
CS6868 Final
Dept of CSE, IIT Madras

Total marks = 40, Time = 180 min

04 May 2018

Read the instructions and questions carefully. You may make any reasonably assumptions that you think are necessary; but state
them clearly. You will get an answer sheet with 12 pages. Leave the first page empty. Start each question on a new page. For any question
(including all its sub-parts), the answer should NOT cross two pages. The spill over text will be strictly ignored. If you scratch/cross
some part of the answer, you may use space from the next page.

1. [8] OpenMP: (a) What are the differences between the single, master, and critical sections [1.5].

Ans:
master: only the master threads executes the code. No barrier at the end.
single: only one of the threads executes the code. Implicit barrier at the end.
critical: helps realize mutual exclusion. No barrier at the end.

(b) What are the uses of and differences between private, firstprivate, and lastprivate clauses? [1.5]. Show an example code to use
the lastprivate clause in a meaningful manner? [1]

Ans:

All the clauses are used to declare variables as private.
firstprivate: variable should be initialized with the value of the variable as it exists before the parallel construct.
lastprivate: Specifies that the enclosing context’s version of the variable is set equal to the private version of whichever thread executes
the final iteration/section.

Usage of lastprivate.

#pragma omp parallel

{

#pragma omp for lastprivate(i)

for (i=0; i<n-1; i++)

a[i] = b[i] + b[i+1];

}

a[i]=b[i];

(c) A student wrote the code shown on the
right, when asked to write an efficient par-
allel code to perform the following integra-
tion: ∫ 1

0

4

(1 + x2)
dx

Does the code compute the expected value?
If yes, prove it. If No, state why and
suggest a fix to do the computation cor-
rectly+efficiently in parallel. [3]

static long num_steps = 100000;

double step;

double computePi (){

int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = sum;

return pi; } /* end computePi */

Ans:
No.
1. Data race on x and sum.
2. pi should be multiplied by ”dx”.

Correct code:

#pragma omp parallel for reduction (+:sum)

for (i=0;i< num_steps; i++){

double x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

pi = step * sum;

1



(d) Consider the code in the file test.c,
shown on the right. How many threads are
created during the execution of ./test, as
shown below [1].

$ export OMP_NUM_THREADS=4

$ gcc -fopenmp test.c -o test

$ ./test

$ cat test.c

void main(){

omp_set_num_threads(6);

#pragma omp parallel for num_threads(8)

for (int i=0;i<2;++i){

S; // some code not shown.

}

}
Ans:
8

2. [8] Mutual Exclusion: a) Briefly explain the three properties (mutual exclusion, deadlock freedom, and starvation freedom) expected
from an implementation of locks [3].

Ans:
mutual exclusion: only one thread may be present inside the CS.
deadlock freedom: At least one process will make progress.
starvation freedom: every process trying to get into critical section will eventually do so.

b) Among the above three
properties which ones are
satisfied and which ones are
not satisfied by the B2Lock
algorithm, shown on the
right. Assume strict consis-
tency. [2]

class B2Lock {

boolean[] flag;

public B2Lock (int n) {

flag = new boolean[n];

for (int i=0; i<n; i++) {

flag[i] = false;

}

} /* end constructor */

public void lock() {

int i = my_id(); // computes thread id.

flag[i] = true;

while (for some k != i flag[k] is true

&& i > k);

} /* end lock */

public void unlock(){

int i = my_id(); // computes thread id.

flag[i] = false; } } /* end class */
Ans:
Mutual Exclusion: No. Deadlock freedom: Yes, Starvation freedom: No.

c) Among the above three
properties which ones are
satisfied and which ones are
not satisfied by the Lock2 al-
gorithm, shown on the right.
Assume: only two threads
with ids 0 and 1 and strict
consistency. [2]

public class Lock2{

private int v;

public void lock() {

int i = my_id(); // computes thread id.

v = i;

while (v == i) {};

}

public void unlock() {}

}
Ans:
Mutual Exclusion: Yes. Deadlock freedom: No, Starvation freedom: Yes.

d) We define an interval as the time between two events
of a thread. Which of the choices on the right is/are true
on the precedence relation between intervals of different
threads? [1] We use A, B, C to denote intervals and → to
denote the precedence relation.

i. A→ A

ii. (A→ B)⇒ (B → A)

iii. A→ B,B → C ⇒ A→ C

iv. It is possible that both A→ B and B → A are false.
Ans:
iii, iv.

3. [8] Concurrency I
(a) A conman had Rs 10 in his bank. But he needed Rs
15 to gamble. He studied the code of the banking software
(shown on the right) and used two different computers
and clicked on withdraw button on the two computers
(by specifying ten rupees in one and five rupees in the
other, as the amount of withdrawal) at the same time.
He claimed that two events happened: (1) he succeeded
in withdrawing the complete Rs 15 and (2) his balance at
the end was Rs 5. State if event 1 is possible [1.5]. State
if event 2 is possible [1.5]. Briefly justify your answers.

void deposit(int amt) {

lock(m); //m: a shared lock

balance = balance+amt;

unlock(m); } // end deposit

int read_balance() {

int t;

lock(m);

t = balance;

unlock(m);

return t; } //end read_balance

int withdraw(int amt){

int t = read_balance();

lock(m);

if (t <= amt) {

balance = 0;

} else {

balance = balance-amt;

t = amt;

}

unlock(m);

return t; } //end withdraw

Event 1: Yes. Event 2: No.

2



(b) Briefly contrast lock-free and wait free data-structures? [1].

Lock-free: some thread calling a method eventually returns.
Wait-free: every thread calling a method eventually returns.

(c) State if Linearizability and Sequential consistency lead to composable histories? [0.5+0.5].

Ans:
Linearizability is composable.

(d) Consider an implementation of stack, that supports
push and pop operations. Say, we have two stacks p and
q and a sequence of operations shown on the right. We
use the notation <op> to denote the interval of the op-
eration op. Is the sequence sequentially consistent? [1.5]
Linearizable? [1.5]. Briefly justify.

<p.push(y)> <q.push(y)> <p.pop(y)>

<q.push(x)> <p.push(x)> <q.pop(x)>

------------- time ------------------------>

Ans:
Linearizable: Yes. Sequentially consistent: Yes.
p.push(y) q.push(y) q.push(x) p.pop(y) q.push(y) q.pop(x)

4. [8] Concurrency II (a) Which of the following is true with respect to a consensus protocol? [1]

i. all threads decide on the same value.

ii. the value chosen by a thread is the input of some thread.

iii. threads agree on the chunks of iterations to be executed.

iv. threads identify the thread ids of other threads.
Ans:
i, ii
(b) State true or false [8 × 0.5]. Note: not all the answers are same.

i. The consensus numbers of compare-and-set and fetch-and-
increment match.

ii. The consensus numbers of atomic read/write registers and
atomic memory cells match.

iii. The consensus numbers of two-assignment objects matches
that of FIFO queue.

iv. Sequential consistency is commonly supported in the hard-
ware.

v. Compare-and-set along with read/write registers can be
used implement a FIFO queue.

vi. In Java, if all the shared fields are volatile then they need
not be accessed (read/written) in synchronized blocks.

vii. In Java, accesses (reads/writes) to shared volatile fields
must always be done inside synchronized blocks.

viii. The OpenMP flush pragma helps speed up memory writes.

Ans:
F, T, T, F, T, F, F, T.

(c) Consider the implementation of CASReg shown below:

public class CASReg {

private long value;

public boolean cas(long ex, long new) {

if (this.value==ex) {

this.value = new;

return true;

}

return false; } /* end cas */ } // class CASReg

This code is used along with the code shown in the right to realize
compare-and-swap operations. Overall, there are some issues in
the code. Fix them [3].

class myThread extends Thread {

CASReg r = new CASReg();

public void run(){

long tid = Thread.currentThread().getId();

if (r.cas(0, tid)){

// critical section only one thread

// should enter.

r.cas(tid,0);

}

} /* end run */ } // class myThread

...

new myThread().start(); // creates

new myThread().start(); // two threads.

Ans:
Two changes in the declarations:
public synchronized boolean cas(long ex, long new)
static CASReg r = new CASReg();

5. [8] MPI: Mark true or false [4 × 0.5]. Note: not all the answers are same.

i. MPI_Win_lock is used to lock a shared location in a window.

ii. In a MPI_Put call, the target process can use MPI_Post to
expose the window.

iii. In a MPI_Put call, the target process can use MPI_Wait to un-
expose the window.

iv. MPI_Fence can be used to implement MPI_Post and MPI_Wait.

3



Ans:
F, T, T, F

(b) Consider the snippet of the MPI code shown on the right. List the
issues with the code and the fixes thereof [3].

MPI_Win_start(togroup, 0, win);

MPI_Win_post(fromgroup, 0, win);

MPI_Put(&from,n,MPI_Int,neighborRank,n,MPI_Int, win);

MPI_Win_wait(win);

MPI_Win_complete(win);

Ans:

MPI_Win_post(fromgroup, 0, win); // order

MPI_Win_start(togroup, 0, win); // interchanged

MPI_Put(&from, n, MPI_Int, neighborRank,

disp, n, MPI_Int, win); // disp - parameter added

MPI_Win_complete(win); // order

MPI_Win_wait(win); // interchanged.

(c) How can you use MPI_Get_Accumulate and MPI_Accumulate to implement MPI_Get and MPI_Put, respectively? [2] Its okay, if you don’t
remember the complete signature of the accumulate functions.

Ans:
Use Op=MPI_NO_OP and Op=MPI_REPLACE

(d) Mark the statements true/false [1]. Note: not all the answers are same.

i. Task parallelism is suitable for MPI and OpenMP.

ii. Loop parallelism is suitable for OpenMP and Java.

iii. Compared to Java, fork-join pattern fits better with MPI.

iv. Master/worker pattern fits well with divide-conquer type of algorithms.

Ans:
T, T, F, F

4


