
CS6013 - Modern Compilers: Theory and Practise
Overview of different optimizations

V. Krishna Nandivada

IIT Madras

*

Optimizing compilers

Copyright c© 2015 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 2 / 27

*

Compiler structure

(eg, canonical trees/tuples)

(eg, canonical trees/tuples)

Intermediate

code generator

generator
Machine code

low−level IR

low−level IR

(eg, type checking)

Semantic analysis

token stream

machine code

syntax tree

syntax tree

Parser

Optimizer

Potential optimizations:
Source-language (AST):

constant bounds in
loops/arrays
loop unrolling
suppressing run-time
checks
enable later optimisations

IR: local and global
CSE elimination
live variable analysis
code hoisting
enable later optimisations

Code-generation (machine
code):

register allocation
instruction scheduling
peephole optimization

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 3 / 27

*

Optimization

Goal: produce fast code
What is optimality?
Problems are often hard
Many are intractable or even undecideable
Many are NP-complete
Which optimizations should be used?
Many optimizations overlap or interact

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 4 / 27



*

Optimization

Definition: An optimization is a transformation that is expected to:
improve the running time of a program

or decrease its space requirements
The point:

“improved” code, not “optimal” code (forget “optimum”)
sometimes produces worse code
range of speedup might be from 1.000001 to xxx

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 5 / 27

*

Machine-independent transformations

applicable across broad range of machines
remove redundant computations
move evaluation to a less frequently executed place
specialize some general-purpose code
find useless code and remove it
expose opportunities for other optimizations

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 6 / 27

*

Machine-dependent transformations

capitalize on machine-specific properties
improve mapping from IR onto machine
replace a costly operation with a cheaper one
hide latency
replace sequence of instructions with more powerful one
(use “exotic” instructions)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 7 / 27

*

A classical distinction

The distinction is not always clear: replace multiply with shifts
and adds

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 8 / 27



*

Optimization

Desirable properties of an optimizing compiler
code at least as good as an assembler programmer
stable, robust performance (predictability)
architectural strengths fully exploited
architectural weaknesses fully hidden
broad, efficient support for language features
instantaneous compiles

Unfortunately, modern compilers often drop the ball

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 9 / 27

*

Optimization

Good compilers are crafted, not assembled
consistent philosophy
careful selection of transformations
thorough application
coordinate transformations and data structures
attention to results (code, time, space)

Compilers are engineered objects
minimize running time of compiled code
minimize compile time
use reasonable compile-time space (serious problem)

Thus, results are sometimes unexpected

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 10 / 27

*

Scope of optimization

Local (single block)
confined to straight-line code
simplest to analyse
time frame: ’60s to present, particularly now

Intraprocedural (global)
consider the whole procedure
What do we need to optimize an entire procedure?
classical data-flow analysis, dependence analysis
time frame: ’70s to present

Interprocedural (whole program)
analyse whole programs
What do we need to optimize and entire program?
less information is discernible
time frame: late ’70s to present, particularly now

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 11 / 27

*

Optimization

Three considerations arise in applying a transformation:
safety
profitability
opportunity

We need a clear understanding of these issues
the literature often hides them
every discussion should list them clearly

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 12 / 27



*

Safety

Fundamental question Does the transformation change the results of
executing the code?

yes⇒ don’t do it!
no ⇒ it is safe

Compile-time analysis
may be safe in all cases (loop unrolling)
analysis may be simple (DAGs and CSEs)
may require complex reasoning (data-flow analysis)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 13 / 27

*

Profitability

Fundamental question Is there a reasonable expectation that the
transformation will be an improvement?

yes⇒ do it!
no ⇒ don’t do it

Compile-time estimation
always profitable
heuristic rules
compute benefit (rare)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 14 / 27

*

Opportunity

Fundamental question Can we efficiently locate sites for applying the
transformation?

yes⇒ compilation time won’t suffer
no ⇒ better be highly profitable

Issues
provides a framework for applying transformation
systematically find all sites
update safety information to reflect previous changes
order of application (hard)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 15 / 27

*

Optimization

Successful optimization requires
test for safety
profit is local improvement×executions
⇒ focus on loops:

loop unrolling
factoring loop invariants
strength reduction

want to minimize side-effects like code growth

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 16 / 27



*

Example: loop unrolling

Idea: reduce loop overhead by creating multiple successive
copies of the loop’s body and increasing the increment
appropriately

Safety: always safe
Profitability: reduces overhead

(instruction cache blowout)
(subtle secondary effects)

Opportunity: loops

Unrolling is easy to understand and perform

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 17 / 27

*

Example: loop unrolling

Matrix-matrix multiply

do i ← 1, n, 1
do j ← 1, n, 1

c(i,j) ← 0
do k ← 1, n, 1

c(i,j) ← c(i,j) + a(i,k) * b(k,j)

2n3 flops, n3 loop increments and branches
each iteration does 2 loads and 2 flops

This is the most overstudied example in the literature

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 18 / 27

*

Example: loop unrolling
Matrix-matrix multiply (assume 4-word cache line)

do i ← 1, n, 1
do j ← 1, n, 1

c(i,j) ← 0
do k ← 1, n, 4

c(i,j) ← c(i,j) + a(i,k) * b(k,j)
c(i,j) ← c(i,j) + a(i,k+1) * b(k+1,j)
c(i,j) ← c(i,j) + a(i,k+2) * b(k+2,j)
c(i,j) ← c(i,j) + a(i,k+3) * b(k+3,j)

2n3 flops, n3

4 loop increments and branches
each iteration does 8 loads and 8 flops
memory traffic is better

c(i,j) is reused (put it in a register)
a(i,k) reference are from cache
b(k,j) is problematic

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 19 / 27

*

Example: loop unrolling
Matrix-matrix multiply (to improve traffic on b)

do j ← 1, n, 1
do i ← 1, n, 4

c(i,j) ← 0
do k ← 1, n, 4

c(i,j) ← c(i,j) + a(i,k) * b(k,j)
+ a(i,k+1) * b(k+1,j) + a(i,k+2) * b(k+2,j)
+ a(i,k+3) * b(k+3,j)

c(i+1,j) ← c(i+1,j) + a(i+1,k) * b(k,j)
+ a(i+1,k+1) * b(k+1,j)
+ a(i+1,k+2) * b(k+2,j)
+ a(i+1,k+3) * b(k+3,j)

c(i+2,j) ← c(i+2,j) + a(i+2,k) * b(k,j)
+ a(i+2,k+1) * b(k+1,j)
+ a(i+2,k+2) * b(k+2,j)
+ a(i+2,k+3) * b(k+3,j)

c(i+3,j) ← c(i+3,j) + a(i+3,k) * b(k,j)
+ a(i+3,k+1) * b(k+1,j)
+ a(i+3,k+2) * b(k+2,j)
+ a(i+3,k+3) * b(k+3,j)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 20 / 27



*

Example: loop unrolling

What happened?
interchanged i and j loops
unrolled i loop
fused inner loops

2n3 flops, n3

16 loop increments and branches
first assignment does 8 loads and 8 flops
2nd through 4th do 4 loads and 8 flops

memory traffic is better
c(i,j) is reused (register)
a(i,k) references are from cache
b(k,j) is reused (register)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 21 / 27

*

Loop transformations

It is not as easy as it looks:

Safety : loop interchange? loop unrolling? loop fusion?
Opportunity : find memory-bound loop nests
Profitability : machine dependent (mostly)

Summary
chance for large improvement
answering the fundamentals is tough
resulting code is ugly

Matrix-matrix multiply is everyone’s favorite example

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 22 / 27

*

Loop optimizations: factoring loop-invariants

Loop invariants: expressions constant within loop body
Relevant variables: those used to compute and expression

Opportunity:
1 identify variables defined in body of loop (LoopDef)
2 loop invariants have no relevant variables in LoopDef
3 assign each loop-invariant to temp. in loop header
4 use temporary in loop body

Safety: loop-invariant expression may throw exception early
Profitability:

loop may execute 0 times
loop-invariant may not be needed on every path
through loop body

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 23 / 27

*

Example: factoring loop invariants

foreach i=1 .. 100 do
// LoopDef = {i,j,k, A}
foreach j=1 .. 100 do

// LoopDef = {j,k, A}
foreach k=1 .. 100 do

// LoopDef = {k, A}
A[i,j,k] = i * j * k;

end
end

end

3 million index operations
2 million multiplications

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 24 / 27



*

Example: factoring loop invariants (cont.)

Factoring the inner loop:
foreach i=1 .. 100 do

// LoopDef = {i,j,k, A}
foreach j=1 .. 100 do

// LoopDef = {j,k, A}
t1 = &A[i][j];
t2 = i * j ;
foreach k=1 .. 100 do

// LoopDef = {k,A}
t1[k] = t * k;

end
end

end

And the second loop:
foreach i=1 .. 100 do

// LoopDef = {i,j,k, A}
t3 = &A[i];
foreach j=1 .. 100 do

// LoopDef = {j,k, A}
t1 = &t3[j];
t2 = i * j ;
foreach k=1 .. 100 do

// LoopDef = {k,A}
t1[k] = t * k;

end
end

end

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 25 / 27

*

Strength reduction in loops

Loop induction variable: incremented on each iteration
i0, i0 +1, i0 +2, . . .

Induction expression: ic1 + c2, where c1, c2 are loop invariant
i0c1 + c2,(i0 +1)c1 + c2,(i0 +2)c1 + c2, . . .

1 replace ic1 + c2 by t in body of loop
2 insert t := i0c1 + c2 before loop
3 insert t := t+ c1 at end of loop

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 26 / 27

*

Example: strength reduction in loops

From previous example:
foreach i=1 .. 100 do

t3 = &A[i];
t4 = i; // i * j0 = i
foreach j=1 .. 100 do

t1 = &t3[j];
t2 = t4; // t4 = i * j
t5 = t2; // t2 * k0 = t2
foreach k=1 .. 100 do

t1[k] = t5; // t5 = t2 * k
t5 = t5 + t2;

end
t4 = t4 + i;

end
end

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 27 / 27

*

Example: strength reduction in loops

After copy propagation and exposing indexing:
foreach i=1 .. 100 do

t3 = A + (10000 * i) - 10000;
t4 = i;
foreach j=1 .. 100 do

t1 = t3 + (100 * j) - 100;
t5 = t4;
foreach k=1 .. 100 do

*(t1 + k - 1) = t5;
t5 = t5 + t4;

end
t4 = t4 + i;

end
end

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 28 / 27



*

Example: strength reduction in loops

Applying strength reduction to exposed index expressions:
t6 = A;
foreach i=1 .. 100 do

t3 = t6; t4 = i;
t7 = t3;
foreach j=1 .. 100 do

t1 = t7; t5 = t4;
t8 = t1;
foreach k=1 .. 100 do

*t8 = t5;
t5 = t5 + t4;
t8 = t8 + 1;

end
t4 = t4 + i;
t7 = t7 + 100;

end
t6 = t6 + 10000;

end

Again, copy propagation further improves the code.
V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 29 / 27

*

Ordering optimization phases

1 semantic analysis and intermediate code generation:
loop unrolling
inline expansion

2 intermediate code generation:
build basic blocks with their Def and Kill sets

3 build control flow graph:
perform initial data flow analyses
assume worst case for calls if no interproc. analysis

4 early data-flow optimizations: constant/copy propagation (may
expose dead code, changing flow graph, so iterate)

5 CSE and live/dead variable analyses
6 translate basic blocks to target code: local optimizations (register

allocation/assignment, code selection)
7 peephole optimization

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 30 / 27

*

Loop optimizations

Loop unswitching
Loop tiling
Loop peeling
Loop reversal
Loop-invariant code motion
Loop inversion
Loop interchange
Loop fusion
Loop distribution

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 31 / 27


