A pattern language

CS6868 - Concurrent Programming @ Pattern: “a careful description of a perennial solution to a

Design patterns for parallel programs recurring problem within a . . . context.”

@ Origin Christopher Alexander, 1977 in the context of design and
construction of building and town.

@ Patterns in software engineering: Beck and Cunningham (1987),
Gamma, Helm, Johnson, Vlissides (1995).

V. Krishna Nandivada

IIT Madras
@ Pattern Language: a structured method of describing good
design practices within a field of expertise.
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 1/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 2/46

A pattern language for parallel programs Finding concurrency in a given problem - deep dive

’ Finding Concurrency‘

Structure the given problem to expose exploitable concurrency. Finding Concurrency
’ Algorithm Structure ‘ (" Decomposition | | :
| | s - ! (Do vaturion |
Structuring the algorit @upﬁ%ﬁﬁng §:fl (rae%r potential concurrency. : L R S
Implementation Mechanisms |
H !pS%!gO- n.hm tv be !mnqﬂmﬁnfed. | Algorithm Structure l

|

| Supporting Structures I

|

| Implementation Mechanisms |

How the high level specifications are mapped.

Goal: |dentify patterns in each stage.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 3/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 4/46

Decomposition Patterns Task decomposition: An approach

@ |dentify “resource” intensive parts of the problem.

@ Task decomposition: A program to a sequence of “tasks”. @ Identify different tasks that make up the problem. Challenge: write
e Some of the tasks can run in parallel. the algorithms and run the tasks concurrently.
e Independent the tasks the better. @ Sometimes the problem will naturally break into a collection of

(nearly) independent tasks. Sometimes, not!

@ Data decomposition: Focus on the data used by the program. o Q: Are there enough tasks to keep the map all the H/W cores?

Decompose the program into tasks based on distinct chunks of

data. @ Q: Does each task have enough work to keep the individual cores
e Efficiency depends on the independence of the chunks. busy?
@ Q: Are the number of tasks dependent or independent of the
@ Task decomposition may lead to data decomposition and vice number of H/W core?
versa. @ Q: Are these tasks relatively independent?
Q: Are they really independent? @ Instances of tasks: Independent modules, loop iterations.
@ Relation between tasks and ease of programming, debugging a
maintenance.
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 5/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 6/46

Task decomposition: Matrix multiplication example Finding concurrency in a given problem
C - A X B Finding Concurrency
N_1 : l;};': AAAAAAA I‘Z :
: composition ; ‘ :
Cij = > Ak * B : P P
k=0 5 - — i
: o s '
@ “Resource” intensive parts? ST S g
@ Tasks in the problem? R '
@ Are tasks independent? Enough tasks for all the cores? Enough | | : |
work for each task? Size of tasks and number of cores? "“"""”M"'I""""’""
@ Each element C;; is computed in a different task - row major. [Supporting Structures |
@ Each element C;; is computed in a different task - column major. |

| Implementation Mechanisms |

@ Each element C;; is computed in a different task - diagonals.
@ How to reason about Performance? Cache effect?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 7146 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 8/46

Data decomposition: Design Data decomposition: Matrix multiplication example

@ Besides identifying the “resource” intensive parts, identify the key

data structures required to solve the problem, and how is the data C=AxB
used during the solution. N

@ Q:lsth iti itabl ifi —
Q: Is the decomposition suitable to a specific system or many Cij = Z A % B
systems? =

@ Q: Does it scale with the size of parallel computer?
@ Are similar operations applied to different parts of data,
independently?
@ Are there different chunks of data that can be distributed?
@ Relation between decomposition and ease of programming,
debugging and maintenance.
@ Examples:
o Array based computations: concurrency defined in terms of
updates of different segments of the array/matrix.

e Recursive data structures: concurrency by decomposing the
parallel updates of a large tree/graph/linked list.

“Resource” intensive parts?

Data chunks in the problem?

Does it scale with the size of parallel computers?
Operations (Reads/Writes) applied on independent parts of data?
Data chunks big enough to deem the thread activity beneficial?
How to decompose?

Each row/column of C; ; is computed in a different task.
Each column of C;; is computed in a different task.
Performance? Cache effect? p
Note: Data decomposition also leads to task decomposition a

NE
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 9/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 10/ 46

Matrix multiplication: Data decomposition. Finding concurrency in a given problem

Finding Concurrency
A A B B eemmessssssassssseaaa. .
C = 1,1 1,2 X 1,1 1,2 Decomposition !
A1 Aop B>y Bop e _ P PP T—
_ (A xBii+ A2 x By Arg X Bip+Aip X Byp : [Data Decomposition | | | i | N :
A2,1 X B1,1 +A272 X 32,1 A271 X B1,2 +A2,2 X 3272 :
i I
Advantages |
@ Can fit in the blocks into cache. | "”’*’"””?"‘I”"""’"” l
@ Can scale as per the hardware. [Supporting Structures |
@ Overlap of communication and computation. !

| Implementation Mechanisms |

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 11/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 12/46

Dependence analysis for managing parallelism:

Grouping

@ Background: Tasks and Data decomposition has been done.

@ All the identified tasks may not run in parallel.

@ Q: How should related tasks be grouped to help manage the
dependencies?

@ Dependent, related tasks should be (uniquely?) grouped together.

e Temporal dependency: If task A depends on the result of task B,
then A must wait for the results from B. Q: Does A have to wait for
B to terminate?

e Concurrent dependency: Tasks are expected to run in parallel, and
one depends on the updates of the other.

e Independent tasks: Can run in parallel or in sequence. Is it always
better to run them in parallel?

@ Advantage of grouping.
e Grouping enforces partial orders between tasks.
o Application developer thinks of groups, instead of individual ta

@ Example: Computing of individual rows.
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 13/46

Dependence analysis for managing parallelism: data

sharing

Background: Tasks and Data decomposition has been done.
Dependent tasks have been grouped together. The ordering between
the groups and tasks have been identified.

@ Groups and tasks have some level of dependency among each
other.
@ Q: How is data shared among the tasks?

@ Identify the data updated/needed by individual tasks - task local
data.

@ Some data may be updated by multiple tasks - global data.

@ Some data may be updated by one data used by multiple tasks -
remote data

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 15/ 46

Dependence analysis for managing parallelism:

Ordering

@ Background: Tasks and Data decomposition has been done.
Dependent tasks have been grouped together.

@ Ordering of the tasks and groups not trivial.

@ Q: How should the groups be ordered to satisfy the constraints
among the groups and in turn tasks?
@ Dependent groups+tasks should be ordered to preserve the
original semantics.
e Should not be overly restrictive.
e Ordering is imposed by: Data + Control dependencies.
e Ordering can also be imposed by external factors: network, i/o and
so on.
o Ordering of independent tasks?
@ Importance of grouping.
e Ensures the program semantics.
@ A key step in program design.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 14/ 46

Issues in data sharing

@ Identify the data being shared - directly follows from the
decomposition.

@ If sharing is done incorrectly - a task may get invalid data due to
race condition.

@ A naive way to guarantee correct shared data: synchronize every
read with barriers.
@ Synchronization of data across different tasks - may require
communication. Options:
e Overlap of communication and computation.
e Privatization.
o keep local copies of shared data.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 16/ 46

One special case of sharing Finding concurrency in a given problem - deep dive

Finding Concurrency
@ Accumulation/Reduction: Data being used to accumulate a result; R D ;
. . . O Ition -
sum, minimum, maximum, variance etc. i = : ;
o Each core has a separate copy of data, g — - - 5
e accumulation happens in these local copies. '; ;
e sub-results are further used to compute the final result. 5
@ Example: Sum elements in an array A[1024] '
e Decompose the array into 32 chunk. !
e Accumulate each chunk separately. | Algorithm Structure |
e Accumulate the sub results into the global “sum”. !
| Supporting Structures ‘
| Implementation Mechanisms |
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 17/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 18/ 46

Managing parallelism - design evaluation Design evaluation factors

@ Suitability to the target platform (at a high level)
o Number of cores / HW threads - too few/many tasks?
e Homogeneous/Heterogeneous multi-cores? And work distribution.

Background: Tasks and Data decomposition has been done. o Data distribution among the cores - equal/unequal?

Dependent tasks have been grouped together. The ordering between e Cost of communication - fine/coarse grained data sharing.
the groups and tasks have been identified. A scheme for data sharing @ Amount of sharing - shared memory or distributed memory.
has also been identified. @ Metrics: simplicity (qualitative) , Efficiency , Flexibility
@ Of the multiple choices present at different points, we have chosen @ Flexibility
one. o Flexible/Parametric over the number of cores/threads?

o Flexible/Parametric over the number and size of data chunks?
e Does it handle boundary cases?
o Efficiency.
e Even load balancing?
@ Minimum overhead? - task creation, synchronization,
communication.

@ Q: Is the chosen path a “good” one?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 19/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 20/ 46

Algorithm Structure - deep dive

Firding Concurrency |

Organize By Tasks

Algorithm Structure

Erﬂrgnnim By Data Decomposition :

Organize By Flow of Data

; | Tosk Peraflelism | : : [Geometric Decormrosition]

| Diviede arset Consgueer | 1|

[Recuraive Data | i

E : I Pipeeline | :

E I Event-Razed Coordinetion |

| Bupperting Structtres |
[

]
| Implementation Mechanizms |

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 21/46

Task Parallelism

Q: A problem is best decomposed into a collection of tasks that can
execute concurrently. How to exploit the concurrency efficiently?
@ Problem can be decomposed into a collection of concurrent tasks.
@ Tasks can be completely independent or can have dependencies.

@ Tasks can be known from the beginning (producer/consumer),
tasks are created dynamically.

@ Solution may or not require all the tasks to finish.

Challenges:

@ Assign tasks to cores - to result in a simple, flexible and efficient
execution.

@ Address the dependencies correctly.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 23/46

E Start j

_ _,_,—'-"'_'-H-H-'_-) -_‘-_‘___"‘—'—-._ _
——— 4:—:_::_:'-: ______________ _:_:_:Z_::H. _______
Organize By : I Organize By ' Organize By |
Tasks i 1 Data Decomposition i FlowofData
_____ LIt TN ‘"___:‘71_‘:.___"‘
. o e PR Jl'_f’“-\'L e o e
Linear @ Re-:'urhne i Linear - Ree un-wu - Rl-.q.,u]ur :]rn-_';.,ulur

---;;.'--- e s---- "“'r“"' ahil t\ - ---7- - -f{‘---

Algorithm Structure design

Recursive

Task L rd: and Lrtur.ud.'nr
Data

PamH{-Emrr Conguer Decomposition

‘ Pipeline

Event-Based
Coordinaiion

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras)

Factors in efficient Task parallel algorithm design

@ Tasks:

@ Enough Tasks to keep the cores busy.
@ Advantage of creating the tasks should offset the overhead of
creating and managing them.

@ Dependencies
@ Ordering constraints.

@ Dependencies from shared data: synchronization, private data.

© Schedule: creation and scheduling.
@ Schedule

@ How are the tasks assigned to cores.
@ How are the tasks scheduled.

V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras)

22/46

24/ 46

Example: Task parallel algorithm Solution to Branch and Bound ILP

Machine Job1 Job2 Job3 Job4
M1 4 4 3 5
M2 2 3 4 4

” @ Maintain a list of tasks.
o ° @ Remove a solution from the list.
o - o - * @ Examine the solution. Either discard it or declare it a
. solution, or add a sub-problem to task list.

' The tasks depend depend on each other through the task-list.
ol o o 0 0 0 °
kg1 ¥=0 =0 gt =0 X
(=) () C o =) (o ") () @ 5

@ Say Job1 to M1, Job2 to M2, Job3 to M1, Job4 to M2 = 7.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 25/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 26 /46

Algorithm Structure design Divide and conquer

Q: Tasks are created recursively to solve a problem in a divide conquer

| Start | strategy. How to exploit the concurrency?
— — Te— — @ Divide and Conquer: Problem is solved by splitting it into a
——— e M e T o]
Organizo By | 7 Orgenize By (77 Duganina By number of smaller subproblems. Examples®
_____ gﬂ_ﬂ‘é____.! t Data Dacompoim) L S @ Each subproblems can be solved “fairly” independently. Directly or
P - - Af.’ﬁ. e P S further divide and conquer.
¢ Linear ' Recursive . Linear - EI-.'LII]'H"."E‘ . Regular & Irvegular . . .
P_,r \ Kr """"" \ / .\ @ Solutions of the smaller problems is merged to compute the final
Task Iieede and Geomelric Recursive Fineli Erent-Based solution.
IPaerEr’mr Conguer Decomposition Daia peiine Coordinaiion @ Each divide doubles the concurrency.

@ Each merge halves the concurrency.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 27/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 28/ 46

Divide and Conquer pattern: features Divide and conquer - example Mergesort

sequential | problem

split
up (o 2-uay concurrency int [] mergesort (int [] A, int L, int H) {
split aplit . — .
ﬁmﬁ%n[fijm Fglij(%%ng %f (H- 1L <=1) rgturn,
[OT— = [sate [oee oo if (H-L <= T) {quickSort (A, L, H); return;}

[swbsalution) (" subsalution | (“subsdution] (“absolution

= int m = (L+H)/2;

up to 2y eoncurrency hon wﬁﬂm Al = mergesort (A, L, m);
gfmwxg A2 = mergesort (A, m+l, H);

return merge (Al, A2);

@ The amount of exploitable concurrency varies. // returns a merged sorted array.
@ At the beginning and end very little exploitable concurrency. }
@ Note: “split” and “merge” are serial parts.

@ Amdahl’s law - speed up constrained by the serial part. Impact?

@ Too many parallel threads?

@ What if cores are distributed? - data movement? o ® Value of threshold T
@ Tasks are created dynamically - load balancing? N
@ What if the sub-problems are not equal-sized?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 29/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 30/46

Algorithm Structure design Geometric decomposition

Q: How can an algorithm be organized around a data structure that
has been decomposed into concurrently updatable “chunks”?

sequential solution

@ split cost?
@ merge cost?

@ Similar to decomposing a geometric region into subregions.

| Start | @ Linear Data structures (such as arrays) - can be often
— T decomposed into contiguous sub-structures.
U — . ﬂa—“‘m— —————— @ These individual tasks are processed in different concurrent tasks.
Organize By : ! Organize By : Ohrganize By : .] .
Tasks | i Data Decomposition | FlowofData @ Note: Sometimes all the required data for a task is present
___________ - ‘-____:'?T'______-' -\-____:m_____J “ 1 H H
ok e L ol locally” (embarrassingly parallel - Task parallelism pattern). And
¢ Linear Recursive . Linear : Recursive: . Regular & Irvegular sometimes share data with “nelghborlng” chunks.
I S sessEgEEsE= 0 TEEEY 7 . e S ik St
r‘(A 4 \ / Y Challenges
Task Divedle and Ceametric Recursive . Event-Based .
Parfielism ‘ Conquer | | Decompsition Data ‘ Fipeline Courtinatio @ Ensure that each task has access to all data it needs.

@ Mapping of chunks to cores giving good performance. Q: Why is it
a challenge?

@ Granularity of decomposition (coarse or fine-grain) - effect on
efficiency? Parametric? Tweaked at compile time or runtime?

@ Shape of the chunk: Regular/irregular?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 31/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 32/46

Geometric decomposition: Matrix multiplication

C = AxB
_ < Arg Az > o (Bi1 Bip >
A1 Azp Boi Boo
_ < A1 xBi1+A12xBa1 Ai1 XBip+ A2 X Bop)
A1 X Bi1+ Ao xBay Aot xBipg+ A2 x Bop

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 33/ 46

Recursive Data Pattern

Q: How can recursive data structures be partitioned so as that
operations on them are performed in parallel?

@ Linked list, tree, graphs ...

@ Inherently operations on recursive data structures are serial - as
one has to sequentially move through the data structure.

@ For example linked list traversal or traversing a binary tree.

@ Sometimes it is possible to reshape operations to derive and
exploit concurrency.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 35/46

Algorithm Structure design

I Start |
,,—'-"'_'-H-H-'_) -_‘-_‘__‘_"‘—-—__ .
e 4:—:_::_:'-: ______________ _:_:_:Z_::H. _______
Organize By : ! Organize By | Organize By :
Tasks i 1 Data Decomposition i FlowofData
_____ el TTTTT LRI e
..... Il P S A'_'-f-\\'k
¢ Linear | Reeursive ¢ Lingar - Recursive: ¢ Regalar @ Irregular
B ety el Y W R gl H M- Jovera R e Lo - paricest
/ \ / \ / \
Task Ihptde and Geometric Recursive Pineline Event-Based
Parallelism| | Conguer Decomposition Data 7 Coordinaiion
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 34 /46

Recursive Data Pattern - example Find roots

@ Given a forest of rooted trees: compute the root of each node.

@ Serial version: Do a depth-first or breadth first traversal from root
to the leaf nodes.

@ For each visited node - set the root. Total running time?

Q: Is there concurrency?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 36 /46

Recursive Data structures: Parallel find roots Parallelizing recursive data structures

@ Recasting the problem increases the cost. Find a way to get it
back.

o Effective exploitation of the derived concurrency depends on
factors such as - amount of work available for each task, amount
of serial code ...

@ Restructuring may make the solution complex.
@ Requirement of synchronization - Why?
@ Another example: Find partial sums in a linked list.

0 3 x2 x3 x4 %5 [x5 xT

@ Transformed the original serial computation to one where we
compute partial result and repeatedly combine partial results.
Total Cost = ?

@ Total cost = O(Nlog N)

@ However, if we exploit the parallelism - running time will come
down to O(log N).

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 37/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 38/46

Algorithm Structure design Pipieline pattern

Q: The computation may involve performing similar sets of operations
on many sets of data. Is there concurrency? How to exploit it?

i ! @ Factory assembly line, Network Packet processing, Instruction
! Start ! y_ in G y
=TT processing in CPUs etc.
,______Jﬁii-fii _________ T‘-—- _:T'::—:=* _______ time
Organize By ! I Organize By | Oirganize By ! L
Tasks | i Data Decomposition | FlowofData | pipeline stage 1 E
_____ el TTTTT LRI e
K o m e e A e, piptinesagez [[G1] [G3] [G3] [G3] [o)
. Linear | Recursive; . Linear & Recursive: . Reguler & Irregular ; I
/ \ / \ / \ pipeline stage 3
Task [ierde and Creometrie HRecursive L. Erent-Based L - . - - . .
Paralielism ‘ Conguer | | Decomposition Data ‘ Pipeline Coordinmion pipeline stage 4

@ There are ordering constraints on each operation on any one set
of data: Operation C, can be undertaken only after Cy.

@ Key requirement: Number of operations > 1.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 39/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 40/ 46

Pipeline pattern features Pipieline pattern. Issues

time

pipeline stage 1 E
pipeline stage 2 @ @ @ @ [El @

pipoline stago 3 e @ Error handling
pipeline stage 4 e Create a separate task for error handling - which will run exception
routines.
@ Once the pipeline is full maximum parallelism is observed. @ Processor allocation, load balancing
b
@ Number of stages should be small compared to the number of @ Throughput and Latency.

items processed.

o Efficiency improves if time taken in each stage is roughly the
same. Else?

@ Amount of concurrency depends on the number of stages.
@ Too many stages, disadvantage?
@ Communication across stages?

V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 41/46 V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 42 /46

Overall big picture Event based coordination

| St | Challenges
''_'_,_,_,--""'_'—-) __'“—-—_._‘__‘___ ° Id i
: : entifying the tasks.
R S — 1ying
Organize By | | Organize By | Organize By | @ |dentifying the events flow.
Tasks | 1 Data Decomposition i FliwofData Enforcing th i deri
“““ e T LARITTT Temmm A= @ Enforcing the events ordering.
D - B e L 9 9
i Linear i Reecursive i Linear | Recursive: ' Regular @ Irregular @ Avoiding deadlock.
L ADSAT | etireve | __TADeAY [iRetwEvel LopnAr b lrregwar
/ kY / \ / N\ e Efficient communication of events.
Tuesk vt and Geometric Recursive Fineli Evrent-Based .
Paralielism| | Conquer | |Decomposition Duata peiine Coordinaiion Left for self reading.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 43/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 44/ 46

Algorithm Structure design Supporting structures

@ We have identified concurrency, and established an algorithm

| Start | structure.
— T @ Now how to implement the algorithm?
[4:—:___:'_:'-: ______________ _:_:_:Z_::H. _______
Organize By | ! Organize By | Organize By | Issues
Tasks | 1 Data Decomposition i FlowofData Claritv of abstracti ¢ laorithm t q
""" LT TSI STt AR @ Clarity or abstraction - Trom algorithm 1o source code.
..... P T TR P y.. 9 i
¢ Linear | Reeursive i Linear ! Recursive: ¢ Regular o Irregular @ Scalability - how many processors can it use?
_oanear o heeursive) LM ear i heeurEve ; LopnAr b lrregwar
/ N / \ / Y e Efficiency - utilizing the resource of the computer, efficiently.
Task Iieede and Geomelric Recursive 2 Erent-Based)
Parolielism ‘ Conguer | | Decomposition Data ‘ Pipeline Coordinaiion Example?
@ Maintainability - is it easy to debug, verify and modify?
@ Environment - hardware and programming environment.
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 45/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 46/ 46

SPMD pattern SPMD example
T 4
7r:‘£‘le;dX

@ Each UE executes the same program, but has different data. , ,
int main () {

@ They can follow different paths through the program. How? // Initialization start
@ Code at different UEs can differentiate with each other using a int 1i;
unique ID. int numSteps = 1000000;

. o double x, pi, step, sum = 0.0;
@ Assumes that each underlying hardware are similar. step = 1.0/ (double) numSteps;

// Initialization end

Challenges . ‘ _
. . . - for (i=0;1i< numSteps; i++) {
@ Interactions among the seemingly independent activities of UEs. x = (i+0.5)xstep;
@ Clarity, Scalability, Efficiency, Maintainability (1m cores), sum = sum + 4.0/ (1.0+x*x); }
Environment. // Finalization start

pi = step » sum;
printf ("pi %1£f\n",pi);
return O;

// Finalization end

@ How to handle code like initialization, finalization etc?

}

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 47 / 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 48/ 46

SPMD translation. Inefficient? SPMD translation. Better?

int main () { int main () {
int i; int numSteps = 1000000;
int 1i; double x, pi, step, sum = 0.0;
int numSteps = 1000000; step = 1.0/ (double) numSteps;
double x, pi, step, sum = 0.0; int numProcs = getNumProcs();
step = 1.0/ (double) numSteps; int myID = getMyId();
int numProcs = humSteps; step = 1.0/numSteps;

int myID = getMyld();
iStart = myID * (numSteps / numprocs);
i = myID; iEnd = iStart * (humSteps / hnumprocs);
x = (1+0.5) xstep; if (mylD == numProcs-1) iEnd = numSteps;
sum = sum + 4.0/ (1.0+x%*x);
for (i = iStart; i < iEnd; ++i){

sum = step * sum; x = (1i+0.5) *step;
DoReductionOverAllProcs(&sum, &pi); // blocking. sum = sum + 4.0/ (1.0+x*x); }
if (myID == 0) printf("pi %$1f\n",pi); sum = step * sum;
return 0; R DoReductionOverAllProcs (&sum, &pi); // blocking.
if (myID == 0) printf("pi %$1f\n",pi);
return 0;
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 49/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 50/ 46

Supporting structure Master/Worker

[Finding Concurrency |

] Situation
| Algoridhm Siructure | @ workload at each task is variable and unpredictable (what if
! predictable?).

Supporting Structures

r
'

@ Not easy to map to loop-based computation.
@ The underlying hardware have different capacities.
Master/Worker pattern
@ Has a logical master, and one or more instances of workers.
@ Computation by each worker may vary.
; @ The master starts computation and creates a set of tasks.
@ Master waits for tasks to get over.

Data Structures

SEPMI? . Shared Data

|
Shared Queve | i
|

Dizstributed Array

| Master) Worker é
E | Loop Parallelizm :
| Fork [Jain

[Implementation Mechanisms I

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 51/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 52/ 46

Master/Worker layout Master/Worker Issues

@ Has good scalability, if number of tasks greatly exceed the number

: master (1) : workers (1 to N) i
| [initiate computation | ! ; : of workers, and each worker roughly gets the same amount of
| I ; ; ; ?).
| set up problem | ' : : work (Why)
5 orrie f wFiasks | i : : @ Size of tasks should not be too small. Why?
i create bag of tasks) .) .
g I § 5 g @ Can work with any hardware platform.
i launct rkers o i . . .
| [auneh workers } 5 - 5 @ How to detect completion? When can the workers not wait but
! "§‘| initialize | Shutdownt)
{| [compute results | | o Easy if all tasks are ready before workers start.

! sleep until work is done ! J/\ : e Use of a poison-pill in the work-queue.
: : : done? ;

; ; ; e What if the workers can also add tasks? Issues?

] exi‘{ | : e Issues with asynchronous message passing systems?
O L 5 e How to handle fault tolerance? - did the task finish?
i collect results = i | o s
: : : : Variations
| [terminate computation] ! 5 ' o Master can also become a worker.
--- e Distributed task queue instead of a centralized task queue.

dis)advantages?
Q: How to implement the set of tasks? Characteristics of this data structure? (dis) g

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 53 /46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 54/ 46

Master/Worker template for master Master/Worker - ForkJoin

int nTasks // Number of tasks

int nWorkers // Number of workers

public static SharedQueue taskQueue; // global task queue
public static SharedQueue resultsQueue; // gqueue to hold result

void master() { void ForkJoin (int nWorker) {

// Create and initialize shared data structures Threa§ [].t =lnew ThreadanWorkers];
taskQueue = new SharedQueue(); for Flnt 1=0ji<nWorker;++i) {
globalResults = new SharedQueue () ; t[lq - gew ?hread(new W?rker()) }
for (int i = 0; i < nTasks; i++) for (int 1=0;i<nWorker;++i) {

enqueue (taskQueue, 1i); tli].join();}

// Create nWorkers threads
ForkJoin (nWorkers);

consumeResults (nTasks);

}

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 55/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 56 /46

Master/Worker - template for worker Supporting structure

class Worker () {
public void run() { [
while (! (Master.taskQueue.empty()) { | AMwﬂMJSmumm |
// atomically dequeue. i
// do computation. et B
// add to globalResults atomically e mmmmmmeemee e e .

Finding Concurrency |
[

smaller sub-problems, and distributes those to worker nodes.
@ A worker may again partition the problem — multi-level tree structure.
@ The worker node processes that smaller problem, and passes the
answer back to its master node. s,
e "Reduce” step: Master node takes all the answers and combine
them to get the output the answer to the original problem. s

b} : Program Structures 15 :r Data Structures :
Known Uses , | SFMD E . Shared Data | E
o SETI@HOME [MasteriWorker |} [Shared Queue | |
o Map Reduce I | Loop Parallelism i : Distributed Array | :
e "Map” step: The master node takes the input, partitions it up into | P !

Fork [Join

l Implementation Mechanisms I

V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 57/ 46 V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 58 /46

@ A program has many computationally intensive loops, with Merging/Fusion Coalescing
“‘independent” iterations. for (i : 1..n) { ‘

@ Goal: Parallelize the loops and get most of the benefits. 51 for (1 : 0..m) A

@ Very narrow focus. } fog 3= 0..0) A

e Typical application: scientific and high performance computation. for (3 : 1..n) {)

@ Impact of Amdahl’s law?) 52 >

@ Quite amenable to refactoring type of incremental parallelization. s for (ij : 0..mxn)
Advantage? for (i : 1..n) { J =13 %

@ Impact on distributed memory systems? s1 i=143/ n

@ Good if computation done in iterations compensates the cost of j = 1i;) °
thread creation - how to improve the tradeoff? Coalescing, S2
merging.)

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 59 /46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 60/ 46

Loop parallelization issues Loop parallelization example

@ Distributed memory architectures. = /0 11:')()(dx
@ False sharing : variables not needed to be shared, but are in the

same same cache line. Can incur high overheads.
@ Seen in systems with distributed, coherent caches.

@ The caching protocol may force the reload of a cache line despite int i,numSteps = 1000000; int 1,numSteps=1000000;

a lack of logical necessity. double x,pi,step, sum=0.0; Ziibf ES?(ZZEEIZTEiSEe y
step=1.0/ (double) numSteps; p=1. ps;

int main () { int main () |

foreach(j : [0..N]) {

foreach (3 : [0..NI) | double tmp; for(i: [0..numSteps]) { foiiiiié:xi?i;ﬁu?fiifii)-{

for (i=0; i<M; 1i++) { for (1i=0; 1i<M; 1i++) { x=(1+0.5) «step;
S L _ oo double tmp=4.0/(1.0+x*x)
A[j]+= compute(]j,1i); tmp += compute(3j,1); sum=sum+4.0/ (1.0+x*x);} i
} } atomic sum=sumttmp; }
} atomic A[Jj] += tmp; pi=stepxsum; pi = step * sum;

printf ("pi $1f\n",pi);

return 0; } printf ("pi $1f\n",pi);

i)) _return 0; }
Reading material: Automatic loop parallelization.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 61/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 62 /46

[Finding Concurrency |
[
r

| Algorithm Structure |
' @ The number of concurrent tasks varies as the program executes.
______________ Supporting Structures @ Parallelism beyond just loops.
, @ Tasks created dynamically (beyond master-worker).
@ One or more tasks waits for the created tasks to terminate.

|
: Shared Queve | | @ Each task may or not result in an actual UE. Many-to-one
| mapping. Examples?

Data Structures

SEPMI? . Shared Data

Loop Parallelizm Dizstributed Array

|

. | Measter] Worker
|
|

Fork [Join

[Implementation Mechanisms I

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 63 /46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 64 /46

Fork/Join - example Mergesort

int[] mergesort (int[]A,int L,int H) {
if (H-L <= T) {quickSort (A, L, H); return;}
int m = (L+H)/2;
Al = mergesort (A, L, m); // fork
A2 = mergesort (A, m+l, H); // fork
// join.
return merge (Al, A2);
// returns a merged sorted array.

}
Issues

@ Cost.
@ Alternatives?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 65/46

Supporting structure

[Finding Concurrency |
[
r

| Algorithm Structure |

Supporting Structures

Data Structures

SEPMI? . Shared Data

S-‘r.c.'rt'ﬁ' QHA’.’(I’(‘

Loop Parallelizm Dizstributed Array

|

. | Measter] Worker
|
|

Fork [Join

Implementation Mechanisms |

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 67 /46

Supporting structures and algorithm structure

Divide . " Event-
Task Geomeltric Recursive o
Parallelism Co :;fﬂ_ Decomposition Data Rl Caors;?ie:—fﬁnn
SPMD L85 & 4 ek L8 8 & ¢ *k * %k Kk *k
Loop
Parallelism dokok ok *k *kk
Master/
e/] kkkk | kek * “ * *
Fork/Jain * ok ok dok * N L8 .8 &4 e 6 8 ¢
Homework '
OpenMP | MPI | Java | X10 | UPC | Cilk | Hadoop
SPMD Fokk Ihkk | kK
Loop Parallelism FokAok * Hokk
Master/Worker Hox Ikk | kkk
Fork/Join Fokk J——
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 66 / 46

Shared Data

Million dollar question: How to handle shared data?
@ Managing shared data incurs overhead.
Scalability can become an issue.
Can lead to programmability issues.
Avoid if possible - by
e replication,
e privatization,
e reduction.
Use appropriate concurrency control. Why?

@ Should preserve the semantics.
@ Should not be too conservative.

@ Shared data organization: distributed or at a central location?

@ Shared Queue (remember master-worker?) is a type of shared
data.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 68 /46

Issues with shared data

@ Data race and interference: Two shared activities access a shared
data. And at least one of them is a write. The activities said to
interfere.

forall (i:[1..n]) {
sum += A[i];

}

for (i[1..n]) {
forall (j=1; j<m;++7j) {
A[i][J1=(A[i-1][J-11+4A[i-11[J1+A[1-110[3+11)/3;
}
}

@ Dependencies : Use synchronization (locks, barriers, atomics, ...)
to enforce the dependencies.

e How to implement all-to-all synchronization?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 69 /46

Supporting structure

[Finding Concurrency |
[
r

| Algorithm Structure |

Supporting Structures
| Prgiam Strctures | | DataStmetures
' | SPMD E . Shared Data |
; | M(rs!t'r.-r Wur&t’r é i S;E&.'J"[’f_lr QH{'(I’(‘ | i
I | Loop Parallelizm ? : Distributed Array | I
‘[Forkfoin__] | |

| Implementation Mechanisms I

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 71/ 46

Issues with shared data

@ Deadlocks : two or more competing actions are each waiting for
the other to finish.

lockA — lockB

lockB — lockA
One way to avoid: partial order among locks. Locks are acquired
in an order respecting the partial order.

@ Livelocks : the states of the processes involved in the livelock
constantly change with regard to one another, none progressing.
Example: recovery from deadlock - If more than one process
takes action, the deadlock detection algorithm can be repeatedly
triggered leading to a livelock

@ Locality : Trivial if data is not shared.

@ Memory synchronization: when memory / cache is distributed.

@ Task scheduling - tasks might be suspended for access to sharg
data. Minimize the wait.

(Example via nested locks)

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 70/ 46

Distributed Array

Arrays often are partitioned between multiple tasks.
Goal: Efficient code, programmability.

@ Distribute the arrays such that elelement needed by a task is
“available” and “nearby”.

@ Array element redistribution?

@ An abstraction is needed: a map from elements to places.

@ Some standard ones: Blocked, Cyclic, Blocked cyclic, Unique,

@ Chosing a distribution.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 72/ 46

Supporting structure Implementation Mechanisms

[Finding Concurrency |
:
| Algoriths n Strcture | | Finding Concurrency I
: :
Supporting Structures | Algorithm Structure |
----------------------- W pPTTTTTT IO T T T T Ty i
¢ Program Struetures | | Data Structures | L
E | SPMI) Do Shared Data | ! | Supporfmgl Structures |
| Masteri Worker |1 Shared Queve | | = -
; o i Implementation Mechanisms
! | Loop Parallelism | 1 | Distributed Array |] e et mmmm. e e e ememn e emmeeeann
[Forkion]} | | OpraRACIRA (VAN oM

Implementation Mechanisms |

V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 73/ 46 V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 74/ 46

UE management Synchronization: Memory synchronization and fences

Synchronization: Enforces constraint among parallel events.

o
done=true; done = false;
@ UE - unit of execution (a process / thread / activity) while (done) ; ’
@ Difference between process / thread / activity. ° x::s: 23 E: E:i::} :: :i‘;g?s'tg?ChCeufs:teéirr;C;Igl‘ray take care.
"] - .
@ Management = Creation, execution, termination. e Value may not be read. How?
@ Varies with different underlying languages. °
@ Go back to first few lectures for a recap. Xx=y=0
Thread 1 | Thread 2
1:r1=x | 4:x=1
2:y=1 3=y
3:r2=x

ri ==r2 ==r3 == 0. Possible?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 75/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 76/ 46

Synchronization: Memory synchronization and fences Syncrhonization: Barriers

@ A memory fences guarantees that the UEs will see a consistent
view of memory.

@ Writes performed before the fence will be visible to reads Barrier is a synchronization point at which every member of a
performed after the fence. collection of UEs must arrive before any member can proceed.
@ Reads performed after the fence will obtain a value written no e MPI_Barrier, join, finish, clocks, phasers
earlier than the latest write before the fence. @ Implemented underneath via passing messages.

@ Only for shared memory.

@ Explicit management can be error prone. High level: OpenMP
flush, shared, Java - volatile. Read yourself.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 771 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 78 /46
Phasers' Power of Phaser - pipeline parallelism?
finish {
I phaser [] ph = new phaser[m+1];
° Phaser allocatlon foreach (point [i] : [1:m-1]) phased (ph[i]<SIG>, ph[i-1]<WAIT>)
— Phaser ph = new Phaser(mode) for (int J'_=f1; J<n; ge) { . AT
* Phaser ph is allocated with registration mode 231[]] - reoIbl sl bl
* Mode: SINGLE } 7/ for
| * Mode defines capability } // foreach
SIG_WAIT(default) * There is a lattice ordering of capabilities !
_—— — e e

_ SieNAL l
* Activity registration l\ \J phil] A, ph2] As phi3] A,
— async phased (ph,<mode,>, ph,<mode,>, ...) {STMT} I
+ Spawned activity is registered with ph, in mode,, ph, in mode,, ... l l
* child activity’s capabilities must be subset of parent’s a3 l\i\j\i\
* Synchronization Qe
— hext:

* Advance each phaser that activity is registered on to its next phase
* Semantics depends on registration mode

ph[1]<SIG> ph[2]<SIG> ph[3]1<SIG> ph[4]<SIG>
SIGNAL WAIT (’JXD\@lN”\&“lD\A ph[0]J<WAIT> ph[1]<WAIT> ph[2]<WAIT> ph[3]<WAIT>

"Thanks - Jun Shirako 2Thanks - Jun Shirako
V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 79/ 46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 80/ 46

Syncrhonization Implementation Mechanisms

[Finding Coneurrency I
&
r

@ Memory fence | Algorithm Structure |
@ Barriers :

@ Mutual exclusion: Java synchronized, omp_set_lock, | S"pprﬂm‘t‘lgrmm‘m# |
omp_unset_lock.

T

Implementation Mechanisms

S (s | e R e SE LS

UE Management. 1 Synchronization ; {Cummuml:atmn i

............... cmEmmEsEEE s EEEEd tammm mm -

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 81/46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 82/46

Communication Collective communication

When multiple UEs participate in a single communication event, the
event is called a collective communication operation. Examples:

@ Broadcast: a mechanism to send single message to all UEs.

@ UEs need to exchange information.

e Shared memory - easy. Challenge - synchronize the memory
access so that results are correct irrespective of scheduling.

o distributed memory - not much need for synchronization to protect @ Barriers : a synchronization point.
the resources. — Communication plays a big role. @ Reduction: Take a collection of objects, one from each UE, and
@ One to one communication : “‘combine” into a single value;

e combined value present only on one UE?

@ Between all UEs in one event: Collective communication. :
e combined value present on all UEs?

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 83 /46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 84 /46

Serial reduction Tree based reduction

‘ a0y I all) | | alz) ‘ al3) ‘

e

sumiai0:1)) /

ald)

sumiaii:3))

surmial(:a)}

@ Reduction with 2" items takes n steps.

@ Reduction with n items takes n steps. @ What if number of UEs < number of data items?
A @ Only one UE knows the result.

@ Associative + Commutative or don’t care (example?)

@ Useful especially if the reduction operator is not associative.
@ Only one UE knows the result.

V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 85/46 V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 86/46
Recursive doubling Implementation Mechanisms
a0y ally al@) ald)
"‘-«_}{_-'"r [T —
L] L g - -
- - - ; I Finding Coneurrency
L+__}.l"’ “'-\{:j:, ({)/— "*“--.Cj] [= - s I
L L l | 43 " h TIS |
Algorithm Structure
sumial0: 1)) sumia(0:1)) sumia(2:3)) sumial2:3)) g T
T— e — [1 |
P — Supporiing Structures
(+ @f‘}ﬁ——-’@ xué PP ;.1
T

Implementation Mechanisms

iUE Management, : Synchronization ; ' Communication

................ e - mEmEm -

| Sﬂmlﬂ[U:-’ﬂ“| lsum(a[u:mr‘ ISum(MUﬁiJJ‘ ISL“'I‘HNUT-'S;'J‘

@ Reduction with 2 x nitems takes n steps.
@ What if number of UEs < number of data items?
@ All UEs know the result.

V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 87 /46 V.Krishna Nandivada (IIT Madras) CS6868 (IIT Madras) 88 /46

Overall big picture Sources
Finding E
Concurrency | l
@ Patterns for Parallel Programming: Sandors, Massingills.

B @ multicoreinfo.com
Tasks, shared and local data ° Wikipedia

@ fixstars.com

@ Jernej Barbic slides.
@ Loop Chunking in the presence of synchronization.

E Supporting struct.

& I, mecl — @ Java Memory Model JSR-133: “Java Memory Model and Thread

Specification Revision”

Units of execution + new she data

for extracted dependencies Corresponding source code

V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 89/46 V.Krishna Nandivada (lIT Madras) CS6868 (IIT Madras) 90/ 46

	Patterns
	Finding concurrency
	Dependences and Managing Parallelism

	Algorithm Structure
	Conclusion
	Conclusion

