
CS6013 - Modern Compilers: Theory and Practise
Introduction

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Written assignment = 5 marks.
Programming assignments = 50 marks.
Midterm = 20 marks, Final = 25 marks.
Extra marks

During the lecture time - individuals can get additional 5 marks.
How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.

Attendance requirement – as per institute norms. Non compliance
will lead to ‘W’ grade.

Proxy attendance - is not a help; actually a disservice.
Plagiarism - A good word to know. A bad act to own.

Fail grade guaranteed.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.
TA : Aman Nougrahiya, Email: amannoug@cse

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 2 / 27

*

What, When and Why of Compilers

What:
A compiler is a program that can read a program in one language
and translates it into an equivalent program in another language.

When
1952, by Grace Hopper for A-0.
1957, Fortran compiler by John Backus and team.

Why? Study?
It is good to know how the food you eat, is cooked.
A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
For a computer to execute programs written in these languages,
these programs need to be translated to a form in which it can be
executed by the computer.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 3 / 27

*

Compilers – A “Sangam”

Compiler construction is a microcosm of computer science
Artificial Intelligence greedy algorithms, learning algorithms, . . .
Algo graph algorithms, union-find, dynamic programming, . . .
theory DFAs for scanning, parser generators, lattice theory, . . .
systems allocation, locality, layout, synchronization, . . .
architecture pipeline management, hierarchy management,
instruction set use, . . .
optimizations Operational research, load balancing, scheduling,
. . .

Inside a compiler, all these and many more come together. Has
probably the healthiest mix of theory and practise.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 4 / 27

*

Course outline

A rough outline (we may not strictly stick to this).
Overview of Compilers
Overview of lexical analysis and parsing.
Semantic analysis (aka type checking)
Intermediate code generation
Data flow analysis
Constant propagation
Static Single Assignment and Optimizations.
Loop optimizations
Liveness analysis
Register Allocation
Bitwidth aware register allocation
Code Generation
Overview of advanced topics.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 5 / 27

*

Your friends: Languages and Tools

Start exploring
Java - familiarity a must - Use eclipse to save you valuable coding
and debugging cycles.
JavaCC, JTB – tools you will learn to use.
Make Ant Scripts – recommended toolkit.
Find the course webpage:
http://www.cse.iitm.ac.in/∼krishna/cs6013/

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 6 / 27

*

Get set. Ready steady go!

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 7 / 27

*

Acknowledgement

These frames borrow liberal portions of text verbatim from Antony L.
Hosking @ Purdue and Jens Palsberg @ UCLA.

Copyright c©2015 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 8 / 27

*

Compilers – A closed area?

“Optimization for scalar machines was solved years ago”

Machines have changed drastically in the last 20 years

Changes in architecture⇒ changes in compilers

new features pose new problems
changing costs lead to different concerns
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 9 / 27

*

Expectations

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Support for separate compilation
6 Good diagnostics for syntax errors
7 Works well with the debugger
8 Good diagnostics for flow anomalies
9 Cross language calls

10 Consistent, predictable optimization
Each of these shapes your expectations about this course

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 10 / 27

*

Abstract view

errors

compilercode code
source machine

Implications:
recognize legal (and illegal) programs
generate correct code
manage storage of all variables and code
agreement on format for object (or assembly) code

Big step up from assembler — higher level notations

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 11 / 27

*

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR).
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes⇒ better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly back end (95%) and little bit of front end (5%).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 12 / 27

*

Phases inside the compiler

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
five out of seven phases.
glance over lexical and syntax
analysis – read yourself or
attend the undergraduate
course, if interested.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 13 / 27

*

Lexical analysis

Also known as scanning.
Reads a stream of characters and groups them into meaningful
sequences, called lexems.

A scanner must recognize the units of syntax

Q: How to specify patterns for the scanner?

Examples:

white space

<ws> ::= <ws> ’ ’
| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators
specified as literal patterns: do, end

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 14 / 27

*

More complex syntax

identifiers
alphabet followed by k alphanumerics (, $, &, . . .)
numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or -) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need a powerful notation to specify these patterns - regular
expressions.
There are mature tools (e.g., flex) that generate lexical token
generators (or scanners) from a given specification of tokens (a.k.a.
sequence of regular expressions).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 15 / 27

*

The role of the parser

code
source tokens

errors

scanner parser IR

A parser
performs context-free syntax analysis
guides context-sensitive analysis
constructs an intermediate representation
produces meaningful error messages
attempts error correction

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 16 / 27

*

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar.
Formally, a CFG G is a 4-tuple (Vt,Vn,S,P), where:

Vt is the set of terminal symbols in the grammar.
For our purposes, Vt is the set of tokens returned by the
scanner.

Vn, the nonterminals, is a set of syntactic variables that
denote sets of (sub)strings occurring in the language.
These are used to impose a structure on the grammar.

S is a distinguished nonterminal (S ∈ Vn) denoting the entire
set of strings in L(G).
This is sometimes called a goal symbol.

P is a finite set of productions specifying how terminals and
non-terminals can be combined to form strings in the
language.
Each production must have a single non-terminal on its
left hand side.

The set V = Vt∪Vn is called the vocabulary of G
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 17 / 27

*

Notation and terminology

a,b,c, . . . ∈ Vt

A,B,C, . . . ∈ Vn

U,V,W, . . . ∈ V

α,β ,γ, . . . ∈ V∗
u,v,w, . . . ∈ Vt∗

If A→ γ then αAβ ⇒ αγβ is a single-step derivation using A→ γ

Similarly,→∗ and⇒+ denote derivations of ≥ 0 and ≥ 1 steps

If S→∗ β then β is said to be a sentential form of G

L(G) = {w ∈ Vt∗ | S⇒+ w}, w ∈ L(G) is called a sentence of G

Note, L(G) = {β ∈ V∗ | S→∗ β}∩Vt∗

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 18 / 27

*

Derivations

We can view the productions of a CFG as rewriting rules.
Using an example CFG:

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉+ 〈term〉
3 | 〈expr〉−〈term〉
4 | 〈term〉
5 〈term〉 ::= 〈term〉 ∗ 〈factor〉
6 | 〈term〉/〈factor〉
7 | 〈factor〉
8 〈factor〉 ::= num
9 | id

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 19 / 27

*

Deriving the derivation

Now, for the string x + 2 ∗ y:

〈goal〉 ⇒ 〈expr〉
⇒ 〈expr〉+ 〈term〉
⇒ 〈expr〉+ 〈term〉 ∗ 〈factor〉
⇒ 〈expr〉+ 〈term〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈factor〉 ∗ 〈id,y〉
⇒ 〈expr〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈term〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈factor〉+ 〈num,2〉 ∗ 〈id,y〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈id,y〉

We have derived the sentence x + 2 ∗ y.
We denote this 〈goal〉→∗ id + num ∗ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 20 / 27

*

Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers
start at the root of derivation tree and fill in
picks a production and tries to match the input
may require backtracking
some grammars are backtrack-free (predictive)

Bottom-up parsers
start at the leaves and fill in
start in a state valid for legal first tokens
as input is consumed, change state to encode possibilities
(recognize valid prefixes)
use a stack to store both state and sentential forms

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 21 / 27

*

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with
the start or goal symbol of the grammar.
To build a parse, it repeats the following steps until the fringe of the
parse tree matches the input string

1 At a node labelled A, select a production A→ α and construct the
appropriate child for each symbol of α

2 When a terminal is added to the fringe that doesn’t match the
input string, backtrack

3 Find next node to be expanded (must have a label in Vn)

The key is selecting the right production in step 1.

If the parser makes a wrong step, the “derivation” process does not
terminate.
Why is it bad?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 22 / 27

*

How much lookahead is needed?

We saw that top-down parsers may need to backtrack when they
select the wrong production
Do we need arbitrary lookahead to parse CFGs?

in general, yes
use the Earley or Cocke-Younger, Kasami algorithms

Fortunately
large subclasses of CFGs can be parsed with limited lookahead
most programming language constructs can be expressed in a
grammar that falls in these subclasses

Among the interesting subclasses are:
LL(1): left to right scan, left-most derivation, 1-token lookahead;

and
LR(1): left to right scan, reversed right-most derivation, 1-token

lookahead

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 23 / 27

*

Bottom-up parsing

Goal:
Given an input string w and a grammar G, construct a parse
tree by starting at the leaves and working to the root.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 24 / 27

*

Reductions Vs Derivations

Reduction:
At each reduction step, a specific substring matching the body of
a production is replaced by the non-terminal at the head of the
production.

Key decisions
When to reduce?
What production rule to apply?

Reduction Vs Derivations
Recall: In derivation: a non-terminal in a sentential form is
replaced by the body of one of its productions.
A reduction is reverse of a step in derivation.

Bottum-up parsing is the process of “reducing” a string w to the
start symbol.
Goal of bottum-up parsing: build derivation tree in reverse.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 25 / 27

*

Parsing review

Recursive descent
A hand coded recursive descent parser directly encodes a
grammar (typically an LL(1) grammar) into a series of mutually
recursive procedures. It has most of the linguistic limitations of
LL(1).
LL(k)
An LL(k) parser must be able to recognize the use of a production
after seeing only the first k symbols of its right hand side.
LR(k)
An LR(k) parser must be able to recognize the occurrence of the
right hand side of a production after having seen all that is derived
from that right hand side with k symbols of lookahead.

There are mature tools (e.g., bison) that generate parsers from a given
specification of syntax (a.k.a. grammar).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 26 / 27

*

Closing remarks - parsing

Overview of Parsing.
Error checking.
LR parsing.

Reading:
Ch 1, 3, 4 from the Dragon book.

Announcement:
Assignment 1 is out. Due in around 10 days.
Next class: ?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 27 / 27

