
CS6013 - Modern Compilers: Theory and Practise
Data flow analysis

V. Krishna Nandivada

IIT Madras

*

Data Flow Analysis

Why:
Provide information about a program manipulates its data.
Study functions behavior.
To help build control flow information.
Program understanding (a function sorts an array!).
Generating a model of the original program and verify the model.
The DFA should give information about that program that does not
misrepresent what the procedure being analyzed does.
Program validation.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 2 / 27

*

Reaching Definitions

A particular definition of a variable is said to reach a given point if
there is an execution path from the definition to that point
the variable might may have the value assigned by the definition.

In general undecidable.

Our goal:
The analysis must be conservative – the analysis should not tell
us that a particular definition does not reach a particular use, if it
may reach.
A ‘may’ conservative analysis gives us a larger set of reaching
definitions than it might, if it could produce the minimal result.

To make maximum benefit from our analysis, we want the analysis to
be conservative, but be as aggressive as possible.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 3 / 27

*

Different types of analysis

Intra procedural analysis.
Whole program (inter-procedural) analysis.
Generate intra procedural analysis and extend it to whole
program.

We will study an iterative mechanism to perform such analyses.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 4 / 27



*

Iterative Dataflow Analysis

Build a collection of data flow equations – specifying which data
may flow to which variable.
Solve it iteratively.
Start from a conservative set of initial values – and continuously
improve the precision.
Disadvantage: We may be handling large data sets.
Start from an aggressive set of initial values – and continuously
improve the precision.
Advantage: Datasets are small to start with.
Choice – depends on the problem at hand.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 5 / 27

*

Example program

Does def of i in line 4 reach the uses in line 7 and 8?
Does def of j in line 7 reach the use in line 10?

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 6 / 27

*

Definitions

GEN : GEN(b) returns the set of definitions generated in the basic
block b; assigned values in the block and not subsequently killed
in it.
KILL : KILL(b) returns the set of definitions killed in the basic block
b.
IN : IN(b) returns the set of definitions reaching the basic block b.
OUT : OUT(b) returns the set of definitions going out of basic
block b.
PRSV : Negation of KILL

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 7 / 27

*

Representation and Initialization

Set rep Bit vector
GEN(B1) = {1, 2, 3} 〈11100000〉
GEN(B3) = {4} 〈00010000〉
GEN(B6) = {5, 6, 7, 8} 〈00001111〉
GEN(.) = {} 〈00000000〉

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 8 / 27



*

Populating PRSV, OUT and IN

Set rep Bit vector
PRSV(B1) = {4, 5, 8} 〈00011001〉
PRSV(B3) = {1, 2, 3, 5, 6, 7} 〈11101110〉
PRSV(B6) = {1} 〈10000000〉
PRSV(.) = {1, 2, 3, 4, 5, 6, 7, 8} 〈11111111〉

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 9 / 27

*

Dataflow equations

A definition may reach the end of a basic block i:

OUT(i) = GEN(i)∪ (IN(i)∩PRSV(i))

or with bit vectors:

OUT(i) = GEN(i)∨ (IN(i)∧PRSV(i))

A definition may reach the beginning of a basicblock i:

IN(i) =
⋃

j∈Pred(i)

OUT(j)

GEN, PRSV and OUT are created in each basic block.
OUT(i) = {} // initialization
But IN needs to be initialized to something safe.
IN(entry) = {}

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 10 / 27

*

Solving the Dataflow equations: example

Itr 1:
OUT(entry) = 〈00000000〉 IN(entry) = 〈00000000〉
OUT(B1) = 〈11100000〉 IN(B1) = 〈00000000〉
OUT(B2) = 〈11100000〉 IN(B2) = 〈11100000〉
OUT(B3) = 〈11110000〉 IN(B3) = 〈11100000〉
OUT(B4) = 〈11110000〉 IN(B4) = 〈11110000〉
OUT(B5) = 〈11110000〉 IN(B5) = 〈11110000〉
OUT(B6) = 〈00001111〉 IN(B6) = 〈11110000〉
OUT(entry) = 〈11110000〉 IN(exit) = 〈11110000〉

Itr 2:
OUT(entry) = 〈00000000〉 IN(entry) = 〈00000000〉
OUT(B1) = 〈11100000〉 IN(B1) = 〈00000000〉
OUT(B2) = 〈11100000〉 IN(B2) = 〈11100000〉
OUT(B3) = 〈11110000〉 IN(B3) = 〈11100000〉
OUT(B4) = 〈11111111〉 IN(B4) = 〈11111111〉
OUT(B5) = 〈11111111〉 IN(B5) = 〈11111111〉
OUT(B6) = 〈10001111〉 IN(B6) = 〈11111111〉
OUT(entry) = 〈11111111〉 IN(exit) = 〈11111111〉

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 11 / 27

*

Dataflow equations: behavior

We specify the relationship between the data-flow values before
and after a block – transfer or flow equations.

Forward: OUT(s) = f (IN(s), · · ·)
Backward: IN(s) = f (OUT(s), · · ·)

The rules never change a 1 to 0. They may only change a 0 to a 1.
They are monotone.
Implication – the iteration process will terminate.
Q: What good is reaching definitions? undefined variables.
Q: Why do the iterations produce an acceptable solution to the set
of equations? – lattices and fixed points.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 12 / 27



*

Lattice

What : Lattice is an algebraic structure
Why : To represent abstract properties of variables, expressions,
functions, etc etc.

Values
Attributes
. . .

Why “abstract? Exact interpretation (execution) gives exact
values, abstract interpretation gives abstract values.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 13 / 27

*

Lattice definition

A lattice L consists of a set of values, and two operations called meet
(t) and join (u). Satisfies properties:

closure: For all x,y ∈ L, ∃ a unique z and w ∈ L, such that xu y = z
and xt y = w – each pair of elements have a unique lub and glb.
commutative: For all x,y ∈ L, xu y = yu x, and xt y = yt x.
associative: For all x,y,z ∈ L, (xu y)u z = xu (yu z), and
(xt y)t z = xt (yt z)

There exists two special elements of L called bottom (⊥), and top
(>).
∀x ∈ L, xu⊥=⊥ and xt>=>.
distributive : (optional). ∀x,y,z ∈ L, xt (yu z) = (xty)u (xt z), and
xu (yt z) = (xu y)t (xu z)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 14 / 27

*

Lattice properties

Meet (and join) induce a partial order (v):
∀x,y ∈ L, xv y, iff xu y = x.
Transitive, antisymmetry and reflexive.

Example Lattices:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 15 / 27

*

Monotones and fixed point

A function f : L→ L, is a monotone, if for all x,y ∈ L,
xv y⇒ f (x)v f (y).
Example: bit-vector lattice:

f (x1x2x3) = 〈x11x2〉
f (x1x2x3) = 〈x2x3x1〉

A flow function models the effect of a programming language
construct. as a mapping from the lattice for that particular analysis
to itself.
We want the flow functions to be monotones. Why?
A fixed point of a function f : L→ L is an element z ∈ L, such that
f (z) = z.
For a set of data-flow equations, a fixed-point is a solution of the
set of equations – cannot generate any further refinement.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 16 / 27



*

Meet Over All Paths solutions

The value we wish to compute in solving data-flow equations is –
meet over all paths (MOP) solution.
Start with some prescribed information at the entry (or exit
depending on forward or backward).
Repeatedly apply the composition of the appropriate flow
functions.
For each node form the meet of the results.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 17 / 27

*

A worklist based implementation (a forward analysis)

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 18 / 27

*

Example: Constant Propagation

Goal: Discover values that are constants on all possible executions of
a program and to propagate these constant values as far forward
through the program as possible
Conservative: Can discover only a subset of all the possible
constants.
Lattice:

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 19 / 27

*

Constant Propagation lattice meet rules

⊥ = Constant value cannot be guaranteed.
> = May be a constant, not yet determined.
∀x

xu>= x
xu⊥=⊥
c1u c1 = c1
c2u c1 =⊥

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 20 / 27



*

Simple constant propagation

Gary A. Kildall: A Unified Approach to Global Program
Optimization - POPL 1973.
Reif, Lewis: Symbolic evaluation and the global value graph -
POPL 1977.
Simple constant Constants that can be proved to be constant
provided,

no information is assumed about which direction branches will take.
Only one value of each variable is maintained along each path in
the program.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 21 / 27

*

Kildall’s algorithm

Start with an entry node in the program graph.
Process the entry node, and produce the constant propagation

information. Send it to all the immediate successors of the entry
node.
At a merge point, get an intersection of the information.
If at any successor node, if for any variable the value is “reduced,
the process the successor, similar to the processing done for entry
node.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 22 / 27

*

Constant propagation - equations

Let us assume that one basic block per statement.
Transfer functions set F - a set of transfer functions.
fs ∈ F is the transfer function for statement s.
The dataflow values are given by a map: m: Vars→ ConstantVal

If m is the set of input dataflow values, then m′ = fs(m) gives the
output dataflow values.
Generate equations like before.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 23 / 27

*

Constant propagation: equations (contd)

Start with the entry node.
If s is not an assignment statement, then fs is simply the identity
function.
If s is an assignment statement to variable v, then fs(m) = m′,
where:

For all v′ 6= v, m′(v′) = m(v′).
If the RHS of the statement is a constant c, then m′(v) = c.
If the RHS is an expression (say y op z),

m′(v) =

 m(y) op m(z) if m(y) and m(z) are constant values
⊥ if either of m(y) and m(z) is ⊥
> Otherwise

If the RHS is an expression that cannot be evaluated, then
m′(v) =⊥.

At a merge point, get a meet of the flow maps.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 24 / 27



*

Constant Propagation - example I

x = 10;
y = 1;
z = 5;
if (cond) {

y = y / x;
x = x - 1;
z = z + 1;

} else {
z = z + y;
y = 0;

}
print x + y + z;

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 25 / 27

*

Constant Propagation - example II

x = 10;
y = 1;
z = 1;
while (x > 1) {

y = x * y;
x = x - 1;
z = z * z;

}
A[x] = y + z;

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 26 / 27

*

constant propagation: Non distributive

Say f1, f2, and f3 represent the
transfer functions of B1, B2 and B3,
respectively.
f3(f1(m0)∧ f2(m0))v
f3(f1(m0))∧ f3(f2(m0))

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 27 / 27

*

Conditional Constant Propagation

Conditional constant propagation as an extension to the basic
algorithm.

i = 1;
...
if (i == 1) {

j = 1;
} else {

j = 2;
}
print (i, j);

Read:
Wegbreit B. Property extraction in well-founded property sets. IEEE
TSE 1975.
Wegman and Zadeck, Constant Propagation with conditional
branches, ACM TOPLAS 1991.

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 28 / 27



*

Conditional Constant Propagation

Main idea
With each block maintain an additional field: Executable?

Process a block only if it is executable.

To start: mark the “entry” node exeutable.
If the current node has only one successor, then mark the
successor “executable”.
If the the current node (conditional branch) has more than one
successor:

evaluate the condition (based on the abstract values)
appropriately mark the successors as executable or not.

Iterate till there is no change (in the flow map and list of
executable blocks).

V.Krishna Nandivada (IIT Madras) CS6013 - Jan 2015 29 / 27


