 / 30

*

A classical distinction

The distinction (Machine specific / independent) is not always clear:
replace multiply with shifts and adds

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 10 / 30

*

Optimization

Desirable properties of an optimizing compiler
code at least as good as an assembler programmer
stable, robust performance (predictability)
architectural strengths fully exploited
architectural weaknesses fully hidden
broad, efficient support for language features
instantaneous compiles

Unfortunately, modern compilers often drop the ball

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 11 / 30

*

Types of program analysis

Classification of analysis (based on their view)

if (cond) {
a = ...
b = ...

} else {
a = ...
c = ...

}
// Which of the variables may be assigned? -- {a,b,c}
// Which of the variables must be assigned? -- {a}

May analysis – the analysis holds on at least one data flow path.
Must analysis – the analysis must hold on all data flow paths.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 12 / 30

*

Example optimization: constant propagation

Goal:
Find the constant expressions in the program.

Replace all the constant expressions with their constant literals.

foo (int b) {
a[1] = 1; a[2] = 2; a[3] = 3;
i = 1;
if (b > 2) {

j = 2;
} else {

j = i + 1; }
k = a[j];
return k;

}

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 13 / 30

*

Classification of analysis (contd)

Classification of analysis (based on precision)
Flow sensitive / insensitive.

Insensitive - the analysis should hold at every program point; does
not depend on the type of control flow.
Sensitive - Each program point has its own analysis.

if (c) {
a = 2;
b = a;
c = 3;
print (a, b, c); // constants?

} else {
a = 3
b = a;
c = 3;
print (a, b, c); // constants?

}

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 14 / 30

*

Classification of analysis (contd)

Context sensitive and insensitive
a = foo(2);

b = foo (3);

c = bar (2);

d = bar(2);

print (a, b, c, d); // a, b, c, d constants?

int foo(int x) { return x }
int bar(int x) { return x * x }

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 15 / 30

*

Copy propagation

Copy propagation: given an assignent x := y, replaces the later
uses of x with y, provided that

the intervening instructions do not change the value of either x or y

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 16 / 30

*

Copy propagation (effect)

A seemingly simple and weak optimization.

Eliminates copy instructions.

Helps identify dead code.

Helps in register allocation (fewer live ranges)

Assists in other optimizations.

Can be done both localy (basic block level) or globaly (whole
procedure).

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 17 / 30

*

Alias Analysis

Alias analysis: problem of identifying storage locations that can be
accessed by more than one way.

Are variable a and b aliases? ⇒ a and b refer to the same location?
Modifying the contents of a, modifies the contents of b.

Unlike in copy propagation, in alias analysis we only talk about
memory references (and not scalar values).

foo(){
int *p;
int n;
p = &n;
n = 4;
print ("%d", *p);

}

p

n

4

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 18 / 30

*

Alias analysis (contd)

extern int *q;
foo() {

int a, k;
k = a + 5;
f (a, &k);

*q = 13;
k = a + 5; /* Assignment is redundant? */

/* Expression is redundant? */
}

Only if a) the assignment to *q does not change k or a,
b) the function call f, does not change *k.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 19 / 30

*

Alias analysis (contd)

Granularity of analysis: Flow sensitive or insensitive.

bar () {
int a, b, e[], d, i;
extern int *q;
q = &a;
a = 2;
b = *q + 2;
q = &b;
for (i = 0; i < 100; i++) {

e [i] = e [i] + a;

*q = i;
}
d = *q + a;

}

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 20 / 30

*

Loop unrolling

(Example) Matrix-matrix multiply

do i ← 1, n, 1
do j ← 1, n, 1

c(i,j) ← 0
do k ← 1, n, 1

c(i,j) ← c(i,j) + a(i,k) * b(k,j)

All the array elements are floating point values.
2n3 flops, n3 loop increments and branches
each iteration does 2 loads and 2 flops

This is the most overstudied example in the literature

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 21 / 30

*

Example: loop unrolling
Matrix-matrix multiply (assume 4-word cache line)

do i ← 1, n, 1
do j ← 1, n, 1

c(i,j) ← 0
do k ← 1, n, 4

c(i,j) ← c(i,j) + a(i,k) * b(k,j)
c(i,j) ← c(i,j) + a(i,k+1) * b(k+1,j)
c(i,j) ← c(i,j) + a(i,k+2) * b(k+2,j)
c(i,j) ← c(i,j) + a(i,k+3) * b(k+3,j)

2n3 flops, n3

4 loop increments and branches
each iteration does 8 loads and 8 flops
memory traffic is better

c(i,j) is reused (put it in a register)
a(i,k) reference are from cache
b(k,j) is problematic

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 22 / 30

*

Example: loop unrolling
Matrix-matrix multiply (to improve traffic on b)

do j ← 1, n, 1
do i ← 1, n, 4

c(i,j) ← 0
do k ← 1, n, 4

c(i,j) ← c(i,j) + a(i,k) * b(k,j)
+ a(i,k+1) * b(k+1,j) + a(i,k+2) * b(k+2,j)
+ a(i,k+3) * b(k+3,j)

c(i+1,j) ← c(i+1,j) + a(i+1,k) * b(k,j)
+ a(i+1,k+1) * b(k+1,j)
+ a(i+1,k+2) * b(k+2,j)
+ a(i+1,k+3) * b(k+3,j)

c(i+2,j) ← c(i+2,j) + a(i+2,k) * b(k,j)
+ a(i+2,k+1) * b(k+1,j)
+ a(i+2,k+2) * b(k+2,j)
+ a(i+2,k+3) * b(k+3,j)

c(i+3,j) ← c(i+3,j) + a(i+3,k) * b(k,j)
+ a(i+3,k+1) * b(k+1,j)
+ a(i+3,k+2) * b(k+2,j)
+ a(i+3,k+3) * b(k+3,j)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 23 / 30

*

Example: loop unrolling

What happened?
interchanged i and j loops
unrolled i loop
fused inner loops

2n3 flops, n3

16 loop increments and branches
first assignment does 8 loads and 8 flops
2nd through 4th do 4 loads and 8 flops

memory traffic is better
c(i,j) is reused (register)
a(i,k) references are from cache
b(k,j) is reused (register)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 24 / 30

*

Loop optimizations: factoring loop-invariants

Loop invariants: expressions constant within loop body

Goal: move the loop invariant computation to outside the loop.

The loop independent code executes only once, instead of many times
the loop might.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 25 / 30

*

Example: loop invariants

foreach i=1 .. 100 do
foreach j=1 .. 100 do

foreach k=1 .. 100 do
A[i,j,k] = i * j * k;

end
end

end

3 million index operations
2 million multiplications

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 26 / 30

*

Example: loop invariants (cont.)

Factoring the inner loop:
foreach i=1 .. 100 do

foreach j=1 .. 100 do
t1 = &A[i][j];
t2 = i * j ;
foreach k=1 .. 100 do

t1[k] = t * k;
end

end
end

And the second loop:
foreach i=1 .. 100 do

t3 = &A[i];
foreach j=1 .. 100 do

t1 = &t3[j];
t2 = i * j ;
foreach k=1 .. 100 do

t1[k] = t * k;
end

end
end

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 27 / 30

*

Instruction Scheduling

Instruction scheduling

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 28 / 30

*

Optimization - overview

Good compilers are crafted, not assembled
consistent philosophy
careful selection of transformations
thorough application
coordinate transformations and data structures
attention to results (code, time, space)

Compilers are engineered objects
minimize running time of compiled code
minimize compile time
use reasonable compile-time space (serious problem)

Thus, results are sometimes unexpected

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 29 / 30

*

Back to first lecture

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over optimizations –
attend the graduate course, if
interested.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2014 30 / 30

