
08/08/15

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1101
Computational Engineering

Introduction to C Programming
Language

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

The C Programming Language
•  An imperative general-purpose programming

language
•  Used extensively in the development of UNIX
•  Extremely effective and expressive
•  Not a “very high level” nor a “big” language
•  Has compact syntax, modern control flow and

 data structures and a rich a set of operators
•  Extensive collections of library functions

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Origins of C
• Developed by Dennis M. Ritchie at Bell Labs

–  first implemented on DEC PDP-11 in 1972

• Based on two existing languages
–  BCPL and B languages
–  BCPL: Martin Richards, 1967 - systems programming
–  B: Ken Thomson, 1970 - early versions of UNIX
The C Programming Language- Kernighan, Ritchie, 1978

• ANSI C: a standard adopted in 1990
–  unambiguous, machine-independent definition of C
The C Programming Language (2nd edition)- Kernighan, Ritchie, 1988

08/08/15

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Developing and Using a C program
A C program typically goes through six phases
1. Edit: the program is created and stored on disk

– Emacs and vi are popular editors on Linux
–  usually part of IDE on Windows platforms

2. Preprocess: handles preprocessor directives
–  include other files, macro expansions etc

3. Compile: translates the program
–  into machine language code or object code
–  stores on disk

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Other Phases
4. Link: combines

–  the object code of the program
–  object code of library functions and other functions

 creates an executable image with no “holes”
5. Load:

–  transfers the executable image to the memory

6. Execute:
–  computer carries out the instructions of the program

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Programs = Solutions
•  A program is a sequence of instructions

– This is from the perspective of the machine or the
compiler!

•  A program is a (frozen) solution

– From the perspective of a human a program is a
representation of a solution devised by the human.
Once frozen (or written and compiled) it can be
executed by the computer – much faster, and as many
times as you want.

08/08/15

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Programming = Problem Solving
•  Software development involves the following

–  A study of the problem (requirements analysis)
–  A description of the solution (specification)
–  Devising the solution (design)
–  Writing the program (coding)
–  Testing

•  The critical part is the solution design. One must work
out the steps of solving the problem, analyze the steps,
and then code them into a programming language.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Hello, World!
/* A first program in C */
#include <stdio.h>
main()
{

 printf(“Hello, World! \n”);
}

A comment

Every C program starts
execution with this function.

Body of the function -
enclosed in braces

Statement terminator

Escape sequence - newline

Library of standard input/output
functions

printf - a function from C Standard library stdio.h
 - prints a char string on the standard output

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Programming Basics (emacs for programs)
•  A variable – changes value during the execution

of a program.
•  A variable has a name, e.g. – name, value, speed,

revsPerSec etc.
•  Always referred to by its name
•  Note: physical address changes from one run of

the program to another.

08/08/15

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Variables and Constants
•  Names

– made up of letters, digits and ‘_’
•  case sensitive: classSize and classsize are different
•  maximum size: 31 chars

–  first character must be a letter
–  choose meaningful and self-documenting names

•  MAX_PILLAR_RADIUS a constant
•  pillarRadius a variable

–  keywords are reserved
•  if, for, else, float, …

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Assignments and Variables
•  The value of a variable is modified due to an

assignment
•  The LHS is the variable to be modified and the

RHS is the value to be assigned
•  So RHS is evaluated first and then assignment

performed
•  E.g.: a = 1

–  a = c
–  a = MAX_PILLAR_RADIUS
–  a = a*b + d/e

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Variable Declaration
•  Need to declare variables
•  A declaration: type variablename;
•  Types: int, float, char
•  E.g.: int x;
•  Number of bytes assigned to a variable depends

on its type.
•  Assigning types helps write more correct

programs.
– Automatic type checking can catch errors like

integer = char +char;

08/08/15

5

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Variables need Declaration
Another simple C program
#include<stdio.h>
main()
{int int_size;
 int chr_size, flt_size;
 int_size = sizeof(int); chr_size =sizeof(char);
 flt_size = sizeof(float);
 printf(“int, char, and float use %d %d and %d bytes\n”,

int_size, chr_size, flt_size);
}

1
2
3
4
5
6
7
8
9

A function
from stdio.h

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Exercise
•  Type the above program using the Emacs editor.
•  Compile it using cc
•  Run the a.out file

•  If you already know C:
•  Write a program that reads the coefficients of a

quadratic and prints out its roots

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Modifying Variables (rm with –i option)
•  Each C program is a sequence of modification of

variable values
•  A modification can happen due to operations like

+, -, /, *, etc.
•  Also due to some functions provided by the

system like sizeof, sin, etc.
•  Also due to some functions (another part of your

program) created by the programmer

08/08/15

6

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

An Addition Program
#include <stdio.h>
main()
{

 int operand1, operand2, sum;
 printf(“Enter first operand\n”);
 scanf(“%d”, &operand1);
 printf(“Enter second operand\n”);
 scanf(“%d”, &operand2);
 sum = operand1 + operand2;
 printf(“The sum is %d \n”, sum);
 return 0;

}

Declarations, must precede use

“ %d ” - conversion
 specifier
 d - decimal

 & - address of operand1

assignment

Returning a 0 is used to signify
normal termination

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Arithmetic Operators in C
Four basic operators

+ , – , * , /
addition, subtraction, multiplication and division
applicable to integers and floating point numbers
integer division - fractional part of result truncated

12/5 à 2, 5/9 à 0

modulus operator : %
x % y : gives the remainder after x is divided by y
applicable only for integers, not for float/double

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

Order of Evaluation (Operator Precedence)
 first : parenthesized sub-expressions
 - innermost first

 second : * , / and % - left to right
 third : + and – - left to right

 a + b * c * d % e – f / g
 5 1 2 3 6 4

 a + (((b * c) * d) % e) – (f / g)
 good practice – use parentheses rather than rely on
 precedence rules – better readability

08/08/15

7

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Precedence – Another Example
•  Value = a * (b + c) % 5 + x / (3 + p) – r – j
•  Evaluation order –

–  (b + c) and (3 + p) : due to brackets
–  * and % and / have same precedence: a*(b + c) is

evaluated first, then mod 5. Also, x/(3 + p).
– Finally, the additions and subtractions are done from

the left to right.
•  Finally, the assignment of the RHS to LHS is

done.
– = is the operator that violates the left to right rule

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Relational and Logical Operators
•  A logical variable can have two values {true, false} or {1,

0}
•  In C: int flag // 0 is false, any non-zero value is true
•  Operators:

 ! unary logical negation operator

 < , <= , > , >= comparison operators
 = = , != equality and inequality
 && logical AND operator
 | | logical OR operator

•  logical operators return true/false
•  order of evaluation -- as given above

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Increment and Decrement Operators
•  Unusual operators - prefix or postfix only to

variables
 + + adds 1 to its operand
 – – subtracts 1 from its operand

•  n++ increments n after its use
•  ++n increments n before its use
•  n = 4; x = n++; y = ++n;
•  x is 4, y is 6 and n is 6 after the execution

08/08/15

8

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Assignment Statement/Expression
•  Form: variable-name = expression

– E.g.: total = test1Marks + test2Marks + endSemMarks;
–  int i; float x;

 i = x; fractional part of x is dropped
 x = i; i is converted into a float

•  Multiple assignment:
 x = y = z = a + b;
 x = (y = (z = a + b));

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Assignment Operators
•  X = X op (expr) can be written as X op= expr

–  op : +, – , *, / , %

•  E.g.: n = n + 10; à n += 10;

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Output Statement

 printf (format-string, var1, var2, …, varn);
format-string indicates:

 how many variables to expect
 type of the variables
 how many columns to use for printing them
 any character string to be printed

–  sometimes this would be the only output
 enclosed in double quotes

08/08/15

9

SD, PSK, NSN, DK, TAG – CS&E, IIT M 25

Examples - Output
int x; float y;
x = 20; y = – 16.7889;
printf(“Value x = %d and value y = %9.3f \n”, x, y);

 ‘%d’, ‘%9.3f’ : conversion specifiers
 ‘d’, ‘f’ : conversion characters

The output:
Value x = 20 and value y = 	�	�–16.789

 	� - blank space (9 spaces)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 26

General Form
 General conversion specifier: %w.p c
 w : total width of the field,
 p : precision (digits after decimal point)
 c : conversion character
 Conversion Characters:
 d : signed decimal integer
 u : unsigned decimal integer
 o : unsigned octal value
 x : unsigned hexadecimal value
 f : real decimal in fractional notation
 e : real decimal in exponent form

optional

SD, PSK, NSN, DK, TAG – CS&E, IIT M 27

Input Statement
 scanf(format-string, &var1, &var2, …, &varn);
format-string:

 types of data items to be stored in var1, var2, etc
 enclosed in double quotes
 Example: scanf(“%d%f ”, &marks, &aveMarks);

 data line: 16 14.75
 scanf skips spaces and scans more than one line
to read the specified number of values

08/08/15

10

SD, PSK, NSN, DK, TAG – CS&E, IIT M 28

Conversion Specifiers for “scanf”

 d - read a signed decimal integer
 u - read an unsigned decimal integer
 o - read an unsigned octal value
 x - read an unsigned hexadecimal value
 f - read a real decimal in fractional notation
 e - read a real decimal in exponent form
 c - read a single character
 s - read a string of characters

SD, PSK, NSN, DK, TAG – CS&E, IIT M 29

Solving a Quadratic Equation (rm –i is safe)

#include<stdio.h>
#include<math.h>
main()
{ float coeff1, coeff2, coeff3;
 float root1, root2, discrim, denom;
 printf(“Enter the 1st coefficient:”); /* prompt */
 scanf(“%f ”,&coeff1); /* read and store */
 printf(“Enter the 2nd coefficient:”);

 scanf(“%f ”, &coeff2);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 30

Quadratic (continued) (use vi to create files)
printf(“Enter the 3rd coefficient:”);
scanf(“%f ”, &coeff3);

 /* Now compute the roots*/
discrim = pow(coeff2, 2) – 4*coeff1*coeff3;
denom = 2*coeff1;
root1 = (– coeff2 + sqrt(discrim))/denom;
root2 = (– coeff2 – sqrt(discrim))/denom;
printf(“the roots were %f, %f \n”, root1, root2);
}

b2 – 4ac

08/08/15

11

SD, PSK, NSN, DK, TAG – CS&E, IIT M 31

Exercise (see http://www.gnu.org)

Modify the program so that the quadratic is also
output.

Summary: Variables are modified as the program
runs.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 32

Problem Solving withVariables

•  Write a program that will take two degree 5
polynomials as input and print out their product.

•  What are the inputs?
– Coefficients from each polynomial. Six from each.
– We need 12 Input variables.

•  How many outputs are there?
– We need 12 Output variables

SD, PSK, NSN, DK, TAG – CS&E, IIT M 33

Another Exercise (www.howstuffworks.com)

•  Write a program that takes as input 5 digit
numbers and prints them out in English.

•  Example: 512 – Five Hundred and Twelve

Solve the problem first, identify input variables,
Output variables, intermediate variables.

What values are taken by the intermediate

variables, how they are calculated from input
values, and output variables.

