
CS6868 - Concurrent Programming
Introduction

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Quiz 1 = 10 marks, Quiz 2 = 10, Final = 40 marks.
Programming assignments: Six. Total 40 marks.
Extra marks

During the lecture time - individuals can get additional 5 marks.
How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.

Attendance requirement – as per institute norms. Non compliance
will lead to ‘W’ grade.

If you come to the class after 5 minutes - don’t.
Proxy attendance - is not a help; actually a disservice.

Plagiarism - A good word to know. A bad act to own.
Students Welfare and Disciplinary committee.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.
TA: Aman, Saurabh, Anchu:{amannoug,saurabhk,anchu}@cse,
Office: PACE Lab.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 2 / 25

*

Course outline

A rough outline (we may not strictly stick to this).
Introduction
Abstractions
Memory Consistency models
Design Patterns
Languages: OpenMP, MPI, CUDA
Optimizing parallel programs

Books:

1 The Art of Multiprocessor Programming by Maurice Herlihy and
Nir Shavit

2 OpenMP application Program interface (language reference)
3 The Complete Reference Java
4 MPI - the complete reference by Marc Snir, Steve W. Otto, Steven

Huss-Lederman, David W. Walker, Jack Dongarra

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 3 / 25

*

Lecture schedule

1 Introduction
2 Critical sections
3 Java concurrency features
4 Data races (determinacy and atomicity)
5 OpenMP concurrency features
6 Synchronization (barriers, clocks, rendezvous, semaphores)
7 Mutual exclusion/Critical sections variations (h/w and s/w

solutions), atomics, single, isolated
8 Recursive task parallelism
9 Deadlocks and livelocks

10 MPI concurrency features
11 Efficiency in parallel programs.
12 Patterns for multicore systems.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 4 / 25

*

Why Multicores?

Focus on increasing the number of computing cores.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 5 / 25

*

What, When Multicores? Why not Multiprocessors

What A multi-core processor is composed of two or more
independent cores. Composition involves the interconnect,
memory, caches.

When IBM POWER4, the world’s first dual-core processor,
released in 2001.

Why not Multi-processors
An application can be ”threaded” across multiple cores, but not
across multi-CPUs – communication across multiple CPUs is fairly
expensive.
Some of the resources can be shared. For example, on Intel Core
Duo: L2 cache is shared across cores, thereby reducing further
power consumption.
Less expensive: A single CPU board with a dual-core CPU Vs a
dual board with 2 CPUs.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 6 / 25

*

So what’s the big deal?

In the old world - processor speed used double every 1.5 years.
Implication: increase the complexity of the program, wait for 1.5
years - same performance.
New world: Unless there is concurrency in the program: you
cannot speedup.
Even if there is concurrency: parallelisation and synchronization
do not come for free.
Q: Say I get 8 parallel cores - will I get 8x speedup?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 7 / 25

*

Challenges Involved

Harnessing parallelism
How to map parallel activities to different cores? How to distribute
data?

Locality: Data and threads
Minimizing the communication overhead
Exploring fine grain parallelism (SIMDization), coarse grain
parallelism (SPMDization).
Dynamic code profiling and optimizations.
Unpredictable performance Why?
Programmability issues.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 8 / 25

*

Programmability issues

With hardware becoming increasingly multi-core, software
developed without attention to parallel processing capabilities of
the hardware will typically under-utilize the hardware - Example?
When software is designed to operate in a multi-threaded or
multi-processed manner, how the threads are mapped to the
cores becomes an important issue - Why?
Software that is critically dependent on multi-threading is always
based on assumptions regarding the thread-safety of the function
calls - Why?
Multi-threading of software is generally very important to
applications that involve human interactivity.
Understanding different levels of parallelism.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 9 / 25

*

A simple example: thread safety (more details later)

function int Withdraw(int amount){
if (balance > amount) {

balance = balance - amount;
return SUCCESS;

}
return FAIL;

}

Say balance = 100.
Two parallel threads executing Withdraw(80)
At the end of the execution, it may so happen that both of the
withdrawals are successful. Further balance can still be 20!

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 10 / 25

*

Race freedom is enough?

void deposit(int amt) {
acquire(m);
balance = balance+amt;
release(m);

}
int read balance() {

int t;
acquire(m);
t = balance;
release(m);
return t;

}

int withdraw(int amt) {
int t = read balance();
acquire(m);
if (t <= amt) {

balance = 0;
} else {

balance = balance-amt;
t = amt;

}
release(m);
return t;

}

// Initial balance = 10.
fork withdraw(10); ; // Thread 1
fork deposit(10); ; // Thread 2

Example taken from Flanagan and Qadeer TLDI 2003.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 11 / 25

*

Parallelism types

Instruction level parallelism.
Parallelism at the machine-instruction level.
The processor can re-order, pipeline instructions, split them into
microinstructions, do aggressive branch prediction, etc.
Instruction-level parallelism enabled rapid increases in processor
speeds over the last 20 years.

Thread level parallelism.
This is parallelism on a more coarser scale.
Server can serve each client in a separate thread (Web server,
database server)
A computer game can do AI, graphics, and physics in three
separate threads
Single-core superscalar processors cannot fully exploit TLP.
Multicores are the way out to exploit the TLP.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 12 / 25

*

What type of applications benefit from Multi-cores?

Nearly All !
Database servers
Web servers (Web commerce)
Compilers
Multimedia applications
Scientific applications, CAD/CAM
In general, applications with Thread-level parallelism (as opposed
to instruction-level parallelism)
To build applications that benefit from Multi-cores, we have to
understand multi-cores, on how they differ from unicore machines.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 13 / 25

*

Flynn’s Taxonomy.

Categorization of computers based on number of instruction and data
streams1.

SISD: Single instruction Single Data - x86: sequential computer
which exploits no parallelism in instruction or data streams.
SIMD: Single instruction Multiple Data - Vector machines: A
computer which exploits multiple data streams against a single
instruction stream.
MISD: Multiple instruction Single Data - Space Shuttle - Multiple
instructions operate on a single data stream.
MIMD: Multiple instruction Multiple Data - Bluegene, Cell - Multiple
autonomous processors simultaneously executing different
instructions on different data.

1Flynn, M. (1972). “Some Computer Organizations and Their
Effectiveness”. IEEE Trans. Comput. C-21: 948.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 14 / 25

*

SISD

Traditional Von Neumann Architecture, all traditional computations.
a single processor, a uniprocessor, executes a single instruction
stream, to operate on data stored in a single memory.
Pipelined execution allowed.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 15 / 25

*

SIMD

for (int i=0;i<16;++i) A[i] = B[i] + C[i]

Fetching / Write a bulk of data is efficient than single units of data.
A compiler level optimization to generate SIMD instructions.
Not all algorithm can be vectorized - for instance, parsing.
increases power consumption and chip area.
Detecting SIMD patterns is non-trivial.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 16 / 25

*

MISD

Task replication for fault tolerance.
Not used in practise. No known commercial system.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 17 / 25

*

MIMD

Many processors that function asynchronously.
Memory can be shared (less scalable) or distributed (memory
consistency issues).
Most of the modern parallel architectures fall into this category.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 18 / 25

*

Different types of MIMD systems - homogeneous

Homogeneous multi-core systems include only identical cores.
Just as with single-processor systems, cores in multi-core
systems may implement architectures like superscalar, VLIW,
vector processing, SIMD, or multithreading.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 19 / 25

*

Different types of MIMD systems - heterogeneous

Mixture of different cores e.g.
a computational unit could be a general-purpose processor (GPP),
a special-purpose processor (i.e. digital signal processor (DSP)
a graphics processing unit (GPU)),
a co-processor, or custom acceleration logic

Each core may be optimized for different roles.
Clusters are often heterogeneous; future supercomputers mostly
will be heterogeneous systems. Examples: Grids, lab clusters.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 20 / 25

*

Pros and Cons

Homogeneous CPU multi-cores
Pros:

Easier programming
environment
Easier migration of existing
code

Cons:
Lack of specialization of
hardware to different tasks
Fewer cores per server today
(Typically less than 100)

Heterogeneous multi-cores
Pros:

Massive parallelism today
Specialization of hardware for
different tasks.

Cons:
Developer productivity -
requires special training.
Portability - e.g. software
written for GPUs may not run
on CPUs.
Organization - multiple GPUs
and CPUs in a grid need their
work allocated and balanced,
and event-based systems
need to be supported.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 21 / 25

*

Challenges Involved (revisited)

Harnessing parallelism
How to map parallel activities to different cores? How to distribute
data?

Locality: Data and threads. What is the challenge?
Minimizing the communication overhead
Exploring fine grain parallelism (SIMDization), coarse grain
parallelism (SPMDization).
Assist threads
Dynamic code profiling and optimizations.
Programmability issues.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 22 / 25

*

Programmability issues

With hardware becoming increasingly multi-core, software
developed without attention to parallel processing capabilities of
the hardware will typically under-utilize the hardware - Example?
When software is designed to operate in a multi-threaded or
multi-processed manner, how the threads are mapped to the
cores becomes an important issue - Why?
Software that is critically dependent on multi-threading is always
based on assumptions regarding the thread-safety of the function
calls - Why?
Multi-threading of software is generally very important to
applications that involve human interactivity.
Understanding different levels of parallelism.
Debugging parallel programs.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 23 / 25

*

Starting model

Multiple threads
Single shared memory
Objects live in memory
Unpredictable asynchronous delays

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 24 / 25

*

Primality testing

Challenge
Print first 1010 primes
or
Print primes from 1 to 1010

Given
Ten-processor/Ten-core multiprocessor
One thread per processor/core

Goal
Get ten-fold speedup (or close)

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 25 / 25

*

See the slides from the ppt.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 26 / 25

*

Speedups in Parallel Programs

Say a serial Program P takes T units of time.
Q: How much time will the best parallel version P′ take (when run
on N number of cores)? T

N units?
Linear speedups is almost unrealizable, especially for increasing
number of compute elements.
Ttotal = Tsetup +Tcompute +Tfinalization

Tsetup and Tfinalization may not run concurrently - represent the
execution time for the non-parallelizable parts of code.
Best hope : Tcompute can be fully parallelized.

Ttotal(N) = Tsetup +
Tcompute

N +Tfinalization (1)

Speedup S(N) = Ttotal(1)
Ttotal(N) . In practice?

Chief factor in performance improvement : Serial fraction of the
code.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 27 / 25

*

Amdahl’s Law

Serial fraction γ =
Tsetup+Tfinalization

Ttotal(1)

Fraction of time spent in parallelizable part = (1− γ)

Ttotal(N) =
γ×Ttotal(1)︸ ︷︷ ︸
serial code

+
(1− γ)×Ttotal(1)

N︸ ︷︷ ︸
parallel code

=
(

γ + 1−γ

N

)
×Ttotal(1)

Speedup S(N) = Ttotal(1)
(γ+ 1−γ

N)×Ttotal(1)

= 1
(γ+ 1−γ

N)
≈ 1

γ
. . . Amdahl’s Law

Max speedup is inversely proportional to the serial fraction of the
code.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 28 / 25

*

Implications of Amdahl’s law

Assume: Ten processors. Goal: 10 fold speedup.

Serial fraction Parallel fraction Speedup = 1
(γ+ 1−γ

N)
40 % 60 % 2.17
20 % 80 % 3.57
10 % 90 % 5.26
99 % 01 % 9.17

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 29 / 25

*

Implications of Amdahl’s law

As we increase the number of parallel compute units, the speed
up need not increase - an upper limit on the usefulness of adding
more parallel execution units.
For a given program maximum speedup nearly remains a
constant.
Say a parallel program spends only 10% of time in parallelizable
code. If the code is fully parallelized, as we aggressively increase
the number of cores, the speedup will be capped by (∼) 1.11×.
Say a parallel program spends only 10% of time in parallelizable
code. Q: How much time would you spend to parallelize it?
Amdahl’s law helps to set realistic expectations for performance
gains from the parallelization exercise.
Mythical Man-month - Essays on Software Engineering. Frederic
Brooks.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 30 / 25

*

Peaking via Amdahl’s law

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 31 / 25

*

Limitations of Amdahl’s law

An over approximation : In reality many factors affect the
parallelization and even fully parallelizable code does not result in
linear speed ups.
Overheads exist in parallel task
creations/termination/synchronization.
Does not say anything about the impact of cache - may result in
much more or far less improvements.
Dependence of the serial code on the parallelizable code - can the
parallelization in result in faster execution of the serial code?
Amdahl’s law assumes that the problem size remains the same
after parallelization: When we buy a more powerful machine, do
we play only old games or new more powerful games?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 32 / 25

*

Discussion: Amdahl’s Law

When we increase the number of cores - the problem size is also
increased in practise.
Also, naturally we use more and more complex algorithms,
increased amount of details etc.
Given a fixed problem, increasing the number of cores will hit the
limits of Amdahl’s law. However, if the problem grows along with
the increase in the number of processors - Amdahl’s law would be
pessimistic
Q: Say a program P has been improved to P′ (increase the
problem size) - how to keep the running time same? How many
parallel compute elements do we need?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 33 / 25

*

Gustafson’s Law

Invert the parameters in Eq(1):
Ttotal(1) = Tsetup +N×Tcompute(N)+Tfinalization (2)

Scaled serial fraction γscaled =
Tsetup+Tfinalization

Ttotal(N) .

Ttotal(1) = γscaled×Ttotal(N)+N× (1− γscaled)×Ttotal(N)

S(N) = N +(1−N)× γscaled (Gustafson’s Law)
We are increasing the problem size. If we increase the number of
parallel compute units - execution time may remain same
(provided γscaled remains constant).
It means that speedup is linear in N. Is it contradictory to Amdahl’s
law?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 34 / 25

*

Comparison Amdhal’s law and Gustafson’s law

Say we have program that takes 100s. The serial part takes 90s
and the parallelizable part takes 10s.
If we parallelize the parallel part (over 10 compute elements) the
total time taken = 90 + 10

10 = 91s.

Amdahl’s law: Gustafson’s law:
γ = 0.9 γscaled =

90
91 = 0.99

Speedup ≈ 1
0.9 = 1.1 Speedup(10) = 10+(1−10)×0.99 = 1.1

Speedups indicated by both Gustafson’s Law and Amdahl’s law
are same.
Gustafson’s Law gives a better understanding for problems with
varying sizes.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 35 / 25

*

Bottlenecks in Parallel applications

Serial part of the code (Amdahl’s law).
Traditional programs running on Von-Neumann Architectures -
memory latency.
The “memory wall” is the growing disparity of speed between CPU
and memory outside the CPU chip.
In the context of multi-core systems, the role of memory wall?
Communication latency plays a far major role.
Communication = remote task creation, sending data,
synchronization etc.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 36 / 25

*

Moral

Making good use of our multiple processors (cores) means
Finding ways to effectively parallelize our code
Minimize sequential parts
Reduce idle time in which threads wait without compromising on
correctness.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 37 / 25

*

Means of Communication

Tasks/Threads/Processes need to communicate with each other for
the program to make progress.

Remote procedure calls.
Shared memory.
Message Passing.
Synchronization.
Examples: Files, Signals, Socket, Message queue, pipe,
semaphore, shared memory, asynchronous message passing,
memory mapped file.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 38 / 25

*

Remote Procedure Calls

A subroutine or procedure to execute in another address space
(core/processor), with no explicit coding.

Typically, RPC is an synchronous event. While the server is
processing the call the client is blocked.
Easy to program, especially in reliable environments.
Compared to local calls, a remote procedure may fail. Why?
How to handle failure?
By using RPC, programmers of distributed applications avoid the
details of the interface with the network.
The transport independence of RPC isolates the application from
the physical and logical elements of the data communications
mechanism and allows the application to use a variety of
transports.
Examples: C, Java RMI, CORBA.
Read yourself.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 39 / 25

*

Shared memory

A large common RAM shared and simultaneously accessed by the
multiple cores.
Note: Communication inside a task via memory is not generally
referred to as ‘shared memory’.

Easy to visualize for the programmer.
Communication can be fast.
(Partitioned) Global Address Space.
Scalable, especially for small number of cores.
Not easily scalable for large number of cores.
Cache coherence issues - Say a core updates its local cache -
how to reflect the changes in the shared memory such that data
access is not inconsistent.
#pragma omp flush [a, b, c] : A synchronization point
where memory consistency is enforced.
#pragma omp parallel private (a)

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 40 / 25

*

Message passing

Allows communication between processes (threads) using specific
message-passing system calls.
All shared data is communicated through messages
Physical memory not necessarily shared
Allows for asynchronous events
Does not require programmer to write in terms of loop-level
parallelism
scalable to distributed systems
A more general model of programming, extremely flexible
Considered difficult to write
Difficult to incrementally increase parallelism
Traditionally - no implicitly shared data (allowed in MPI 2.0)

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 41 / 25

